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The wireless mesh networks are currently emerging as a promising solution for broadband
access, while their deployment and operational costs are also ever increasing significantly
due to the continuous electrical power consumption. The alternative is to deploy recharge-
able mesh routers using renewable energy sources. In this paper, we study the recharge-
able router placement problem for a green mesh network. The problem is formulated as
an optimization with the objective of minimizing the number of deployed routers, while
fulfilling QoS requirements on wireless coverage, traffic demand, energy efficiency and
user fairness. Specifically, we introduce the network failure rate to evaluate the network
performance and adopt the proportional fairness-based approach to do the cell association
between users and routers. We first propose two cell association algorithms from two per-
spectives: the Nearest Cell Association Algorithm (NCA) for energy efficiency consideration
and the Proportional Fairness Cell Association Algorithm (PFCA) to achieve a balance between
the network performance and the user fairness. We then design two heuristic placement
algorithms embedded with the proposed cell association methods to find approximate
solutions for the rechargeable router placement problem. Simulation results verify that
the proposed PFCA algorithm can guarantee the user fairness with a slight increase of
deployment cost. Furthermore, compared with the optimal placement achieved by exhaus-
tive search, ours can achieve good performance with greatly reduced computation
complexity.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, Wireless Mesh Networks (WMN) have
widely developed for the advantage of its low-cost and
flexible topology for broadband access services. With the
expansion of network scale and the increase of traffic
demand, the energy consumption of electrical power sup-
ply for WMNs becomes an important issue. To solve the
problem of ever-increasing energy consumption, an alter-
native is to introduce rechargeable routers that can harvest
green energies, such as solar or wind power. Since energy
supplies of rechargeable routers are not consistent but
dynamic due to varying environment conditions, how to
effectively place routers to guarantee wireless coverage
and network Quality of Service (QoS) is becoming more
challenging for green mesh networks.

The traditional node placement problem assumes
routers to have consistent power supply through wired
electricity and can be formulated as different optimization
problems based on the objectives and a set of constraints.
Some studies consider topologies where gateways are
fixed a priori [1]. While others attempt to optimize the
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number of gateways given a fixed layout of mesh routers
[2]. These studies mainly focus on the objectives of cost
minimization under given constraints or performance
improvement, such as coverage, connectivity [3], delay
[4], and throughput [2].

Since the increasing demand of services have led to a
significant growth in the energy consumption, recent
research efforts have studied energy saving mechanisms
in wireless networks. In cellular mobile networks, some
have proposed the base station sleeping strategies, that
is, switching off some base stations according to traffic
variations [5]. Recently, the green wireless mesh networks
in which routers are rechargeable by renewable energy
supplies have become a cost-effective alternative solution
for energy saving. Most previous studies related to green
wireless mesh networks have focused on the resource
management and traffic routing to ensure energy sustain-
ability [6,7]. However, the efficient rechargeable router
placement under QoS constraints for a green WMN has
not been well studied.

In this paper, we investigate the rechargeable router
placement problem in a green WMN. Our concern is how
to efficiently place rechargeable routers to ensure that
the dynamic harvested energy can fulfill the network QoS
requirement while ensuring the fairness among users in
a green mesh network. This is a challenging problem not
well studied before. For rechargeable routers, their energy
supplies are not consistent but dependent on realistic envi-
ronment conditions. It is possible that some routers may
not have enough energy to support all of its already con-
nected Mesh Clients (MCs), and have to drop some of them
temporarily. Though the short-term disconnections between
routers and MCs are assumed to be acceptable in real-world
conditions, the question is how to define the acceptability. In
this paper, we first introduce a long-term performance met-
ric, called network failure rate for a green WMN, which is
defined as the ratio of disconnections and all possible con-
nections. Instead of the strong coverage constraint that all
users should be connected to at least one router at any time,
we consider the cell association to meet the coverage con-
straint as long as the failure rate is under a given very low
threshold. However, the temporary disconnection event
brings out the other issue: The failure rate requirement
may be satisfied by sacrificing the QoS of a certain MC. Spe-
cifically, a certain MC may be failed for connection for a long
time period on account of its high energy consumption,
which would seriously affect users’ quality of experiences.
It is thus highly desirable to find an improved cell association
method to fairly assign traffic flows among users. In this
paper, we borrow the concept of proportional fairness that
have been commonly used for radio resource allocation in
mobile networks [8,9] into a cell association algorithm to
ensure fairness on accessing to traffic among users.

In this paper, we propose two cell association algo-
rithms, namely, Nearest Cell Association Algorithm (NCA)
and Proportional Fairness Cell Association Algorithm (PFCA).
The former focuses on minimizing the energy consumption
in each association, which may cause unfairness among
different users. While the later considers to achieve a bal-
ance between the network performance and the user fair-
ness on getting traffic flows. Based on the greedy algorithm
and simulated annealing algorithm, we design two heuris-
tic placement algorithms embedded with the proposed cell
association methods to find approximate solutions for the
rechargeable router placement problem. Simulation results
show that compared with the optimal placement achieved
by exhaustive search, ours can achieve good performance
at a relative low cost with greatly reduced computation
complexity. Furthermore, the proposed PFCA algorithm
can guarantee user fairness with a slight increase of place-
ment cost.

The remainder of the paper is organized as follows. We
present the system configuration and problem formulation
in Sections 3 and 4, respectively. The cell association algo-
rithms and heuristic placement algorithms are provided in
Section 5. Simulation results and performance compari-
sons are given in Sections 6, and 7 concludes the paper.

2. Related work

The node placement problem in WMNs is to minimize
the deployment expenditure or to optimize the network
performance by appropriately determining the number
and position of routers under a set of constraints. Three
types of scenarios are commonly considered for studying
the node placement problem in a WMN, and the node
placement problem in different scenarios are accordingly
formulated as different optimizations with various objec-
tives and constraints.

In the topologies where gateways are a prior fixed and
routers are required to be effectively placed, objectives
manly concern on the performance enhancements, such
as maximizing network connectivity, user coverage [3],
or minimizing energy consumption [10], and communica-
tion delay [4], as well as the cost minimization in terms of
the minimum number of deployed mesh routers [11–13].
In [11], authors explore the mesh router placement prob-
lem with multiple transmission rates and co-channel inter-
ference. While in [12], Zhang et al. study the multi-hop
relay node placement with channel capacity constraint.
Authors in [13,14] consider the minimal node placement
in a non-uniform propagation scenario by specifying con-
nectivity based on the per-link estimated signal quality.
Ref. [14] jointly addresses the router placement and chan-
nel assignment. As for the topologies where a pre-located
layout of mesh routers is given and appropriate locations
for placing gateways are to be selected, previous studies
have focused on the deployment cost minimization [15]
or network throughput optimization [2]. The third scenario
is that the positions and types of all mesh nodes are
unknown and the network design has to be done from
scratch. In [16], Amaldi et al. present an integer linear pro-
gramming formulation to select a small number of loca-
tions for placing routers from certain candidate sites.
Besides the single-objective problem discussed above,
there are also a portion of literature synthesizing two or
more contradicting objectives and obtaining Pareto non-
dominated solutions, which is referred as multi-objective
problem [17].

Recently, the issue of energy saving has attracted lots of
attention in wireless networks [18]. Base station sleeping
has been recently proposed to dynamically switch off some
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base stations according to traffic variations. Ref. [19] pro-
poses an optimization model for dynamically selecting a
subset of mesh routers to be turned on so that the total
cost including installation and energy consumption
expenses can be minimized. In [5], authors propose an
adaptive resource on-demand strategy to power on or off
base stations dynamically according to realistic user
demand.

Nowadays, the rechargeable routers powered by renew-
able energy offer a cost-effective alternative for network
planning, and the energy issue should be revisited in a
green WMN consisting of rechargeable routers. Farbod
and Todd [20] have studied how to prolong rechargeable
battery life by appropriately configuring a solar panel to
minimize the outage probability. Most work focus on
energy-aware resource management and traffic routing.
In [21], a power-aware routing algorithm is presented
using a composite cost metric considering renewable
energy. In [22], authors focus on the realistic case in which
accurate estimation of traffic pattern is inaccessible, and
present a routing scheme independent of traffic pattern
to minimize the maximum energy utilization of the net-
work. Ref. [7] considers a new type of hybrid network con-
sisting of both electrical energy-powered routers and
renewable energy-powered ones, and proposes a node
type assignment and traffic routing scheme. Ref. [20] dem-
onstrates a significant reduction in node deployment cost,
when power saving is used in the resource assignment. In
[23,24], authors investigate the issue of the joint planning
and energy management operation of a green WMN and
take into account the trade-off of capital expenditure and
energy-related operational expenditure.

As for the resource allocation in a green WMN with
renewable energy supply, authors in [6,25] adopt queuing
models to characterize the process of energy flow and pro-
pose resource management schemes to evenly distribute
traffic across the network so that the harvested energy
can sustain the network operation. In [26], Badawy et al.
study the problem of resource assignment methodology
and energy-aware routing. A genetic algorithm is devel-
oped to generate minimum-cost resource assignments
over the entire network, and historical solar insolation data
is used for the desired deployment location.

The energy issue in green WMNs above is mainly from
the viewpoint of resource allocation or traffic routing.
However, few have dealt with the rechargeable router
placement. The base station placement and optimal power
allocation have been investigated in [10], where the objec-
tive is to minimize energy consumption to cover users. The
most related work of node placement problem in green
WMNs is [27], which aims at finding an optimal set of rou-
ters, so that the QoS requirements of users can be fulfilled
with the harvested energy, and routers are assumed to be
able to adjust their powers on several levels for data trans-
mission. An efficient heuristic algorithm with polynomial
time complexity is proposed to solve the node placement
problem. However, the work in [27] does not consider
the dynamic energy flow process of rechargeable routers,
but uses a simple flat charging rate model. Furthermore,
it imposes a strong QoS requirement that all users should
be connected to at least one router at any time, which
may not be practical in a network supplied by dynamic
green energy.

It is observed that many literature adopt a simple flat
energy charging model the same as the one used in [27].
However, the energy flow stored in a battery is actually
dynamic due to the restricted energy charging capabilities
and diverse charging environments. Thus it is crucial to
derive an accurate analytical model to characterize the
dynamic energy flows. In [28], authors present a model
to characterize the dynamic variation of stored energy
due to harvested energy and power consumption. In [29],
Sayegh et al. discuss the effect of different energy sources
including wind and solar power on the network
performance.

In this paper, we study the rechargeable node place-
ment with considerations of both energy efficiency and
user fairness. We adopt the proportional fairness to
achieve a tradeoff between network throughput and fair-
ness among users. The proportional fairness concept has
been widely used for resource allocation in wireless net-
works [9,30–32]. For example, in [31], Han et al. propose
a proportional fairness-based scheme to allocate subcarri-
er, rate, and power for multiuser OFDMA systems. Differ-
ent from these studies, we combine the proportional
fairness at the network design stage to take care of the
allocation of the harvested energies among different users.
3. System configuration

3.1. System model

In this paper, we consider to deploy a WMN consisting
of only solar-powered rechargeable mesh routers (MRs).
The deployment field is assumed to be divided into grid
cells with equal area as in [33] and the center of each cell
is a candidate location for placing a rechargeable mesh rou-
ter. Each deployed mesh router (MR) should provide wire-
less access for mesh clients (MCs), which are assumed to be
uniformly distributed within the deployment field. At any
time, each MC can associate with at most one MR. In our
paper, the MC is considered as a group of mobile devices
at some particular place such as a crowd at a bus station.
Thus the traffic demand of each MC is regarded as the
aggregation of required traffic for a group of mobile
devices so that the holistic trend can be determined at a
certain level. We assume that all MCs have identical traffic
demand patterns in both downlink and uplink, which,
however, is variable in different intervals of a day accord-
ing to the realistic traffic characteristics. Each MR con-
sumes renewable energy acquired from a solar panel to
ensure the traffic demand of its associated MCs. And the
charging capability of rechargeable routers are assumed
to be the same across all MRs.
3.2. Energy flow model

To characterize the fluctuation of energy stored in bat-
tery, we divide the continuous time-line into consecutive
slots with equal duration and indexed by k ¼ 1;2; . . ..
We assume that MRs are roughly synchronous to do
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connections with MCs in each slot. The energy charging
and discharging process of a router can be modeled by a
discrete-time energy flow model as follows:

EðkÞ ¼ Eðk� 1Þ þ CðkÞ � DðkÞ; k ¼ 1;2; . . . ð1Þ

where EðkÞ is the residual energy of the router after the kth
slot. When k ¼ 0; Eð0Þ denotes the certain value of initial
energy stored in routers. CðkÞ is the energy harvested in
the kth slot, and DðkÞ is the energy consumed for data
transmission in both downlink and uplink in the kth slot.

3.2.1. Energy charging model
In this paper, we adopt green energy, namely, solar

power from natural environment. The harvested energy
is dynamic and variable in different time slots of a day.
We consider the same one-day energy charging model
for all routers, which shows some diurnal-periodic charac-
teristics. Based on the field measurements of the charged
power for the first 100 h of July, 1990, in the Phoenix city
[29] plotted in Fig. 1(a), we derive an approximate charg-
ing model plotted in Fig. 1(b) consisting of a quadratic
curve and zero to model the harvested energy in the day-
time and in the night, respectively. The charging model is
expressed as follows:

CðkÞ ¼ Cmax � � 1
36

j2 þ 2
3
j� 3

� �
;

j ¼modðk;24Þ; k ¼ 1;2; . . .

ð2Þ

where Cmax is the maximum charging ability of a solar
panel. Since the charging model follows the same trend
everyday, we can calculate the sequence number of any
time slot k in a day according to j ¼modðk;24Þ, which is
to obtain the remainder after k is divided by 24 h.

3.2.2. Energy discharging model
In this paper, we consider that the energy consumption

of MR is due to data transmission in downlink and data
reception in uplink. At first, we adopt two discrete-time
traffic models for downlink and uplink based on field mea-
surements of 400 GB data recorded at a Germany-wide
access provider for 250 households in July 2008 [34].
Fig. 2 shows the daily traffic statistics of three main appli-
cations and the data distribution in downlink and uplink
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(a) Measurements of charged solar energy in July 1990,
in Phoenix [29];

Fig. 1. (a) Measurements of charged solar energy in July 1990, in Phoenix
corresponding to applications, respectively. We assume
that all MCs follow the same traffic demand pattern. And
we use four linear functions to describe the traffic varia-
tions in different time slots during a day. The traffic pattern
is expressed as follows:

Rd
i ðkÞ ¼

� 2
3 jþ 5; 0 6 j < 6

7
12 j� 2:5; 6 6 j < 12

1
3 jþ 0:5; 12 6 j < 18

� 1
4 jþ 2; 18 6 j < 24

8>>>>>><
>>>>>>:

RuðkÞ ¼

1; 0 6 j < 6
1

12 jþ 0:5; 6 6 j < 12

1:5; 12 6 j < 18

� 1
12 jþ 3; 18 6 j < 24

8>>>>><
>>>>>:

j ¼modðk;24Þ; k ¼ 1;2; . . .

ð3Þ

where RdðkÞ represents the downlink traffic demand of a
MC from the Internet in the kth slot, RuðkÞ represents the
uplink traffic to the Internet in the kth slot, and m the daily
mean throughput of a user. When m is set to be 0, the daily
mean throughput is 5.5 Mbps. If the ith MC is connected to
the jth MR at the kth slot, then the transmission power
requirement pijðkÞ can be computed by:

PijðkÞ ¼
SNRij � r

d�a
ij

; ð4Þ

and

RiðkÞ¼
: RijðkÞ ¼ Blog2ð1þ SNRijÞ; ð5Þ

Here, RijðkÞ represents the achievable data rate of MC i
received from MR j, which is assumed as equal to RiðkÞ,
the requested traffic of MC, SNRij is the signal-to-noise ratio
for achieving the required data rate according to the Shan-
non equation, B the channel bandwidth, dij the distance
between the ith MC and jth MR, a the path loss exponent
and r the background noise.

The energy consumption of MR j consists of two parts
for downlink and uplink. According to Eq. (4), Pd

ijðkÞ can
be obtained for a given SNRij threshold obtained from (5).
While Pu

ijðkÞ is only dependent on uplink traffic demand
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(b) An approximate energy charging model for
a solar panel.

[29]. (b) An approximate energy charging model for a solar panel.
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Fig. 2. (a) Measured data of a client’s mean daily traffic demand [34]. (b) An approximate model for user’s traffic demand.
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RuðtÞ. Let DjðkÞ denote the total energy consumption of jth
MR in the kth slot.

DjðkÞ ¼ s�
X

i2I jðkÞ
ðPd

ijðkÞ þ PrxRu
i ðkÞÞ; ð6Þ

where I jðkÞ is the set of MCs associated to the jth MR at
the kth slot, and s the length of a slot. We assume a sim-
ple flat energy consumption model Prx for receiving a unit
data.

4. Problem formulation

Each deployed router consumes its harvested energy to
guarantee its associated MRs’ QoS requirement in that slot.
Since the harvested solar energy of a rechargeable router is
variable, it is possible that a router’s residual energy can-
not sustain its previously associated MCs. Thus, at the
beginning of each slot, the router should decide its associ-
ated MCs again, which is called cell association. The energy
insufficiency is likely to cause that one MC is not assigned
to any router at some slot. The event that a MC is tempo-
rarily disconnected with any MC in a slot is called a connec-
tion failure. We propose the metric of failure rate (FR) to
evaluate the network performance: FR is defined as the
number of connection failures divided by all the connection
attempts during a long time span. We note that as the MCs
are randomly distributed, some MC may be farther away
from routers, and consumes more router’s energy. There-
fore, some MC may encounter the problem of being always
disconnected in case of insufficient harvested energy. This
again introduces a fairness problem, where MCs may not
be equally treated for network access. This MC fairness
issue can be addressed by a properly designed cell
association algorithm, and we introduce a proportional
fairness-based algorithm in the next section. To evaluate
the fairness among users on obtaining network resource,
we adopt the metric of Jain’s fairness index [35] which is
widely used to measure fairness of resource allocation
schemes. It is defined as follows:

FItraffic ¼
PjI j

i¼1ri

� �2

jI j �
PjIj

i¼1r2
i

ð7Þ
where jI j is the number of total MCs, ri represents the total
actual downlink traffic of a MC i achieved from the Internet
for the whole operational period, which distinguishes from
the downlink traffic requirement Ri of a MC. If all users
have the equal access to the Internet traffic, then the value
of FI will be 1, and the system is entirely fair. The closer the
value of FI to 0, the greater the difference between users on
traffic resource assignment, which indicates the more
unfair resource allocation.

When designing a green rechargeable router placement,
we aim at placing the least number of rechargeable routers
subject to various QoS constraints. We next formulate the
router placement as a constrained optimization problem.
Let S denote the set of candidate locations for placing rou-
ters, I denote the set of MCs, and K denote the set of time
slots in the whole operational time. When an MR is placed
at the jth candidate location, we set yj equal to 1. Other-
wise yj ¼ 0. Our objective is to minimize the total number
of deployed routers. In conclusion, we obtain the equiva-
lent description of the problem through the establishment
of mathematical formulas as follows:

Minimize:

X
j2S

yj ð8Þ

Subject to:

FR 6 FRthres ð9Þ

Blog2

yjxijðkÞPd
ijðkÞd

�a
ij

r

 !
¼ xijðkÞRd

i ðkÞ;

for all k 2 K; j 2 S; i 2 I jðkÞ ð10Þ

DjðkÞ 6 EjðkÞ � Emin; for all k 2 K; j 2 S ð11Þ

yjxijðkÞPd
ijðkÞ 6 Pmax; for all k 2 K; j 2 S; i

2 I jðkÞ ð12Þ
X

j

xijðkÞ 6 1; for all k 2 K; i 2 I ð13Þ

xijðkÞ; yk 2 f0;1g; for all k 2 K ð14Þ
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Here, xijðkÞ ¼ 1, if the ith MC is determined to be associated
with the jth MR at the kth slot. Otherwise xijðkÞ ¼ 0. Emin

and Pmax are both set according to realistic situations. Emin

denotes the threshold of the minimum reserved energy
for the consideration of battery safety, and Pmax denotes
the maximal transmission power of a router. All MRs are
assumed to have the same maximal transmission power,
which restricts their maximal transmission range to avoid
unreasonable energy depletion. We next briefly discuss the
constraints.

Eq. (9) ensures that the network’s failure rate of the
whole period should not exceed the given threshold
FRthres to meet the coverage requirements. The failure rate
FR is computed as follows:

FR ¼
P

k2K
P

i2I 1�
P

j2SxijðkÞ
� �
jIj � jT j ; ð15Þ

where jI j is the number of total MCs, and jKj the number of
time slots in the whole operational period.

Eq. (10) ensures that in any slot the traffic demand of a
connected MC should be fulfilled.

Eq. (11) ensures that in any slot the energy consump-
tion of a MR should not be more than its available energy.

Eq. (12) ensures the given threshold of maximal trans-
mission power, which restricts the actual transmission
power of each router.

Eq. (13) ensures that in any slot, each MC can access to
at most one MR.

Eq. (14) restricts that the decision variables can only
take binary values.

It can be shown that the above router placement is a
NP-complete problem. It can be solved via the exhaustive
search, however, its computation complexity increases
exponentially with the problem scale. In general, heuristic
approaches can be used to get an approximation solution.
In the next section, we propose an optimal solution based
on exhaustive search for small scale problems, and two
heuristic algorithms to obtain approximate solutions for
large scale problems.

5. Rechargeable router placement based on NCA
algorithm and PFCA algorithm

In this section, we propose two cell association algo-
rithms. The Nearest Cell Association (NCA) algorithm focus
on the system efficiency without concerning the fairness
between MCs on network access, thus we further introduce
the Proportional Fairness Cell Association (PFCA) algorithm
to achieve the balance among user fairness and system
performance.

5.1. Nearest Cell Association Algorithm (NCA)

For each router, the required energy consumption is due
to the traffic demand of its associated MC and the distance
between them. Since MCs have identical traffic demand
pattern, the metric of distance plays the leading role. Con-
cerning the limited renewable energy, we focus on mini-
mizing the distance between a deployed router and a
given MC.
NCA: Nearest Cell Association
Output: Associated MR set Sn
(01)
 Set Sn ¼ ;;n ¼ 1;2; . . . ;N0
(02)
 Set counter ¼ 0; finished ¼ false

(03)
 while not finished

(04)
 dmn ¼minðDÞ

(05)
 Compute Pmn and emn
(06)
 if Pmn 6 Pmax and En � Emin P emn
(07)
 Sn ¼ Sn þ fmg; En ¼ En � emn
(08)
 counter ¼ counter þ 1

(09)
 dmn ¼ null, for all n ¼ 1;2; . . . ;N0
(10)
 else

(11)
 dmn ¼ null

(12)
 endif

(13)
 if counter ¼ M or D ¼ NULL

(14)
 finished ¼ true;

(15)
 endif

(16)
 endwhile
The basic idea of NCA is to do the association for the
pair of router-user with nearest distance and sufficient
energy.We first compute the distance dij between the ith
MC and jth MR, i ¼ 1; . . . ; I0 and j ¼ 1; . . . ; S0, where
I0 ¼ jIj denotes the number of total MCs and S0 ¼ jSj the
number of total candidate locations.We store them in a
distance matrix DI0�S0 . Note that D needs to be computed
only once. For a given deployment of N0 MRs, we select
the elements df� jg in the jth column corresponding to the
N0 deployed candidate locations, and constitute a new dis-
tance matrix DI0�N0 . Let minðDÞ denote the function that
returns the minimum element in a matrix D.

In each step of NCA, we first find the minimum distance
in D, say for example, dmn _¼minðDI0�N0 Þ which denotes the
distance between the mth MC and nth MR. Then MR n com-
putes the required energy to guarantee the QoS require-
ment for the MC m according to

emnðkÞ ¼ s� ðPmnðkÞ þ PrxRu
mðkÞÞ ð16Þ

where the transmission power is computed according to
Eq. (4). If both (i) the residual energy EnðkÞ � Emin P emn

and (ii) transmission power PmnðkÞ 6 Pmax are satisfied,
then the mth MC is connected to the nth MR, and the MR
deduces its residual energy accordingly, i.e.,
EnðkÞ ¼ EnðkÞ � emn. Furthermore, all the elements dfm�g in
the mth row of D are set to null so that the MC m is no
longer considered for association in the next step. If either
(i) or (ii) cannot be satisfied, then the mth MC cannot be
assigned to nth MR, and the element dmn is set to null.

The above process terminates, if all MCs have been
assigned to some MRs or all MRs have reached their mini-
mum residual energy limits. Note that after the NCA termi-
nates, it is possible that some MCs still cannot be assigned
to any MR and cause some connection failures. In the kth
slot, the pseudo-codes of the NCA algorithm are shown in
NCA. After performing the NCA algorithm, we can obtain
the number of connected MRs in a slot, i.e, counter. Then
for a long time span, we can easily calculate the failure rate
for this deployment.
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The computation complexity of minðDÞ is assumed as Q,
which is I0 � S0 in the worst case. For each MC, the NCA
algorithm attempts to assign it to each MR and determines
the associated MR in the worst case. Therefore, the worst
case time complexity of the NCA algorithm is
O I0 � N0 � Qð Þ for a given deployment of I0 MCs and N0

MRs.

5.2. Proportional Fairness-based Cell Association Algorithm
(PFCA)

The NCA algorithm above is from the energy efficiency
consideration, where the MCs closer to MRs are always
preferably chosen. This can cause that some MCs may be
starved for network access for a long period. To solve this
unfair access problem, we design the Proportional Fair-
ness-based Cell Association Algorithm (PFCA) by adopting
the PF factor for each MR [36]. The PF factor is defined as
the instant achievable data rate of a user divided by its
average allocated data during a certain previous period:

PFmðkÞ ¼
RmðkÞ

Rmðt � 1Þ
¼ RmðtÞP

t2T RmðkÞ=ðk� 1Þ ; ð17Þ

where RmðkÞ is the required data rate of MC m in the slot k,
Rmðk� 1Þ is the average date rate of user m obtained dur-
ing the last k� 1 slots.

The basic idea of PFCA is to choose the MR-MC connec-
tion with the least energy consumption for the MC which
has the maximal PF value in each slot.We first compute
the PF index for all MCs in the current slot k according to
Eq. (17) and store them in a PF index matrix DPF . In each
step, we find the MC with the maximum PF value
PFm ¼ maxðDPFÞ, say for example, the MC m. maxðDÞ
denotes the function that returns the maximum element
of a matrix. We then find an appropriate MR for this MC,
and the process is similar to that of the NCA algorithm.

Given a deployment scheme of N0 routers, we first com-
pute the required energy of the mth MC from the nth MR
according to Eq. (16). If both (i) the residual energy
EnðkÞ � Emin P emn and (ii) PmnðkÞ 6 Pmax are satisfied, then
this MR n is a candidate.We store the ID of candidate
MRs and corresponding energy consumption emnðtÞ in the
ID vector J m and energy vector De respectively. Then we
select the MR with the minimum energy consumption
emnðtÞ ¼ minðDeÞ, namely, MRn for the mth MC to connect
to. And the MR changes its residual energy accordingly.
Furthermore, the PF value of the mth MC in the DPF is set
to null which indicates that it is no longer considered for
subsequent associations. If no accessible MRs are sufficient
in energy, the PF value of the mth MC PFm is set to null in
the matrix DPF . The terminating condition is the same as
that of the NCA algorithm, and also connection failures
may occur. In the kth slot, the pseudo-codes of the PFCA
algorithm are shown in PFCA.

The computation complexity of maxðDÞ is assumed as Q,
which is I0 � S0 in the worst case. We first need to search
for I0 MCs to find the one with the maximal PF value and
then choose the association with the least energy con-
sumption which is N0 in the worst case. Therefore, the
worst case time complexity of the PFCA algorithm is
O I0 � N0 � Qð Þ for a given deployment of I0 MCs and N0

MRs.
PFCA: Proportional Fairness Cell Association
Output: Associated MR set Sn
(01)
 Set Sn ¼ ;;DPF ¼ ;;De ¼ ;, Jm ¼ ;,

n ¼ 1;2; . . . ;N0
(02)
 Set counter ¼ 0; finished ¼ false

(03)
 for each i 2 I0
(04)
 Compute PFi
(05)
 DPF ¼ DPF þ fPFig

(06)
 endfor

(07)
 while not finished

(08)
 PFm ¼ maxðDPFÞ

(09)
 Obtain the ID m of MR with PFm
(10)
 Compute Pmj and emj
(11)
 if Pmj 6 Pmax and En � Emin P emn
(12)
 Jm ¼ Jm þ fjg;De ¼ De þ femjg

(13)
 endif

(14)
 endfor

(15)
 if Jm ¼ 0;

(16)
 PFm ¼ null

(17)
 else

(18)
 emnðkÞ ¼ minðDeÞ

(19)
 Sn ¼ Sn þ fmg; En ¼ En � emn
(20)
 counter ¼ counter þ 1

(21)
 endif

(22)
 if counter ¼ I0 or DPF ¼ NULL

(23)
 finished ¼ true;

(24)
 endif

(25)
 endwhile
5.3. Exhaustive Search-based Placement (ESP)

Based on the cell association algorithm, we can adopt
the exhaustive search to obtain the optimal solution by
searching for all possible schemes. Given a scenario of S0

candidate locations, we can have 2S0 possible deployment
schemes. Let Ll; l ¼ 1;2; . . . ;2S0 denote these possible place-
ments and jLlj denote the number of MRs used in the lth
deployment. For a deployment of N0 routers, we can com-
pute the failure rate of the network by repeating the cell
association algorithm in a long time span.Then among all
these possible deployments, the one with the least number
of routers and failure rate less than the threshold is chosen
as the optimal solution.

Since we need to search for 2S0 possible schemes and
calculate the failure rate for each deployment of jLlj MRs,
the worst case time complexity of exhaustive search is
O T0 � I0 � Q � 2S0
� �

. Note that its computation complexity
is exponential of the available candidate locations.

5.4. Greedy Search-based Placement (GSP)

Although the ESP can find the optimal deployment, its
computation cost becomes very prohibitive when the can-
didate locations increase. We next propose a heuristic
algorithm based on greedy search. The basic idea of the
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Greedy Search-based Placement (GSP) algorithm is to place
one router in each stage at a candidate location such that
the failure rate of the new placement is minimized. At first,
no routers are placed. We then place one router at some
candidate location and calculate its failure rate. The candi-
date location with the minimal failure rate is selected.
Then we move to the next stage, and place another router
to one of the unoccupied candidate locations to minimize
the failure rate. The process of the greedy algorithm termi-
nates, if the failure rate of the deployed routers is less than
the threshold.

In the Greedy Search-based Placement (GSP) algorithm,
we need OððS0 þ 1Þ � S0=2Þ for searching all possible
schemes to find the final deployment scheme in the
worst case. And in each deployment scheme, the
number of deployed routers changes and the calcula-
tion times of failure rate change accordingly. There-
fore, the overall time complexity is O T0 � I0 � Q�ð
ðS0 þ 2ðS0 � 1Þ þ 3ðS0 � 2Þ þ . . .þ S0ÞÞ, namely O T0�ð
I0 � Q � S3

0Þ, which is much lower than the optimal
algorithm.
0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

Number of MCs

N
um

be
r o

f d
ep

lo
ye

d 
ro

ut
er

s

Optimal-PFCA
Greedy-PFCA
SA-PFCA
Optimal-NCA
Greedy-NCA
SA-NCA

Fig. 3. Performance comparison on routers’number for different numbers
of MCs.
5.5. Simulated Annealing-based Placement (SAP)

One disadvantage of the greedy algorithm is easily run-
ning into local optimization solution, thus we next propose
a heuristic algorithm based on simulated annealing to
achieve global optimization through random search.

The basic idea of the Simulated Annealing-based Place-
ment (SAP) algorithm is to remove one router in each stage,
starting from a full deployment, until the failure rate
exceeds the threshold. At first, routers are assumed to
place on all candidate locations and FR is calculated as
the initial function value FðP0Þ. Then we decrease the rou-
ters’ number one by one. In each step, the SA considers var-
ious placements with the same number of routers. Once a
new placement is given, we obtain its FR as the new func-
tion value FðP1Þ according to Eq. (15). Then the SA probabi-
listically decides between changing the original placement
P0 to the new placement P1 or staying in the original place-
ment P0. The selection process is repeated until the func-
tion value reaches a steady state or when a certain
number of iterations is performed.

In SAP, the placement is accepted as the new current
solution, if d 6 0 holds, where d ¼ FðP1Þ � FðP0Þ. To allow
escaping from a local optimum, moves that increase the
function value are accepted with a decreasing probability
exp � d

t

� �
, if d P 0, where t is the parameter called ‘temper-

ature’, and its decreasing value is controlled by a cooling
schedule t ¼ x � t.

In the Simulated Annealing-based Placement (SAP)
algorithm, at most S0 executions needs to be done to aban-
don routers one by one. As the numbers of iterations are
given and the FR should be calculated for a given deploy-
ment in each iteration, the worst case time complexity of
SAP is O T0 � Q � I0 � IL� OL� S2

0

� �
, where IL and OL rep-

resent the number of iterations in inner and outer loops,
respectively. The SAP algorithm can be more efficient than
the optimal algorithm with appropriate parameter
settings.
6. Simulation results

We set up a simulation model to verify the proposed
algorithms using MATLAB. The model is based on a rectan-
gular field with size of 160� 120 (m2) in which a number
of mesh clients are uniformly distributed. The field is
evenly partitioned into several grid cells of equal area,
and the centers of the grid cells are candidate locations
for placing routers. In our simulations, all routers follow
the same energy charging model, and all MCs have the
same traffic demand pattern. The bandwidth B is 40 MHz.
The path loss exponent a is 4, and the background noise
ris �20 dBm. Our operational period is set as a month
which is divided into 720 consecutive slots each with the
time duration of 1 h, The failure rate threshold is set as
0.05. We repeat each simulation experiment 20 times with
different random seeds to obtain the average values for
performance evaluation. By incorporating two cell associa-
tion algorithms with three heuristic algorithms, we can
obtain six placement schemes for the router placement
problem: ESP-NCA, ESP-PFCA, GSP-NCA, GSP-PFCA, SAP-
NCA and SAP-PFCA.

First, we compare the performance of our proposed
algorithms with the optimal solution achieved by the ESP
algorithm on the number of routers and the value of fair-
ness index FItraffic . Due to the limit of computation com-
plexity, we consider a field with 3� 2 grids, namely, 6
candidate locations. The maximum charging power of a
rechargeable router is set as 100 mW, and the daily mean
traffic demand of a MC is 5.5 Mbps. We can observe from
Fig. 3 that the average number of deployed routers
increases with the MCs’ number. For the performance of
fairness on traffic access, Fig. 4 shows a decreasing trend
against the number of users. The fairness indices of the
schemes with PFCA algorithms always approach to 1,
which is obviously better than that of schemes with NCA
algorithms. And the performance of our two proposed
algorithms are close to the corresponding optimal solution.

To further verify the feasibility of the proposed classical
near-optimal algorithms, we also consider another two
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Fig. 5. Impact on routers’number against MCs’number for NCA algorithm.
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Fig. 6. Impact on routers’number against MCs’number for PFCA
algorithm.
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Fig. 7. Impact on routers’number for daily mean traffic demand of MCs.
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frequently-used placement solutions: random placement
and uniform placement algorithm. The basic idea of random
placement scheme is to randomly place a given number of
routers in each stage from the scenario in which no routers
are deployed, and the number of attempts in each stage is
limited, and set as 10 in our simulations. When a random
placement scheme cannot fulfill the failure rate and QoS
constraint, we move to the next stage by adding one more
router for random placement. Otherwise, the current
placement scheme is selected as the final solution. As to
the uniform placement, different uniform placement lay-
outs are pre-given for various number of deployed routers.
In the initial condition in which one router is to be placed,
the location is given as the center of the placement region.
If the placement scheme cannot satisfy the QoS require-
ments and failure rate constraint, we move to the next
stages by adding routers one by one. And the subsequent
locations are also uniformly distributed in the experiment
field. By incorporating two cell association algorithms with
the algorithms discussed above, we can obtain five router
placement schemes for the same cell association algorithm
(PFCA/NCA): ESP, GSP, SAP, Uniform and Random place-
ment algorithms. We can conclude from Figs. 5 and 6 that
no matter which cell association algorithm is embedded,
the performance of greedy-based placement schemes
always outperform other near-optimal algorithms includ-
ing simulated annealing search, random as well as uniform
placement algorithms, which demonstrates the appropri-
ate selection of the greedy placement idea.

We next study the impact of various system parameters
setting on our proposed algorithms. By changing the value
of system parameters such as the daily mean traffic
demand of MCs, the maximum charging capability of rou-
ters and the number of candidate locations, we can find the
change rule of the performance on deployed routers’num-
ber and the fairness index. The number of MCs in the field
is fixed as 20.

We consider a region with 4� 3 fixed candidate loca-
tions to see the impact on performance of the daily mean
traffic demand and the maximum charging capability. It
is observed from Fig. 7 that more routers are needed with
the increasing traffic demand. While in Fig. 9, a clear
decline is shown as the maximum charging capability
increases. The reason is that a rechargeable router can sus-
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Fig. 10. Impact on network fairness for maximum charging capabilities of
routers.
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algorithm.
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tain to support more MCs with a higher charging capabil-
ity. Furthermore, we have two findings: (1) For schemes
with the same cell association algorithms, GSP are always
superior to SAP. (2) For the same schemes with different
cell association algorithms PFCA and NCA, NCA algorithm
shows better performance without concerning the fairness.

The first result can be attributed to the inherent proper-
ties of two algorithms on the path of getting an approxima-
tion solution: The greedy algorithm starts from the
deployment scheme with the minimal number of routers;
While the simulated annealing algorithms does the oppo-
site. The second result can be verified by the performances
on traffic fairness plotted in Figs. 8 and 10. We can see that
schemes with PFCA approximately show the best fairness
since their FItraffic value is close to 1. The performance of
NCA algorithm is obviously lower, which indicates that
the improvement on routers’ number of NCA algorithms
is achieved at the cost of traffic fairness among MCs.

In the experiments above, the charging models we
adopted are all dynamic in various time slots, while a sim-
ple flat charging model is frequently used in some other
related work. Hence, we redo the experiments of changing
maximum charging capability by adopting the flat charg-
ing model to compare the effect on network performance
of different charging models. In the flat charging model,
the charging power rate is considered to be a constant
which is Caverage in the daytime from 6:00 am to
18:00 pm while zero at night. To ensure the total charging
energy unchanged, Caverage is calculated as the ratio
between overall solar energy harvested in the dynamic
charging model and the daytime charging period.

For placement schemes with the same cell association
algorithm(NCA/PFCA), we compare the results of flat
charging model with that of dynamic charging model to
investigate the effect on the deployed routers number from
various charging models. And the results are shown in
Figs. 11 and 12. We can see that, for different cell associa-
tion algorithms, the placement schemes with dynamic
charging model always outperform those with flat charg-
ing model regardless of the adopted association algo-
rithms. This demonstrates that the results obtained
through dynamic charging model can better direct the net-
work planning stage in practical situation.
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Finally, we discuss the effect of grid number on the sys-
tem performance. In this simulation, the daily mean traffic
demand of the MC is set as 5.5 Mbps and the maximum
charging capability of the rechargeable router is 100 mW.
Fig. 13 plots the average number of required routers
against the available candidate locations. It is seen that
the required number of routers decreases with the increase
of candidate locations. This indicates that the more choices
of the system, the better the placement scheme in general.
For a larger number of candidate locations, the exhaustive
search algorithm needs a prohibitive computation time to
obtain a result; While our proposed greedy algorithm is
able to find a feasible solution efficiently. Similarly, place-
ment schemes with NCA algorithm outperform the ones
with PFCA algorithm on the number of deployed routers
but at the cost of traffic fairness, which is shown in Fig. 14.

7. Conclusions

In this paper, we have studied the rechargeable router
placement problem for green wireless mesh networks,
and formulated the placement as an optimization problem
with the objective of minimizing the number of deployed
routers, while satisfying the data throughput demand
and traffic fairness for users, as well as the connection fail-
ure rate and energy sustainability for the network. We
have proposed two cell association algorithms, and
designed two heuristic placement strategies to find
approximate placement solutions. Simulation results have
shown that the performance of the proposed PFCA algo-
rithm can achieve a balance between fairness among users
and network performance with little increased placement
costs.
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