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Electric Vehicle Scheduling Considering
Co-optimized Customer and System Objectives

Maigha, Student Member, IEEE, M. L. Crow, Fellow, IEEE

Abstract—Efficient electric vehicle scheduling is a multi-
objective optimization problem with conflicting customer and
system operator interests, especially during vehicle-to-grid im-
plementations. Economic charging while minimizing battery
degradation and maintaining system load profiles couple the
interests of these two entities. This paper focuses on identi-
fying the relationships between these objectives and proposes
to use an augmented epsilon-constrain (AUGMECON) based
technique to implement two-way and three-way multi-objective
optimizations. The importance of using these objectives in peak-
shaving and valley-filling for an aggregated (residential) EV
fleet is discussed. The proposed solution provides a look-ahead
strategy into effective electric vehicle scheduling by co-optimizing
multiple objectives. To provide operational guidance to utilities
and customers, an optimal solution may be selected from those
represented by the Pareto fronts.

Index Terms—AUGMECON, battery degradation, electric ve-
hicles, multi-objective optimization, V2G

NOMENCLATURE
Parameters
λt Electricity rate at time instant t. ($/kWh)
ε Positive constant of AUGMECON ∈ [

10−6 10−3
]

ηch Battery charging efficiency (= 0.92).
ηdch Battery discharging efficiency (= 0.90).
batlife Battery lifetime in years

(= 10 years or 5000 cycles).
d Linear battery degradation cost-intercept

= 6.41 × 10−6

ej Equality constraint parameter.
gridj Number of gridpoints of objective.
iterj Iteration parameter.
m Linear battery degradation cost-slope parameter

= 1.59 × 10−5.
rangej Range of objective function.
t Time instant.
ubj Upper bound of objective.
Bcap,i Battery capacity of vehicle i.
Cbat Battery cost in $ (= $300/kWh).
Clabor Labor cost for battery replacement (= $240).
CFmax Capacity fade at end of life = 20%
DOD Depth of discharge of battery at end of life.
Ei,req Energy required for full charge for vehicle i. (kWh)
Nveh Total number of vehicles.
Pavg Average load demand. (kW)
Pch,max Maximum charging power rating

∈ [1.44, 6.66]. (kW)
Pch,min Minimum charging power rating (= 0) (kW)
Ppeak Forecasted peak load demand. (kW)
P t
res Residential load demand at time t. (kW)

Pdch,max Maximum discharging power rating (= 0). (kW)
Pdch,min Minimum discharging power rating

∈ [−1.44,−6.66]. (kW)

The authors are with the Department of Electrical and Computer Engi-
neering, Missouri University of Science and Technology, Rolla, MO 65401
USA.

ti,avail Time available for charging vehicle i. (h)

SoCi,min Minimum SOC of battery of vehicle i.
SoCi,max Maximum SOC of battery of vehicle i.

Variables
xt
i,ch Charging power of vehicle i at time t. (kW)

xt
i,dch Discharging power of vehicle i at time t. (kW)

Edch
Δt Energy discharged in Δt. (kWh)

Et
bat Energy stored in the battery at time t. (kWh)

P t
i,veh Vehicle i load demand at time t. (kW)

P t
sys Total system load demand at time t. (kW)

SoCt
i,avg Average SOC of battery of vehicle i at time t.

fj Objective function j.
sj Positive slack variable.
x Optimization variable.
υt
i Binary optimization variable.

S Solution space for variable x.

I. INTRODUCTION

COMMERCIALIZATION and adoption of electric vehi-
cles (EV) in the automobile market has raised concerns

over their uncontrolled charging demands and their impact of
the present electrical power system to serve the increasing
load demand efficiently. Increases in EV load may lead to
network congestion, high losses, thermal stresses, and require
network reinforcements, in addition to higher operating costs
at peak demands. Therefore, scheduling and control of the
EV load is essential for the economic operation of the power
system. Vehicle-to-grid (V2G) operations of the EVs impose
additional problems due to power injection into the electric
grid traditionally designed for one-way power flow. Apart from
the technical challenges, well designed financial models and
transactive energy frameworks are required to make V2G a
feasible and lucrative option [1]-[3].

Lack of widespread fast charging infrastructure, range anx-
iety, and higher costs of EVs influence customer choice. Ad-
ditionally, relinquishing charging control to an external entity
is undesirable to the customer unless on-demand availability
and adequacy of the vehicle is ensured. Hence, there is a need
for well-designed control and scheduling techniques that cater
to customer comfort, financially motivate them, and provide
incentives for V2G without compromising network or battery
health. These challenges motivate the need for a multi-pronged
approach to problem solution.

Past literature has studied various aspects of multi-objective
optimization of electric vehicles [4]-[23] from the perspective
of customer vs. the system operator. For example, in [6], an-
nual traffic at fast charging stations was maximized, while min-
imizing distribution system energy losses and annual invest-
ments. In general, artificial intelligence-based methods such
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as genetic algorithms (NSGA-II) or particle swarm optimiza-
tion (ESPSO) have been used for determination of efficient
solutions in multi-objective optimization (MOO) problems.

Most literature on multi-objective optimization study this
problem from the power management perspective [9]-[12].
References [9] and [11] use an electrochemical battery model
to determine optimal battery health conscious power manage-
ment strategies for EVs. The detailed impacts and dynamics
on load profiles and customer charging costs have not been
discussed in these studies. A multi-objective health conscious
charging paradigm developed in [14] coupled electro-thermal-
aging model for the charging/discharging cycles and used a
nonlinear battery model that did not have a specific electric
vehicle application.

Investment in transportation and power infrastructure have
been considered in [15]-[16]. In [15], fast and slow charging
models of electric vehicles using driving profiles derived from
the NHTS data were considered. The planning models seek
to minimize annual investment costs and energy losses and
maximize annual traffic flow using a MOEA/D algorithm
that captures efficient investment in power and transportation
infrastructure. Owner convenience and revenue of the service
provider are considered in [16] which consider a battery-
swapping infrastructure and EV ownership respectively. Nei-
ther of these studies considered V2G or battery degradation in
their models.

In [17], microgid operational costs and voltage deviations
have been co-optimized in a multi-objective optimization
framework using the ε-constraint method. Aggregated PV
parking lots with active and reactive power support have been
modeled without consideration of individual driving profiles.
Reference [18] proposes an incentive program with lower
off-peak electricity price for EV charging. A particle swarm
based two-stage multi-optimal optimization strategy has been
proposed and implemented to minimize load variations and
system operator’s financial losses. In [19], authors use an
adaptive weighted sum method to maximize total utility which
is defined as a linear combination of customer satisfaction,
system operator profits and grid impacts. They use a regression
model to find aggregated energy demand of different charging
stations based on electricity price. These studies all use an
aggregated EV load without consideration of V2G capability
or commuter dynamics.

In [20] and [21], a 2-way multi-objective problem con-
sidering operating load variance versus charging costs and
costs versus emissions have been solved using the weighted-
sum and augmented ε-constraint methods respectively. The
authors established the conflicting nature of the objectives. The
former designed a local control scheme, while the latter used
a centralized control approach for EV scheduling. Reference
[20] used a normalizing factor based on the Nadir and Utopia
points of each objective function. Despite the consideration of
V2G, battery degradation was not considered in either study.

Lastly, the authors in [22] included a depreciation term
to account for battery degradation in a weighted objective
function. An event driven, model predictive control method
has been proposed in this work to minimize user costs and to
track a reference profile. A similar approach was followed

in [23] to optimize the weighted sum of four objectives
using a particle swarm optimization technique. The objectives
included minimizing system losses, frequency of OLTC trans-
former tap changing, deviation from the daily load profile, and
maximizing customer satisfaction. In these studies, a fixed set
of weights were used for analysis, thus Pareto solutions were
not obtained.

These papers lay the groundwork to support our claim that
multi-objective optimization schemes result in better schedul-
ing strategies for electric vehicles. We bridge the gap identified
in the literature by considering V2G, battery degradation, and
individual driving profiles in this study. To date, a three-way
MOO combining battery health, cost, and system operation
has not been studied in detail. This paper bridges this gap and
proposes a mathematical programming technique for the three-
way MOO, thereby extending the work in [6]-[21]. In this pa-
per, we extend these frameworks and the scheduling paradigm
developed in [24] to solve 2-way and 3-way optimization
problems considering customer and system perspectives. We
then compare the weighted-sum approach with the augmented
ε-constraint approach.

In this paper, a centralized EV control, optimization, and
scheduling (COS) scheme is presented based on a multi-
objective optimization approach that co-optimizes customer
and system operator (SO) objectives. It addresses the needs
of the system operator to control the peak load and that
of the customer, who is financially motivated but concerned
with battery life during V2G operations. The COS scheme
provides a look ahead into the optimal solution choices for
the available vehicle set. In real time, this may be used to
guide EV scheduling directly, or indirectly through change
in pricing schemes, or by providing charging choices to cus-
tomers. With the development of transactive business models,
parking structures/lots could participate as independent actors
in energy markets.

The contributions of this paper include:

1) Identification of conflicting and in-line objectives for
efficient EV charging.

2) Implementation of 2-way and 3-way multi-objective
optimization for EV scheduling for a residential parking
lot using augmented ε-constraint optimization (AUG-
MECON).

3) Co-optimization of customer and utility objectives.
4) Comparison between AUGMECON and weighted sum

approaches in determining efficient Pareto fronts.

II. PROBLEM FORMULATION AND METHODOLOGY

The centralized COS scheme is implemented by the park-
ing lot controller (PLC). The parking lot controller re-
ceives vehicle characteristic information (VCI) and vehi-
cle profile information (VPI) from each vehicle as tuples:
〈Bi,cap, SOCi,min, SOCi,max〉, and 〈ti,avail, SOC0

i,avg〉 re-
spectively. After the optimization calculations, the resulting
schedule and additional cost information is sent to each vehicle
and the system operator. Depending on the objectives used
during the optimization, information regarding cost/revenues
earned during scheduling, battery degradation costs incurred,
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Fig. 1. Control Optimization and Scheduling Architecture for PLC

and impact on the system may be sent to the customer. The
system operator may be informed of the energy available for
transaction at each hour and the impacts of different schemes
on the system load profiles. Therefore, the COS scheme
implemented by the parking lot controller acts as a mid-layer
between the customer and system operator.

A. Objective Function Modeling

This section defines the objective functions corresponding
to battery degradation, customer costs/revenues, and system
load profiles.

1) Battery Degradation Cost Model (BDCM): Cyclic
charging and discharging during V2G implementation affects
the life of the automotive EV battery adversely, thus incurring
costs to the customers [26]. The battery, being one of the
most expensive components of the EV, needs special con-
sideration to provide the best return on investment to the
customer. Battery power fade and capacity fade have been
found to be influenced by temperature, open-circuit voltage,
C-rate, and depth-of-discharge (DOD) of the battery [27].
Often the effect of power fade is very small in comparison
to capacity fade. Since battery degradation costs are highly
non-linear functions, a simplified lifetime battery degradation
cost

(
Ψdeg(x)

)
model has been adopted from [8] and [27].

For each vehicle i at time instant t, the battery degradation
cost (Ψt

i) is composed of two components: 1) SOC related
cost ΨSOC

i,t , and 2) depth of discharge related cost ΨDOD
i,t (1).

These components are defined in (2) and (3) for all x ∈ X
where x = {{xt

ch,i, x
t
dch,i} : i ∈ [1, Nveh], t ∈ [1, tavail]}. A

capacity fade of 20% at the end of a ten year lifetime of a
Li-ion battery has been assumed in this study.

Ψdeg
i (x) =

ti,avail∑
t=1

Ψt
i

=

ti,avail∑
t=1

ΨSOC
i,t +

ti,avail∑
t=1

ΨDOD
i,t (1)

ΨSOC
i,t = Cbat

m SOCavg,t − d

8760 CFmax batlife
(2)

ΨDOD
i,t =

CbatBcap + Clabor

batlifeBcapDOD
Edch

Δt (3)

x =

{
xt
ch,i, if υt

i=1 (charging mode)
xt
dch,i, if υt

i=0 (discharging mode)
(4)

where

SOCt+1
i,avg = SOCt

i,avg +
xt
i,ch + xt

i,dch

Bcap
(5)

Edch
Δt = Ebat

t−1 − Ebat
t (6)

A binary variable υt
i is introduced in (4) to ascertain whether

the battery is in either a charging or discharging mode at each
time instance t for each vehicle i . The SOC t+1

i,avg is calculated
using the net energy added to the battery during that time
interval, as in Eq. (5). Since the degradation cost due to depth
of discharge is associated with the V2G mode, Eq. (6) is true
only for discharging operations.

The first objective function is defined as:

arg min
x

f1(x) =

Nveh∑
i=1

Ψi (x) (7)

which seeks to minimize the battery degradation costs across
all vehicles.

2) Customer Charging-Discharging Cost Model (CCDM):
Time-of-use (TOU) rates are being offered by utilities as a part
of a demand-response initiative to motivate load shifting by
customers. EV owners are being provided with special time-
of-use rates to schedule vehicle charging during valley periods,
typically at night [28]. The resulting decrease in electric bills
serves as financial incentive to the customer. Similarly, a
customer might earn higher revenues by participating in V2G
energy transactions by selling energy during peak hours. In
this study, we assume a net-metering policy for charging
and discharging the EV at the time-of-use prices offered by
the utility (λt). The total costs incurred/revenues earned by
the customer are represented by Ψrev

i . Equations (8) and (9)
provide the mathematical formulation and definition of the
objective respectively.

Ψrev
i (x) =

ti,avail∑
t=1

λt

(
xt
ch,i

ηch
− xt

dch,iηdch

)
(8)

arg min
x

f2(x) =

Nveh∑
i=1

Ψrev
i (x) (9)
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3) Valley-filling Model (VFM): Uncoordinated EV charging
may cause a substantial increase in peak demand. This is
economically undesirable due to 1) bringing up of costly
generators to serve the load and 2) increase in network stresses
requiring infrastructural reinforcements. Valley-filling leads to
shifting of load demand to create a more level profile without
increasing the peak demand, thus serving the interests of
the system operator. Valley filling minimizes the deviation
between instantaneous and the average load. EV scheduling
during lightly loaded valley periods is expected to improve
the load factor of the system. It is defined as:

arg min
x

f3(x) =

24∑
t=1

(
P (x)tsys − Pavg

)2
(10)

P (x)tsys = P t
res +

nV eh∑
i=1

P t
i,vehΔt ∀t (11)

where

P t
i,veh =

xt
ch,i

ηch
− xt

dch,iηdch (12)

The total system load at time t is calculated in (11) as the
sum of residential load and total vehicle load at that time
instant. The total vehicle load is the net EV demand (charging-
discharging) on the system at time t. A 1 hour time step (Δt)
has been considered in this study.

B. Vehicle and System Constraints

Vehicle scheduling is a constrained optimization problem.
Due consideration must be given to customer convenience (ve-
hicle arrival and departure times, SOC requirements), charger
limitations (maximum input/output power), battery dynamics
(minimum/maximum SOC), and system peak loads. The fol-
lowing constraints complete the problem definition. For each
vehicle i and time instant t, the following constraints hold:

Pch,min ≤ xt
i,ch ≤ Pch,max (13)

Pdch,min ≤ xt
i,dch ≤ Pdch,max (14)

SoCi,min ≤ SOCt
i,avg ≤ SoCi,max (15)

ti,avail∑
t=1

(
xt
i,ch − xt

i,dch

)
Δt = Ei,req (16)

nV eh∑
i=1

(
xt
ch,i

ηch
− xt

dch,iηdch

)
≤ (Ppeak − P t

res

)
(17)

Equations (13) and (14) define the minimum and maxi-
mum charging and discharging power limits respectively and
SOCt

i,avg defined in (5) is constrained in (15). Constraint
(16) ensures that the battery is fully charged at the end of
the charging period. To constrain the peak load to its original
value (residential peak load demand), (17) may be used.

Note that any change in the driving or parking patterns
between predicated and actual behavior, would affect the
scheduling schemes and would require a stochastic analysis.
Eventually, with higher penetrations of EVs, their impact on

real-time pricing and market dynamics would also become
prominent. These factors would have an impact on the charg-
ing approach, but these considerations are currently out of the
scope of this study.

C. Multi-objective optimization procedure

Unlike mathematical programming with a single objective,
the objectives in multi-objective optimization may not be
optimized simultaneously. The concept of a single optimal
solution is therefore replaced by the most preferred solution
under a Pareto optimality or efficiency conditions. A solution
is a Pareto optimal if its improvement cannot be accomplished
without deteriorating the performance of at least one of the
other objectives. An effective MOO technique seeks to find
these multiple trade-off solutions from which one may be
chosen based on a user-defined set of higher-level information
(Fig. 2).

IDEAL 
MULTI-OBJECTIVE 

OPTIMIZER

MULTIPLE TRADE-OFF 
SOLUTIONS

HIGHER-LEVEL 
INFORMATION

CHOOSE ONE 
SOLUTION

MOO METHOD

Fig. 2. Illustration of multi-objective optimization method

The original MOO problem is:

min (f1(x), f2(x), . . . , fp(x))

subject to x ∈ S

Two classical methods for solving MOO have been discussed
in the following sections.

1) Weighted Sum Method: In the weighted-sum MOO
method, the problem is designed as an aggregated convex
combination of the objectives. Each objective is multiplied by
a weighting factor and added to transform the multi-objective
problem into a single objective. In order to account for the bias
due to the scale of one objective over the other, the objective
functions may be normalized. Generally, this normalizing
factor is the corresponding optimum function value (f ∗

i ). The
aggregated function is given as:

min
x

fweighted = w1 (f1(x)/f
∗
1 ) + w2 (f2(x)/f

∗
2 ) (18)

where w1 and w2 are the weights for functions f1 and f2
respectively and w1 + w2 = 1. The functions f1 and f2
have been normalized using their optimal values f ∗

1 and f ∗
2 ,

obtained by performing the optimizations individually. Despite
its simplicity in solving convex problems, the weighted-sum
method does not guarantee a uniformly distributed set of
Pareto-optimal solutions for a uniformly distributed set of
weights. Secondly, it cannot find solutions in the non-convex
solution space. These drawbacks can be overcome by using
the AUGMECON method.
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2) Augmented ε-constraint method: The ε-constraint
method seeks to optimize one of the objectives while varying
the others within a restricted range specified by a pay-off
table. The AUGMECON method is an improvement on the
traditional ε-constraint method [29] for performing multi-
objective optimization. The advantage of AUGMECON over
the classical weighted-sum approach is 1) its ability to find so-
lutions in non-convex regions, and 2) finding different Pareto-
optimal solutions by varying the value of ε, which thus dictates
the solution set to some extent. As the number of objectives
increase, the user is required to provide more information.
The AUGMENCON method for solving the MOO for vehicle
scheduling is described below:

arg min
x,s2,s3

⎛
⎜⎝ f3(x)︸ ︷︷ ︸

term 1

− ε (s2 + s3)︸ ︷︷ ︸
term 2

⎞
⎟⎠ x ∈ S (19)

subject to:

fj(x) + sj = ej ∀j ∈ [1, 2] (20)

where

ej = ubj − (iterj × rangej)

gridj
(21)

A p × p payoff table defining the range of each objective
is introduced using the lexicographic method described in
[29]. Each row j of the payoff table corresponds to objective
fj with its optimal value f ∗

j as the jth column entry and
values of all other p − 1 objectives calculated at xj∗ at each
corresponding column. One of the p objectives is then used as
the optimization function (key objective) along-with the other
p−1 functions introduced as equality constraints, varied within
the maximum and minimum range defined by the payoff table
(Fig. 3).

TABLE I
PAYOFF TABLE FOR THE OBJECTIVE FUNCTIONS

f1 ($) f2 ($) f3
(BDCM) (CCDM) (VFM)

f∗
1 0.1634 156.2275 6.7345×104

f∗
2 282.8085 20.5376 8.5883×104

f∗
3 295.7163 86.6299 1.3921×103

Range 295.553 135.6899 15.486×104

In Table I, row 1 corresponds to the result of optimizing
battery degradation costs with its optimal value in column 1.
The values of charging cost and valley filling, calculated at
its minimum argument ‘x’, are then entered in columns 2 and
3 respectively. The range of each objective is calculated as
the difference between its maximum and minimum values.
Once the range is defined, the gridpoints (gridj) give the
number of sections/blocks this range is divided into. The ratio
rangej
gridj

defines the step size through which ej decrements
at every iteration as each constrained objective moves from
its maximum value to its minimum value. Therefore, a sub-
problem P is defined corresponding to each value of parameter
ej (19)-(21).
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Fig. 3. Flowchart for the AUGMECON method for MOO

In a 3-way MOO using the AUGMECON method, valley
filling (f3) was chosen as the key objective with the addition
of term 2 of (19) for two reasons:

1) It results in a flat load profile
2) It is computationally easier to handle linear functions as

constraints than quadratic functions
Objectives f1 and f2 are then entered as equality constraints
according to (20) and (21). The value of ε in (19) is set at
10−6. Twenty and twenty-five gridpoints (gridj) are consid-
ered in the 2-way and 3-way MOO cases respectively. In the
2-way case, the iterate iterj varies between 1 and 20 leading to
20 sub-problems. A step size of 0.05 was used in the weighted-
sum approach for updating the weights, thus resulting in 20
weight combinations. In the 3-way case, 5 gridpoints for each
of the p − 1 = 2 objectives resulted in 25 sub-problems
to be solved. An increase in computational complexity is
encountered with an increase in the number of gridpoints
in solving the sub-problems. Here, a parallel programming
approach could provide better computational speeds.

III. SIMULATION RESULTS AND OBSERVATIONS

A typical summer day load profile and a 3-tier time-of-
use pricing (Table II) were obtained from Pacific Gas and
Electric (PGE), and subsequently scaled up for simulating the
residential parking lot [30]. The PGE rates were tiered for
better accuracy using the clustering method proposed in [31].
A 60% EV penetration in a 245 house residential complex
is assumed for which the driving profiles were obtained from
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the NHTS database [32]. A modified IEEE 34 bus system has
been used in this study [33]. Vehicles are randomly distributed
in the ratio of load at the nodes (Fig. 4). Furthermore, the
methodology proposed in [33] was adopted for battery and
charger assignments which included 5 battery sizes and type
I and II chargers [34]. The aggregated effect of the vehicles
on the system is considered due to the absence of geo-spatial
distribution of the vehicles in the distribution system.
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Fig. 4. Modified IEEE-34 bus system [33]

TABLE II
TOU RATE STRUCTURE [30]

Rate Type Energy Charge (¢/kWh)

TOU 2-Tier
16.94 26.5425

1:00-12:00 13:00-24:00

TOU 3-tier 13.101 20.779 32.306
2:00-10:00 11:00-13:00 14:00-20:00

21:00-1:00

The Battery Degradation Cost Model and the Customer
Charging-Discharging Cost Model have been solved as mixed
integer linear problems. Due to the quadratic nature of the
valley filling objective, the valley filling and AUGMECON
models have been solved as quadratic mixed integer problems.
The IBM-ILOG CPLEX software platform [35] was used
to generate the initial guess for the relaxed version of each
problem (LP and QP respectively) followed by final solution
using GUROBI optimization package [36].

A. Case Definitions

The following cases have been used to test the viability of
MOO approach:
Base case with no optimization

• Case 0: Uncoordinated EV charging
Single objective function optimizations

• Case 1: Customer focused: Minimizing customer charg-
ing cost (or maximizing revenues) in V2G/G2V modes
(CCDM)

• Case 2: Customer focused: Minimizing battery degrada-
tion cost in V2G/G2V modes (BDCM)

• Case 3: System focused: Valley filling in V2G/G2V
modes (VFM)

Multiple objective function optimizations with two objective
functions

• M2OO 1: Battery degradation vs. Customer cost/revenues
• M2OO 2: Valley filling vs. Customer cost/revenues
• M2OO 3: Valley filling vs. Battery degradation

Multiple objective function optimizations with three objective
functions

• M3OO: Battery degradation vs. Customer cost/revenues
vs. Valley filling
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Fig. 5. Optimal load demand forecast under individual objectives
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Fig. 6. System load profiles with 2-tier and 3-tier TOU rates

TABLE III
TOTAL CUSTOMER COST

Customer Cost 2-Tier TOU 3-Tier TOU
$102.44 $20.54
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Fig. 7. Charging costs under the two pricing schemes for a population sample

Figure 5 shows the resulting load profiles for cases 1-3 with
independent implementation of the three objective functions.
Charging/discharging profiles for electric vehicle load has been
shown in Fig. 9 The following observations can be made:
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TABLE IV
SYSTEM LOSSES FOR INDIVIDUAL CASES (KW)

Residential Case 0 Case 1 Case 2 Case 3
511.266 600.790 579.415 581.243 576.718

• (Base case) Uncoordinated charging results in an inadver-
tent increase in peak demand during evening hours and
leaves the valley period during early morning unchanged.

• (Case 1: Minimizing customer charging cost) Implemen-
tation of time-of-use rates (without imposing system-
level constraints) leads to two peaks: one in late evening
and another in early morning. Furthermore, the resulting
peaks are higher than the original system peak demand.
Using the 2-tier TOU prices, one additional peak emerges
on application of off-peak pricing (Fig. 6). 2-tier TOU
results in higher costs to the customer in comparison to
3-tier pricing (Fig.7). In such situations, adaptive real-
time pricing strategies would be required to alleviate these
outcomes.

• (Case 2: Minimizing battery degradation cost) Avoiding
battery degradation costs results in limited V2G oper-
ations and peak shaving does not occur since the load
profile closely follows the residential load demand during
peak hours. Vehicles charge during primarily during the
valley period. Little is gained by this approach except
moderate improvement in the load factor.

• (Case 3: Valley filling) V2G and G2V operations in the
valley filling mode result in a nearly flat load profile. This
is the most desirable load profile and is independent of
the effect of pricing structure.

• Figure 9 shows that electric vehicles undergo deeper
charge/discharge cycles in Case 1 followed by Case 3
and Case 2.

• The voltage profiles at system nodes follow the trends
shown in Fig. 8. It can be argued that when using
the multi-objective optimization scheme, the resulting
profiles would remain bounded between the voltage traces
for the corresponding fitness functions.

• Table IV shows that constrained charging results in
lower system losses in comparison to the unconstrained
case. Lowest losses were observed during valley filling.
Implementation of multiple objectives would bound the
system losses within the limits shown in the table.

Fig. 10 depicts the battery degradation costs and customer
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Fig. 9. Optimal EV charging/discharging profiles under individual objectives

daily costs/revenues during V2G operations for each vehicle.
The x-axis represents individual vehicles. This figure indicates
that battery degradation costs and V2G revenues conflict with
each other. Higher revenues come at the expense of increased
battery degradation costs. This outcome therefore suggests that
there exists a “trade-off” or Pareto front relationship between
these two objectives. This relationship is explored further
through two-way multi-objective optimization.
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Fig. 10. Comparison of battery degradation costs vs Charging Costs/Revenues
for a sample set.
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Fig. 11. Load profiles for 2-way MOO with charging cost vs. battery
degradation

B. Two-way multi-objective optimization

Figures 11-15 show the load profiles and Pareto fronts for
cases M2OO 1, M2OO 2, and M2OO 3. The resulting system
load profiles provide insights into the variation of the optimal
load demand forecast under the specified conditions. Results
of the two MOO methods discussed in Section II-C have
been shown in the Pareto fronts in Figs. 12, 14, and 15. The
following observations can be made:
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Fig. 13. Load profiles for 2-way MOO with charging cost vs. valley filling
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Fig. 14. Pareto front (customer charging cost/revenue vs. valley filling)

• (M2OO 1: Battery degradation vs. Customer
cost/revenues): These two models are in conflict
with each other as illustrated in Fig. 12. Both the
AUGMECON and weighted function approach result
in the same Pareto front. Therefore, the Pareto front
allows the customer to select the operating condition
that weighs financial profits against losses attributed
to battery health, leading to any number of different
load profiles based on the weighting selected. Fig. 11
illustrates the range of possible load profiles.

• (M2OO 2: Valley filling vs. Customer cost/revenues):
Minimizing Charging Cost (Case 1) uses the low price
tier to charge most vehicles and uses the high price tier
to earn profits through V2G operation. This distorts the
load profile as shown in Case 1 in Fig. 5. Since the Case
1 is undesirable to the system operator, the valley filling
objective tries to balance the charge/discharge operations.
Therefore, the customer charging cost/revenues model
and valley filling model conflict with each other (Fig.
13). The Pareto front in Fig. 14 provides the system

operator and customer with the capability to reach a mu-
tual consensus by selection of optimal operating criteria.
Note that the AUGMECON and the weighted function
approach both give the same Pareto front.

• (M2OO 3: Valley filling vs. Battery degradation) Valley
filling and battery degradation both limit the V2G op-
erations. While the former approach levelizes the load
profile, the latter follows the initial residential load profile
during peak hours. Fig. 15 shows the optimal operating
points as the battery degradation costs are varied within
the POT range. There is a slight Pareto-like behavior
when there is a heavy weighting towards valley filling and
it dominates (approaching Case 2). Battery degradation
costs were found to be higher when valley filling was
implemented alone. Cyclic discharging during peak hours
to flatten the load profile results in an increase in battery
degradation costs comparatively.

Note that in all cases, the weighted-sum method does not
provide uniformly distributed solutions, but the solutions for
both the weighted sum and AUGMECON techniques lie
within the same range. The AUGMECON methods provides a
uniform Pareto front and is therefore better suited for decision
making.
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Fig. 15. Optimal solutions for battery degradation costs vs. valley filling.

C. Three-way multi-objective optimization

The results in section III-B show that there are two pairs
of conflicting objectives and one pair of in-line objectives.
As valley filling and battery degradation increase, customer
charging costs decrease. Figs. 16 and 17 show the load profile
and Pareto front as a result of performing a 3-way multi-
objective optimization on battery degradation costs, customer
charging costs, and valley filling objectives.

The information in the Pareto front can provide the system
operator with the tools to design effective incentive plans to
motivate the customers. Consequently, the system integrity
may be preserved while providing financial benefits to the cus-
tomers through V2G operations. Weighing customer benefits
against the system requirements can provide better solutions
to the EV scheduling problem. Moreover, the impacts of
different pricing structures and driving profiles on customer
profits and battery health may be used to educate the customer.
Furthermore, efficient charging practices may be suggested
for their benefit, thus improving customer engagement. A
multi-objective optimization approach provides an efficient
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Fig. 16. Load profiles for 3-way multi-objective optimization

technique to understand these dynamics and formulate plans
accordingly.
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IV. CONCLUSION

In this paper, the dynamics between customer and system
objectives have been identified and investigated. An AUG-
MECON based multi-objective optimization methodology has
been implemented to identify co-optimal solutions for the
benefit of these two entities. A customer’s financial motives
and a system operator’s network-based concerns have been
leveraged for this purpose. A comparison between AUGME-
CON and weighted-sum approach establishes the superiority
of the former in finding uniformly distributed solutions. The
day-ahead centralized scheduling scheme would provide infor-
mation to the customer and system operator to make informed
decisions. The inadequacy of single objectives in proposing
mutually beneficial and efficient multi-objective optimization-
based control and scheduling schemes has been established.
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