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a b s t r a c t 

Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images 

of musical scores into a computer-readable format. Despite decades of research, the recognition of hand- 

written music scores, concretely the Western notation, is still an open problem, and the few existing 

works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recog- 

nition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer 

learning, that can serve as a baseline for the research community. 
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. Introduction 

For centuries, music has been written and transmitted among

enerations through sheet music. Not surprisingly, the digitization

nd transcription of music scores existing in archives and muse-

ms is of paramount importance to preserve and disseminate our

usical heritage. Given that there are still thousands of music

cores waiting to be transcribed, a manual transcription becomes

nfeasible, and therefore, the research on methods for automati-

ally transcribing music becomes necessary. 

Optical Music Recognition (OMR) can be defined as the conver-

ion of music score images into a machine-readable format (e.g.

usicXML, MEI, MIDI, etc.). It has been an active research field

or more than five decades [1,2] , and there are many commercial

MR software such as PhotoScore 1 or SharpEye 2 with good per-

ormance under relatively good conditions. However, their accu-

acy dramatically decreases when dealing with handwritten scores,
� This paper is handled by Associate Editor Prof. S. Sarkar. 
� We wish to confirm that there are no known conflicts of interest associated 

ith this publication and there has been no significant financial support for this 

ork that could have influenced its outcome. 
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1 http://www.neuratron.com/photoscore.htm . 
2 http://www.visiv.co.uk/ . 
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ainly because of the high variability in the handwriting style. Un-

ortunately, most of the still unknown music compositions existing

n archives are indeed handwritten music scores. For this reason,

ore research effort must be devoted to overcoming this limita-

ion. 

Although the interest in OMR has reawakened with the appear-

nce of deep learning, as far as we know, the few existing meth-

ds that attempt to recognize handwritten scores are mostly fo-

used on solving a particular stage of OMR, such as layout analy-

is [3] or detection and classification of graphic primitives [4] or

usic symbols [5,6] . However, in the particular case of Western

lassical music, music scores are complex documents composed of

taves (five horizontal lines), music symbols (e.g. notes, rests, ac-

identals), slurs, ornaments, dynamic and tempo markings, lyrics,

tc. Therefore, we believe that it is time to focus on the full recog-

ition. 

With this aim, in this paper we propose a full staff-wise Hand-

ritten Music Recognition (HMR) system, which can serve as a

aseline for future improvements in this research field. Our ar-

hitecture is based on Convolutional and Recurrent Neural Net-

orks. This work is based on our previous work [7] , where we

ddressed OMR for printed scores as a sequential recognition task,

isentangling the output of the network in the two main compo-

ents of music notation: rhythm and pitch. In the present work,

e improve this architecture to deal with handwritten scores, and

e show its viability both in printed and handwritten scenarios.

https://doi.org/10.1016/j.patrec.2019.02.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.02.029&domain=pdf
mailto:abaro@cvc.uab.cat
http://www.neuratron.com/photoscore.htm
http://www.visiv.co.uk/
https://doi.org/10.1016/j.patrec.2019.02.029
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Concretely, the improvements are the following: First, we add Con-

volutional Neural Networks as feature extractor. Secondly, since the

existing amount of annotated handwritten music scores is scarce,

we propose a novel data augmentation technique, and incorporate

transfer learning from printed scores. Finally, we also share the

handwritten data 3 that has been manually labeled for the exper-

imental evaluation. 

The rest of the paper is organized as follows.

Section 2 overviews the state of the art. Section 3 describes

our architecture. Section 4 explains how we deal with few hand-

written data. Section 5 discusses the results, and conclusions are

drawn in Section 6 . 

2. Related work 

This section describes the key references of Optical Music

Recognition that are relevant to the present work. 

2.1. Traditional approaches 

Traditional OMR methodologies can be divided into four

groups: segmentation, grammars/rules, sequences and graphs. The

first group segments symbols before their recognition. For exam-

ple, Fornés et al. propose symbol descriptors [8,9] , whereas Re-

belo et al. [10] use Neural Networks, Nearest Neighbour, Support

Vector machines or Hidden Markov models. The second group de-

fines some grammars or rules to combine graphical primitives ( i.e.

note-heads, steams, beam, etc.) to build music notes and symbols.

Baró et al. [11] recognize compound music notes using dendro-

grams to join graphical primitives with a set of predefined rules.

Coüasnon and Rétif [12] use grammars to detect symbols and min-

imize possible errors. Thanks to the particular properties of mono-

phonic scores, sequential-based approaches attempt the recogni-

tion directly as a sequence using Hidden Markov Models [13,14] .

Finally, graph-based approaches [15] use a graph to define the re-

lationship of primitives or to codify the symbols’ shape. 

2.2. Deep learning-based approaches 

Since Deep Learning [16] arose, several OMR approaches have

been proposed. For example, Van der Wel and Ullrich [17] use

Convolutional Neural Networks (CNNs) and sequence-to-sequence

(seq2seq) models for recognizing monophonic printed music

scores. Calvo-Zaragoza et al. [18,19] also use a CNN to extract

features from printed music scores and feed a Recurrent Neural

Network. To avoid the alignment between the music score and

the ground-truth data, they use the Connectionist Temporal Clas-

sification (CTC) loss function commonly used in speech and text

recognition. Nevertheless, as the authors point out, these methods

are only able to recognize monophonic music scores (no chords).

In addition, they cannot recognize dense music scores containing

many accidentals, dynamics, or expression marks. Contrary, we are

able to deal with multiple symbols in the same time step. This

is necessary to recognize chords or typical music artifacts such

as dynamics. Finally, Wen et al. [20] use connected components

to segment symbols, which are later recognized using CNNs. This

method is tested on both printed and handwritten scores. 

2.3. Approaches for handwritten scores 

It is true that there are some complete OMR methods for an-

cient (mensural) notation [21–23] , but in this work we focus on
3 www.cvc.uab.es/people/abaro/datasets.html . 

d  

I  

s

estern music notation. Some researchers have started by clas-

ifying isolated music symbols [24] and some of them have even

hared their own datasets [9,10,25] . 

Since the recently creation of the MUSCIMA++ [26] dataset,

hich consists of 140 handwritten scores labeled at primitive level,

he research on OMR has been boosted. For example, Haji ̌c and

ecina [4] propose a method to detect noteheads in music scores.

he network first detects which regions are important, and then,

t decides if a pixel belongs to a notehead and predicts the bound-

ng box. Finally a filter combines outputs to refuse the mismatches.

his approach gives good results but decreases its performance

hen chords appear. 

Other authors detect all primitives, not only noteheads. For ex-

mple, Tuggener et al. [6] use ResNets to predict dense energy

aps that will be used to predict the location, class and bound-

ng box of each symbol. They can detect the symbols without pre-

rocessing the page (e.g. cropping each staff). A similar approach

s [5] , where Pacha et al. propose an end-to-end trainable ob-

ect detector for music primitives. The proposed method uses a

achine-learning approach considering region-based deep convo-

utional neural networks. Moreover, authors use transfer learning

rom general object detection, and obtain very good results. 

.4. Summary 

We observe that there are not complete OMR systems for hand-

ritten scores on Western notation yet. There only exist success-

ul approaches for sub-stages of the process. Nevertheless, these

ethods are based on the detection of music symbols, instead of

he full OMR pipeline. 

Moreover, the reported results might not be really convincing

ecause the MUSCIMA++ dataset is a subset of the CVC-MUSCIMA

ataset [27] , which was created for writer identification. Since the

bove mentioned works randomly split the pages into train, valida-

ion and test partitions, using writer-independent partitions only,

he same music work could appear in the training and test sets at

he same time, with the only difference of being written by differ-

nt persons. Consequently, the system could be biased towards the

ecognition of these specific sequences of melodies and rhythms. 

For all the above reasons, we believe that a baseline for OMR in

andwritten scores is required. 

. Proposed architecture 

Many music scores, including polyphonic ones, are written us-

ng a single staff. Therefore, we propose to read each staff as a se-

uence, similar to text recognition [28] , by using Long Short-Term

emory (LSTM) Recurrent Neural Networks (RNN). Although they

an extract information directly from image pixels, we incorporate

onvolutional Neural Networks (CNN) as image feature extractor.

ig. 1 shows an schema of our architecture. The different stages

re described next. 

Input: In this work, we assume that the music scores pages

ave been previously segmented into staves. The segmented staves

orrespond to binary images resized to a height of 100 pixels in

rder to feed pixel columns of the same size to the network. The

spect ratio will be kept, therefore the width will change for each

atch. The images of the same batch are padded according to the

ongest staff in the batch. 

Convolutional block: The convolutional block is composed by

hree convolutional layers increasing the depth and kernel size

f 3x3, followed by Batch Normalization [29] and Rectified Linear

nit activation [30] . Finally a max-pool 2 × 1 operator is used to re-

uce the vertical dimension while keeping the same image width.

n other words, the output of the Convolutional Block will have the

ame width as the input image. 

http://www.cvc.uab.es/people/abaro/datasets.html
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Fig. 1. Architecture of our method. Each staff is the input of the convolutional block 

to extract features, and then, it passes the recurrent block. Finally, two fully con- 

nected layers separate the rhythm and melody. 

Fig. 2. BLSTM predictions. The backward direction helps to reduce the ambiguities 

when predicting a symbol. 
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Recurrent block: This block uses Bi-directional LSTM networks

BLSTM) [31] to benefit from context when recognizing each sym-

ol. Compared to RNNs, LSTMs are able to learn long-term depen-

encies, avoiding the vanishing gradient problem, and keeping in-

ormation for longer time. Moreover, the bi-directionallity provides

n extra information that reduces ambiguities, because it takes into

ccount the forward and backward directions. For example, if one

irection is reading a vertical line and the other direction is see-

ng a notehead, the network can correctly predict a quarter note.

ig. 2 shows an example of the ambiguity reduction provided by

oth directions. In our architecture, we use four BLSTM layers of

12 neurons each. 

Dense layers: After the recurrent block, we incorporate two

ully connected (FC) layers. In this way, we will obtain two out-

uts: one for the rhythm and one for the pitch. If we had one sin-

le output, we should consider any combination of pitch-rhythm

s a different class, which would become in a very large number
f classes. Another reason to separate pitch-rhythm and consider

hem independent, is that we can obtain many more examples of

ach class to train. For instance, the system learns the shape of a

6th note, no matter its pitch. Please note that here we define the

itch as the location of the note in the staff (e.g. the note is located

n the third staff line), instead of the real pitch (e.g. C4 note), be-

ause it depends on the clef. Also, in this way, we can represent all

itches with few classes. 

Output: Finally, the output of each dense layer is a matrix,

hose columns are symbol and pitch probabilities per pixel col-

mn in the original image. Each matrix has the same width as the

riginal image and has a height of 80 classes for the rhythm and

8 classes for the pitch. By thresholding these matrices, we can

ecide which symbols appear in the music scores. In our previ-

us work [7] we performed an exhaustive analysis where we eval-

ated several thresholds. The one which provided the best perfor-

ance was 0.5. In other words, the network has to be at least 50%

onfident when recognizing each symbol. Note that more than one

ymbol may appear at the same time step (column). Two symbols

ave been manually added to ease the recognition: 

• Epsilon ( ε) is used to know where a symbol starts and ends. If

ε is activated, none of the other symbols can be activated. This

symbols works as a separator. 
• No note is a symbol only found in the pitch matrix. When this

symbol is activated it means that the symbol activated in the

rhythm matrix (at the same instance of time) has not pitch (e.g.

symbols without pitch, such as rests). 

Finally, these outputs are converted into an array, combining

he rhythm and pitch. These arrays will be used to evaluate the

ethod at rhythm and pitch level and also to evaluate the com-

lete system, where both parts should be predicted correctly. 

As it has been stated, in OMR several symbols can appear at the

ame time stamp (e.g. chords, time signature, etc.). Hence, several

abels can be predicted at the same output step. For this reason,

e choose the Smooth L 1 -loss function. Concretely, our architec-

ure has been trained using the Stochastic Gradient Descent (SGD)

ptimizer with Momentum and weight decay i.e. L 2 regularization.

he Smooth L 1 -loss has been used as objective function defined as

 (x, y ) = 

1 

n 

∑ 

{
0 . 5(x i − y i ) 

2 , if | x i − y i | < 1 

| x i − y i | − 0 . 5 , otherwise, 
(1) 

here x is the output of the proposed architecture and y is the tar-

et we want to achieve. The proposed loss function can deal with

ulti-label problems being less sensitive than L 2 -loss with respect

o outliers. 

. Data augmentation and transfer learning 

This section describes the training strategies that have been

sed to exploit our architecture. As stated before, there is very few

abeled handwritten data. Since little groundtruth data for train-

ng leads to overfitting problems, we propose two different strate-

ies. First, we propose to apply transfer learning by fine-tuning a

rinted model with handwritten data. Second, we propose a data

ugmentation technique for music scores. 

Transfer learning: Training our system with printed scores

ive insights of the suitability of the proposed approach for OMR.

owever, a model for printed scores may fail when recognizing

andwritten scores due to the elastic deformations in handwriting

tyles. To overcome this issue, we propose to pre-train our model

ith printed scores, and then, fine-tune it with the few available

andwritten data. 

Data augmentation: To increase the amount and variability

f training data, some distortions have been applied to both the
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Fig. 3. Different techniques of data augmentation. Dilating, eroding and blurring 

have been applied to both datasets, printed and handwritten ones. Shuffling is only 

applied to the handwritten dataset. 
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printed and handwritten training sets. First, we have applied di-

lation, erosion and blurring distortions. Note that this data aug-

mentation has been randomly applied for each music score. Be-

side the morphological operations, the number of handwritten mu-

sic scores in the training set has been increased by shuffling the

bar units. For this purpose, we crop each measure (bar unit) and

shuffle among the different measures of the staff, with the excep-

tion of the first and the last bar unit. These two measures are

fixed because the first one contains the clef and the time signature

whereas the last one can contain a final barline. Fig. 3 shows the

different data augmentation techniques applied to each dataset.

Note that this shuffling also prevents the model to learn a specific

melody and rhythm. 

5. Experimentation 

This section experimentally validates the performance of our ar-

chitecture. As it has already mentioned, we propose to firstly train

a model able to recognize printed musical scores and later transfer

this learning to handwritten data. Hence, two datasets have been

used. 

5.1. Datasets 

Printed dataset: we use a subset of PrIMuS dataset [19] , which

consists of rendered incipts from the RISM 

4 . It is annotated at

primitive level i.e. the symbols are labeled as noteheads, steams

and flags, among others instances instead of quarter notes, 8th

notes, 16th notes and such on. This dataset is latter converted into

symbol level. Our set contains almost 50,0 0 0 music scores ren-

dered with 3 different typographies. 

Handwritten dataset: The MUSCIMA++ dataset [26] is a se-

lection of 140 pages from the CVC-MUSCIMA dataset [27] , anno-

tated at primitive level. Although these primitives are related each

other using a graph, they cannot be directly used for OMR evalu-

ation. For this reason, having into account the graph relations and

keeping the noteheads as the main node of notes, we have man-

ually labeled 20 music pages at symbol level (including slurs, dy-

namic marks, etc.) in order to evaluate a full OMR system. In any

case, we should take into account that the original CVC-MUSCIMA

dataset was created for staff removal and writer identification (for

this reason, it contains the same 20 different musical compositions,

rewritten by 50 different writers). This fact leads us to some lim-

itations when splitting the sets i.e. into train, validation and test.

Our method must never see the same musical composition at test

and train or it may be biased towards the recognition of a specific
4 http://rism.info . 

m  

h  

s

elody. For this reason, we have selected these 20 pages (musical

ompositions), from different writers (see Table 1 ). 

.2. Evaluation 

We use the Symbol Error Rate (SER) [17–19] metric. Similarly

o Word Error Rate (WER) [28] , commonly used in text recogni-

ion community, SER is computed as the Levenshtein distance: the

um of edit operations that are needed to convert the output of

ur method into the groundtruth in terms of symbol insertions ( I ),

ubstitutions ( S ) and deletions ( D ). Formally, 

ER = 

S + D + I 

N 

, (2)

here N is the number of symbols in the ground truth. The lower

his value, the better. 

To perform the evaluation at different levels, we propose to

valuate Rhythm and Pitch separately. Therefore, we will provide

he SER for both outputs of the proposed architecture. Finally, both

utputs are merged and the SER for pairs Rhythm and Pitch (con-

idered as one symbol) is provided. 

.3. Results on printed documents 

We first evaluate our model in the printed scenario. Thus, we

an test the suitability of our architecture in a controlled scenario.

n ablation study has been performed to test several architecture

etails. Table 2 presents this study in order to evaluate the impor-

ance of the BLSTM recurrent block, CNN features and Data aug-

entation. Moreover, we compare the current work with our pre-

ious work [7] . 

As expected, the best configuration uses a CNN to extract im-

ge features containing richer information than merely using pixel

olumns. Moreover, the BLSTM provides more context information

nd improves the previous approaches. Finally, data augmentation

lightly improves the performance whereas making it more robust

o the initialization. The first row shows our previous work, while

he last row shows the best configuration of the current work. The

ain difference is that here we propose to incorporate a convolu-

ional block before the recurrent layers, and we have increased the

umber of neurons from 128 to 512 and layers from 3 to 4. In this

ay, we obtained a better performance (the SER decreases from

.028 to 0.003 when we consider the rhythm and pitch together). 

.4. Results on handwritten documents 

As stated before, we aim to create a full staff-wise HMR sys-

em for handwritten music scores that can serve as starting point

or future improvements in this field. Table 3 shows the results of

ur method using the selected pages of the MUSCIMA++ dataset.

ote that each line introduces an improvement to the previous

ne. In the first row, we do not use any of the proposed improve-

ents (no pre-training, CNNs, etc.). Observe that pre-training with

rinted data decreases the error (second row). Data augmentation

n printed data helps a little bit. However, in the fourth row, we

an see that the BLSTM is the key modification to reduce the error

ates by 0.2 points. This is because of its ability to use context to

inimize ambiguities. Then, the feature extraction based on CNN

lso helps to recognize the handwritten music scores (fifth row).

y shuffling the measures (the sixth row) we obtain the best ap-

roach. Finally, in the last row, we observe that morphological op-

rations for data augmentation only introduce noise and increases

he error rates. The main reason for this behaviour could be that

orphological techniques may make printed scores look closer to

andwritten, but when these techniques are used in handwritten

cores, the result may look unrealistic. 

http://rism.info
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Table 1 

Selected Muscima ++ pages for train, validation and test sets. We indicate the number of staves per page, and if the page is polyphonic. 

Train Validation Test 

Page 2 4 5 6 7 8 9 13 15 16 19 20 11 12 14 17 1 3 10 18 

Writer 20 12 21 16 31 35 32 23 43 34 1 18 49 18 29 44 17 13 15 10 

Polyphonic � � � � � � � � � 

# Staves 6 5 7 6 4 6 4 5 5 8 3 8 6 8 6 6 5 7 6 8 

Table 2 

Results on printed documents. All results are between [0–1]. The first number is the mean of 

the five executions and the number between parenthesis is the standard deviation. The first row 

corresponds to our previous work, the others are results of the current architecture. 

RNN CNN Data Augm. Rhythm SER Pitch SER Rhy. + Pit. SER 

BLSTM [7] – � 0.020 ( ± 0.001) 0.015 ( ± 0.001) 0.028 ( ± 0.002) 

LSTM – – 0.168 ( ± 0.014) 0.144 ( ± 0.011) 0.174 ( ± 0.012) 

LSTM – � 0.163 ( ± 0.009) 0.139 ( ± 0.013) 0.169 ( ± 0.008) 

BLSTM – – 0.005 ( ± 0.002) 0.003 ( ± 0.001) 0.006 ( ± 0.002) 

BLSTM – � 0.005 ( ± 0.002) 0.002 ( ± 0.000) 0.005 ( ± 0.001) 

BLSTM � – 0.003 ( ± 0.001) 0.002 ( ± 0.001) 0.003 ( ± 0.001) 

BLSTM � � 0.002 ( ± 0.001) 0.001 ( ± 0.000) 0.003 ( ± 0.001) 

Table 3 

Results on handwritten documents. All results are between [0–1]. The first number is the mean of the five executions and the number between 

parenthesis is the standard deviation. 

Pre-train Printed D. Augm. Printed BLSTM CNN D. Augm. Handwritten Rhythm SER Pitch SER Rhythm + Pitch SER 

Shuffle Morph. 

– – – – – – 0.826 ( ± 0.009) 0.709 ( ± 0.012) 0.899 ( ± 0.007) 

� – – – – – 0.771 ( ± 0.021) 0.668 ( ± 0.021) 0.872 ( ± 0.016) 

� � – – – – 0.762 ( ± 0.019) 0.690 ( ± 0.004) 0.854 ( ± 0.019) 

� � � – – – 0.523 ( ± 0.018) 0.464 ( ± 0.020) 0.610 ( ± 0.016) 

� � � � – – 0.493 ( ± 0.015) 0.396 ( ± 0.012) 0.559 ( ± 0.015) 

� � � � � – 0.476 ( ± 0.009) 0.387 ( ± 0.008) 0.545 ( ± 0.009) 

� � � � � � 0.490 ( ± 0.005) 0.393 ( ± 0.004) 0.554 ( ± 0.007) 
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Using the best configuration in Table 3 , we provide the results

rom each one test page in Table 4 (two of them are polyphonic).

ote that each row corresponds to a different writer and different

age. 

.5. Comparison with commercial OMR software 

Since we could not find any complete OMR for handwritten

cores in the literature, we could not make a quantitative compar-

son. However, we could find a commercial software for qualita-

ive evaluation. Photoscore is a commercial software able to recog-

ize handwritten and printed music scores. It must to be said that

e do not know whether Photoscore uses any post-processing or
ig. 4. Qualitative comparison with Photoscore. Example of one staff of page 1. The blue

hem appear in the same column. (For interpretation of the references to color in this fig
rammar rules (detecting the time signatures might be counting

he number of beats in each measure and validating the recogni-

ion) in the recognition, so the comparison could not be completely

air. 

Figs. 4–8 show some qualitative results comparing the Photo-

core results with our method. We have used different colors to

ighlight the common mistakes of our method. The blue color

s used when different symbols appear in the same column, and

ur method is not capable to relate each symbol with the corre-

pondent pitch. Orange boxes show that some symbols, as accents,

ould confuse our system. For example, sometimes the method

redicts that an accent is a notehead, thus it detects the notehead

ocated higher up (see Fig. 8 ), whereas other times it can predict
 box shows that our method is not able to recognize the symbols when several of 

ure legend, the reader is referred to the web version of this article.) 
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Table 4 

Results on the handwritten documents, shown per page. All results are between [0–1]. 

The first number is the mean of the five executions and the number between paren- 

thesis is the standard deviation. 

Polyph. Rhythm SER Pitch SER Rhy. + Pit. SER 

W. 17 - P. 1 – 0.528 ( ± 0.019) 0.349 ( ± 0.019) 0.594 ( ± 0.014) 

W. 13 - P. 3 – 0.226 ( ± 0.018) 0.175 ( ± 0.008) 0.270 ( ± 0.016) 

W. 15 - P. 10 � 0.716 ( ± 0.017) 0.620 ( ± 0.010) 0.796 ( ± 0.018) 

W. 10 - P. 18 � 0.483 ( ± 0.018) 0.422 ( ± 0.008) 0.565 ( ± 0.013) 

Fig. 5. Qualitative comparison with Photoscore. Example of one staff of page 3. Contrary to Photoscore, note that our method could detect all the slurs. 

Fig. 6. Qualitative comparison with Photoscore. Example of one staff of page 10. The green box shows that our method is not able to recognize all the noteheads in 

polyphonic music scores. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Qualitative comparison with Photoscore. Example of one staff of page 10. 

The orange box shows that our method could confuse some symbols by others by 

the position i.e. accents by noteheads. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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that accent is another notehead and detects a chord (see Fig. 7 ). In

red we show when the system confuses some symbols because of

shape, for example a text dynamics is confused by a quarter note.

Finally, Fig. 6 shows in green the difficulties to detect all noteheads
n a chord. In these images, please note that when we draw the

utput of our network, the compound music symbols have been

anually joined for better visualization. 

.6. Discussion 

From these results, we could conclude that our methodology is

alid and has shown to be able to recognize simple staves. From

he qualitative point of view, bearing in mind that the Photoscore

oftware might be using music rules for validation, our method ob-

ains pretty good results. In fact, in many cases, our method out-

erforms Photoscore. 

Concerning the quantitative results, although we are aware that

he overall SER is close to 50%, these results are promising. First,

e have used very few handwritten data, and secondly, we have

ot applied any grammar or rule to validate each bar unit. 

Nevertheless, there are several limitations, most of them related

o the way of labeling the data, which are described next. 

Polyphonic music scores: The ground-truth is not able to re-

ate which pitch corresponds to each notehead in the case that

he rhythm within a chord (or polyphonic voices) is different (see
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Fig. 8. Qualitative comparison with Photoscore. Example of one staff of page 18. The red box shows that our method could confuse some symbols by others by the shape. 

The blue box shows that our method is not able to recognize the symbols when there are many in the same column. The orange box shows that our method could confuse 

some symbols by others by the position. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Method’s limitations. In red polyphonic notes that could not be correctly 

recognized because they have different duration at the same time step. In blue the 

slur that will not be detected because there is another slur at the same time. In 

green, symbols that will be correctly detected because they have the same duration. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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ig. 9 red symbols). However, it is able to recognize polyphony

orrectly if the rhythm is the same for all the symbols (see

ig. 9 green symbols). 

Repeated symbols: If a symbol without pitch appears more

han one time at the same time step, the method will only detect

ne (see Fig. 9 the blue slur will not be recognized). 

Compound music symbols: The compound music symbols

uch as 8th notes, 16th notes, 32th notes and so on, joined by a

eam, will be separately recognized because there is no symbol

or notating this i.e. each notehead will have its steam and its flag,

ill not be joined by a beam. 

Clef position on the stave: The ground truth does not provide

he position of the clef on the stave. This means that a bass clef on

he third or fourth staff lines are predicted as the same. 

. Conclusions and future work 

In this work, we have proposed a complete Handwritten Mu-

ic Recognition (HMR) system based on CNNs and RNNs, data

ugmentation and transfer learning from printed scores. The ex-

erimental results have demonstrated the viability of this ap-

roach, showing that staves can be recognized as a sequence using

LSTMs, and also, that the convolutional block acts as an effective

eature extractor. We have first demonstrated that our architec-

ure is valid through the evaluation over printed scores. Secondly,

e have showed that our methodology greatly benefits from data

ugmentation from handwritten scores as well as transfer learning

rom printed scores. 

Taking into account that we have used only 20 pages of the

USCIMA++ database in the experiments, the results are promis-

ng. Of course, the incorporation of more handwritten data labeled

t symbol level would help to obtain better results. 

We hope that these results, together with our labeled data, can

erve as a baseline for the community, fostering the research to-

ards full OMR systems. Future work will be focused on the incor-

oration of music notation rules to solve ambiguities and improve
he performance. Also, we will investigate segmentation-free meth-

ds in order to deal with polyphonic music scores that are written

n several staves. 
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