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Complex functional brain networks are large networks of brain regions and functional brain connections.
Statistical characterizations of these networks aim to quantify global and local properties of brain activity with
a small number of network measures. Important functional network measures include measures of
modularity (measures of the goodness with which a network is optimally partitioned into functional
subgroups) and measures of centrality (measures of the functional influence of individual brain regions).
Characterizations of functional networks are increasing in popularity, but are associated with several
important methodological problems. These problems include the inability to characterize densely connected
andweighted functional networks, the neglect of degenerate topologically distinct high-modularity partitions
of these networks, and the absence of a network null model for testing hypotheses of association between
observed nontrivial network properties and simple weighted connectivity properties. In this study we
describe a set of methods to overcome these problems. Specifically, we generalize measures of modularity and
centrality to fully connected and weighted complex networks, describe the detection of degenerate high-
modularity partitions of these networks, and introduce a weighted-connectivity null model of these
networks. We illustrate our methods by demonstrating degenerate high-modularity partitions and strong
correlations between two complementary measures of centrality in resting-state functional magnetic
resonance imaging (MRI) networks from the 1000 Functional Connectomes Project, an open-access
repository of resting-state functional MRI datasets. Our methods may allow more sound and reliable
characterizations and comparisons of functional brain networks across conditions and subjects.
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Introduction

Large-scale functional brain networks are networks of brain
regions and functional connections—coactivations or correlations—
between pairs of these regions. Complex functional brain networks
are large and extensive networks of nontrivially interacting brain
regions that often serve as maps of global brain activity (Bullmore and
Sporns, 2009). Interactions between regions in complex functional
networks vary in magnitude from large to small, and vary in sign from
positive to negative. In contrast, the more traditional “simple”
functional networks are smaller groupings of strongly and mutually
correlated regions that often serve as maps of specialized functional
systems (Fox and Raichle, 2007). Simple functional networks form
highly connected modules—components or subnetworks—within
complex functional networks (Meunier et al., 2010).

Statistical characterizations of complex functional networks
attempt to quantify global and local properties of these networks
with a small number of network measures (Stam and Reijneveld,
2007; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010).
Important functional network measures include measures of modu-
larity (measures of the goodness with which a network is optimally
partitioned intomodules) andmeasures of centrality (measures of the
functional influence of individual brain regions). For instance, recent
characterizations partitioned complex resting-state functional MRI
networks into modules which correspond to visual, attention, default
mode and other “simple” networks (Fair et al., 2009; He et al., 2009;
Meunier et al., 2009) and identified prominent central brain regions in
heteromodal association areas (Achard et al., 2006; Buckner et al.,
2009). Interestingly, several studies reported alterations of complex
functional network topology in neurological and psychiatric disor-
ders, such as Alzheimer's disease (Supekar et al., 2008) and
schizophrenia (Lynall et al., 2010).

Despite these promising findings, current characterizations of
complex functional networks are associated with several methodo-
logical problems. Firstly,most current networkmeasures are optimally
suited for sparse andbinary networks and are lesswell suited for dense
and weighted networks. This often necessitates the conversion of
dense andweighted complex functional networks to sparse and binary
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form. Such conversions are made by defining a weight threshold,
setting all suprathreshold connection weights to 1 and all subthresh-
old weights to 0. These thresholding and binarizing manipulations are
associated with loss of information and are often arbitrarily made.
Secondly, current modularity studies typically describe only one high-
modularity partition. Recently, Good et al. (2010) analytically showed
that modular complex networks are likely to have many topologically
distinct, high-modularity partitions. The presence of such “degener-
ate” partitions makes it less meaningful to focus on only one
potentially unrepresentative case. Degenerate partitions have not
been previously reported in functional brain networks, although
similar concepts have been considered in the context of cluster
stability (Bellec et al., 2010). Thirdly, no satisfactory null model of
complex functional networks is currently available. A null model of
functional networks should allow to test null hypotheses of association
between observed nontrivial network properties, such as high
modularity and degeneracy, and simple network properties, such as
basic organization of weighted connectivity.

In this study, we describe a set of methods that aim to overcome the
above methodological problems. Firstly, we generalize measures of
modularity and centrality to fully connectednetworkswith positive and
negative weights. Secondly, we describe the detection of degenerate
high-modularity partitions of these networks. Thirdly, we introduce a
weighted null model of these networks. We illustrate our methods by
characterizing resting-state functional MRI networks from the 1000
Functional Connectomes Project, an open-access repository of resting-
state functional MRI datasets (Biswal et al., 2010).

Methods

In this section we provide mathematical definitions of our
proposed measures and algorithms. The Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net), an open-access Matlab
network analysis toolbox which we maintain, contains software to
compute these measures. We encourage readers unfamiliar with
complex networks methodology to consult our less technical and
more accessible recent overview (Rubinov and Sporns, 2010).

Complex functional brain networks are fully connected, undirect-
ed, positively and negatively weighted networks of n nodes and
1
2n n−1ð Þ connections. We denote the presence of a positively
weighted connection between nodes i and j in these networks with
aij
+=1 and aij

−=0, and we denote the weight of this connection with
wij

+∈(0,1], wij
−=0. Equivalently, we denote the presence of a

negatively weighted connection between nodes i and j with aij
−=1,

aij
+=0, and theweight of this connectionwithwij

−∈(0,1],wij
+=0. The

degree of node i, ki±=∑j aij
±, is the number of positive or negative

connections of i. The strength of node i, si±=∑j wij
±, is the sum of

positive or negative connectionweights of i. The totalweight, v±=∑ij

wij
±, is the sum of all positive or negative connection weights (counted

twice for each connection).

Measures of modularity in networks with positive and negative weights

A modularity partition is the complete subdivision of the network
into nonoverlapping modules (Fortunato, 2010). Measures of mod-
ularity quantify the goodness of modularity partitions (Newman,
2004). In networks with no negative weights, a de-facto-standard
measure of modularity is the average difference between present
within-module connection weights wij

+ and chance-expected within-
module connection weights eij+,

Qþ =
1
vþ

∑
ij

wþ
ij−eþij

� �
δMiMj

;

where e�ij =
s�i s

�
j

v� , δMiMj
=1 when i and j are in the same module and

δMiMj
=0 otherwise (Newman, 2006). Partitions with high Q+
therefore have larger than chance-expected total positive within-

module weight. The factor
1
vþ

rescales the maximized Q+ to the range

of [0,1].
In this study we assume that both positively and negatively

weighted connections provide useful information about the goodness
of modularity partitions. Specifically, we consider positively weighted
connections to represent similar activation patterns and hence to
support placement of positively connected pairs of nodes in the same
module. ThemeasureQ+ reflects this contribution of positiveweights.
On the other hand, we consider negatively weighted connections to
represent distinct activation patterns or antiphase coupling and hence
to support placement of negatively connected pairs of nodes in
distinct modules. An analogous measure Q− reflects this contribution
of negative weights,

Q− = − 1
v−

∑
ij

w−
ij −e−ij

� �
δMiMj

:

We now consider a simple modularity measure for networks with
positive and negative weights,

Q simple = Qþ + Q−
:

This measure is problematic because it does not rescale Q+ and Q−.
For instance, the presence of precisely one negative connection in the
network always inappropriately contributes ±0.5 to Qsimple, irrespec-
tively of other connectivity (this follows from the definition of Q−). A
number of recently proposed modularity measures attempt to
overcome this problem by rescaling Q+ and Q− by the total
connection weight v++v−. For instance, Traag and Bruggeman
(2009) generalize the standard modularity measure as

QTB =
1

vþ + v−
∑
ij

wþ
ij−γþeþij

� �
− w−

ij −γ−e−ij
� �h i

δMiMj
;

where γ+ and γ− are module size parameters. Gomez et al. (2009)
consider a special case of QTB for γ±=1,

QGJA =
1

vþ + v−
∑
ij

wþ
ij−eþij

� �
− w−

ij −e−ij
� �h i

δMiMj
:

Finally, Kaplan and Forrest (2008) generalize the standardmodularity
measure slightly differently, by additionally rescaling the chance-
expected within-module connection weights,

QKF =
1

vþ + v−
∑
ij

wþ
ij−e0ij

þ� �
− w−

ij −e0ij
−

� �h i
δMiMj

;

where e0ij
� = s�i s

�
j

vþ + v− replaces e�ij =
s�i s

�
j

v� . All these modularity mea-
sures reduce to the standard measure when there are no negative
weights in the network.

An asymmetric measure of modularity in networks with positive and
negative weights

All the above generalizations treat Q+ and Q− symmetrically and
are hence based on the assumption that positive and negative weights
are equally important. Here we argue that this assumption is
neurobiologically problematic, because the role and importance of
positive and negative weights in functional networks is intrinsically
unequal. Positive weights associate nodes with modules explicitly,
while negative weights associate nodes with modules implicitly, by
dissociating nodes from other modules. Empirically, high-Q− modu-
larity partitions are objectively less optimal than high-Q+ modularity
partitions (see Results).

http://www.brain-connectivity-toolbox.net


Fig. 1. Conceptual advantages of an asymmetric modularity measure. (A) A network
with a maximal number of within-module positively weighted (red) connections and
an increasing number (from left to right) of between-module negatively weighted
(blue) connections. (B–E) Contributions to modularity of positive (red) and negative
(blue) weights, and the total modularity (black) as functions of the proportion of
negative between-module connections. (B) Q*, (C) Qsimple (note the semilogarithmic
scale), (D) QTB for γ±∈ [0,2]; results for QGJA (γ±=1) are shown in bold, (E) QKF. Values
are averages of 10 simulations.
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The unequal importance of positive and negative weights in
modularity-partition determination motivates an asymmetric gener-
alization of the standard measure. We hence define

Q � = Qþ +
v−

vþ + v−
Q−

=
1
vþ

∑
ij

wþ
ij−eþij

� �
δMiMj

− 1
vþ + v−

∑
ij

w−
ij −e−ij

� �
δMiMj

:

Our definition explicitly makes the contribution of negative
weights auxiliary to the contribution of positive weights. For instance,
increase in positive weights reduces the influence of negative weights
inQ*, unlike inQsimple. On the other hand, increase in negativeweights
does not reduce the influence of positive weights in Q*, unlike in QTB

(hence QGJA) and QKF. In networks with approximately equal numbers
of positive and negative weights, the influence of positive weights in
Q* will be twice as large as the influence of negative weights. High-Q*
partitions should theoretically have most positive weights within
modules, and most negative weights between modules. Maximized
values of Q* are in the range of [0,1].

We now illustrate the advantage of our measure with an example.
We consider a network of 100 nodes and four equally sized modules.
The network has a maximal number of positive weights within
modules, and no positive weights between modules. Initially, the
network has no negative weights. For simplicity we set allwij

±=1.We
now randomly add negative weights to this network until the
network becomes fully connected (Fig. 1A), and observe the resulting
changes in values of the modularity measures (Fig. 1B–E). We note
that only Q* behaves as we intuitively expect: the contribution of
positive weights does not change, while the contribution of negative
weights gradually increases. The contribution of negative weights to
Qsimple is paradoxically large when there are few negative weights,
while the contribution of positive weights to QTB (hence QGJA) and QKF

paradoxically decreases, even as the number and organization of
positive weights does not change.

Evaluation of the goodness of modularity partitions

The goodness of modularity partitions may in general be
quantified with many measures. In addition to Q+ and Q−, these
measures include the proportion of within-module positive and
negative weights,

F� = � 1
v�

∑
ij
w�

ij δMiMj
;

and the geometric mean of balanced and unbalanced within-module
triangle weights (Onnela et al., 2005),

T� = �
∑hij wþ

hiw
þ
hjw

�
ij

� �
1
3δMhMiMj

∑hij aþhia
þ
hja

�
ij

� �
δMhMiMj

where δMhMiMj
=δMhMi

δMiMj
. T± is a generalization of the weighted

clustering coefficient to networks with positive and negative weights
and is related to the within-module density. Good modularity
partitions should have an unexpectedly large proportion of clustered,
positively weighted connections withinmodules (high Q+, F+ and T+,
respectively), and an unexpectedly small proportion of unclustered,
negativelyweighted connectionswithinmodules (highQ−, F− and T−,
respectively). Note that Q+, Q−, F+ and T+ lie in the range of [0,1],
while F− and T− lie in the range of [−1,0].
Detection of degenerate high-modularity partitions

Degenerate high-modularity partitions are topologically distinct
modularity partitions with similarly high values of the modularity
(Good et al., 2010). We argue that characterization of the modularity
in functional networks should comprehensively describe the set of
these partitions. In this study, we searched for degenerate partitions
in two steps:

1. We first identified several seed partitions for subsequent system-
atic exploration of degeneracy. We identified these partitions with
a popular greedy modularity-maximization algorithm (Blondel
et al., 2008) and a fine-tuning algorithm (Sun et al., 2009), but in
principle many other modularity-maximization algorithms may be
used (Fortunato, 2010). Mostmodularity-maximization algorithms
search for high-modularity partitions heuristically and discover
slightly different partitions from run to run. Accordingly, the
Blondel et al. (2008) algorithm estimates optimal module
affiliation for each node by sequentially and repeatedly examining
nodes in random order. This randomness is associated with



Fig. 2. Detection of degenerate high-modularity partitions. (A) Modular, intermediate
and random networks with positively weighted (red) and negatively weighted (blue)
connections. (B) Number of discovered partitions and (C) average distance between
discovered partitions as a function of network randomization. Error bars represent the
standard error of the mean from 10 simulations. (D) A lattice network and (E) the
estimated within-module connection likelihood of the lattice network, computed as the
average over all discovered degenerate partitions. The number of discovered
degenerate partitions for the lattice was approximately 320.
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potential variations in discovered high-modularity partitions. We
applied this algorithm 1000 times to each examined network to
obtain 1000 preliminary seed partitions. We further refined these
partitions with a Kernighan and Lin (1970)-based fine-tuning
algorithm (Sun et al., 2009). More specifically, we iteratively
refined each partition by computing changes in the modularity
associated with all potential between-module node moves,
including moves that resulted in creation of new modules. We
then considered a node associated with an optimal move, and
made the corresponding move if it increased the modularity. At
each iteration of the algorithm we considered each node exactly
once, and we repeatedly iterated until no further moves increased
the modularity. These refined partitions constituted our seed
partitions for step 2 and represent peaks in the modularity
landscape of the network. Seed partitions were not all necessarily
distinct.

2. We next systematically searched for degenerate high-modularity
partitions by rerunning one further iteration of the fine-tuning
algorithm on seed partitions, and incorporating into this iteration
random moves of randomly chosen (but not previously consid-
ered) nodes. We defined partitions to be degenerate when the
modularity of these partitions was in the top 1% of the estimated
maximum.We examined 1million candidate degenerate partitions
by varying the probability of randommoves for each seed partition
from 0 (no randomization) to 5×10−2 in 5×10−5 increments (we
empirically determined that the lower bound captured an
overwhelming majority of detected degenerate partitions in the
studied networks).

We quantified the similarity of individual partitions with the
variation of information, a popular information-theoretic measure of
distance in partition space (Meila, 2007). To compute the variation of
information, we first define the entropy associatedwith a partitionM as

H Mð Þ = − ∑
u∈M

P uð Þ log P uð Þ;

where the sum is over all modules in M, P uð Þ = nu
n and nu is the

number of nodes in module u. We then analogously define the mutual
information between two partitions M and M′ as

I M;M0� �
= ∑

u∈M
∑

u0∈M0
P u;u0� �

log
P u;u0� �
P uð ÞP u0ð Þ ;

where P u;u0� �
= nuu0

n and nuu′ is the number of nodes that are
simultaneously in module u of partition M, and in module u′ of
partition M′. We finally define the variation of information as

VI =
1

logn
H Mð Þ + H M0� �

−2I M;M0� �� �
;

where the factor
1

logn
rescales the variation of information to the

range of [0,1], such that VI=0 corresponds to equal partitions, and
VI=1 corresponds to maximally distant partitions (Karrer et al.,
2008).

We note two things about our algorithm. Firstly, the 1% threshold
is conservative and may potentially miss meaningful partitions with
lower modularity. Secondly, the study of modularity degeneracy is
still in its infancy, and efficient and exhaustive search algorithms are
only beginning to be developed (Good et al., 2010; Duggal et al., 2010
Consequently, while we find a reasonably large number of degenerate
partitions with our algorithm, we cannot claim that the algorithm
searches exhaustively. On the other hand, the knowledge of all
possible partitions may not be needed as long as the discovered
partitions are evenly sampled and are representative of the whole
partition set.
Wenow illustrate the application of our algorithm to simplemodel
networks. We first consider, as previously, a network of 100 nodes
and four equally sized modules. The network has a maximal number
of positive weights within modules, and a maximal number of
negative weights between modules (Fig. 2A). We randomize this
network and examine the number of discovered degenerate partitions
as a function of randomization. Fig. 2A shows that the number of
discovered partitions is close to 1 at low levels of randomization (in
modular networks), is relatively low at large levels of randomization
(in random networks) and peaks at the transition from modular to
random network topology. Fig. 2C shows that the distance between
discovered partitions is low for modular networks, rapidly rises at the
transition, and remains high for random networks.

To probe the evenness with which our algorithm samples
degenerate partitions, we apply this algorithm to a lattice network
(Fig. 2D) and obtain a within-module connectivity likelihood matrix
by averaging the topology of all discovered partitions for this network.
Connections with high values in this matrix are hence likely to be
located inside modules. Fig. 2E shows that the likelihood matrix
accurately reconstructs the homogeneous lattice topology, and hence
suggests an even sampling of degenerate partitions of the lattice.

image of Fig.�2
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Measures of centrality in networks with positive and negative weights

Central brain regions have functional connections to many diverse
regions. These properties are intuitively captured in measures of
regional connection strength and regional connection diversity. We
define the normalized connection strength as

s0i
� =

1
n−1

s�i ;

and we define the normalized connection diversity as

h�i = − 1
logm

∑
u∈M

p�i uð Þ log p�i uð Þ;

where p�i uð Þ = s�i uð Þ
s�i

, si±(u) is the strength of node i within module u

(the total weight of connections of i to all nodes in u), and m is the

number of modules in modularity partition M. The factors
1

n−1
and

1
logm

rescale s′i
± and hi

± to the range of [0,1]. Central nodes should

have high s′i
+ and hi

+ but low s′i
– and hi

–. As above, we consider the
strength and diversity of positively weighted connections to be more
important than the strength and diversity of negatively weighted
connections. We accordingly generalize s′i

+ and h′i
+ as

s′i
� = s0i

þ− s−i
sþi + s−i

� 	
s0i
−
; hi

� = hþi −
s−i

sþi + s−i

� 	
h−i ;

where we rescale the contribution of negative weights by
s−i

sþi + s−i
,

rather than by
v−

vþ + v−
, due to the local nature of centrality measures.

Our generalizations favor nodes with high but equal positive and
negative strength and diversity over nodes with low and equal
positive and negative strength and diversity. Both si′* and hi* are in the
range of [−1,1].

Our measures of centrality have clear parallels, but also important
differences, with the commonly used “cartographic” classification of
node roles in complex networks (Guimera and Amaral, 2005). The
cartographic classification of node roles likewise quantifies connec-
tion strength and connection diversity, but uses a measure of the
within-module strength for the former, and a measure of the
participation coefficient for the latter. Here we use the total
connection strength, rather than the within-module connection
strength, because functional centrality usually presumes global
integration, and because within-module strength profiles should be
similar by transitivity of correlations. In addition, we compute
connection diversity with the normalized Shannon (1948) entropy,
rather than the participation coefficient, or equivalently the Simpson
(1949) index. Shannon entropy and Simpson index are similar
measures of diversity (e.g. Keylock, 2005) but importantly differ in
the upper bound on maximally central nodes. The normalized
Shannon entropy has a constant upper bound of 1, while the Simpson
index has a variable upper bound of 1− 1

m. The upper bound of the
Simpson index may hence differ for partitions of different networks,
and for different partitions of the same network. These considerations
led us to adopt the Shannon entropy as a more consistent measure of
diversity.

Degree-, weight- and strength-preserving null model

Nontrivial properties of network topology, such as highmodularity
and degeneracy, can only be conclusively claimed through compar-
isons with appropriate null models. A standard null model of binary
networks is a random network with preserved degrees. To our
knowledge, there is no corresponding null model of weighted
networks. Here we introduce such a model by generalizing the binary
null model to preserve node degrees, preserve connection weights
and closely approximate node strengths. The corresponding null
hypothesis hence asserts that observed network properties are
associated with degree, weight and strength properties of the
network.

Our algorithm consists of two steps:

1. We first randomize network connections in a way that preserves
positive and negative degrees. There are a number of ways to
achieve this and we use a simple popular heuristic known as the
connection-switching method (e.g. Wormald, 1999). We choose
four nodes i1, i2, i3, i4 at random, such that ai1i2

+=ai3i4
+ =1 and ai1i4

− =
ai3i2
− =1. We then set ai1i4

+ =ai3i2
+ =1 and ai1i2

− =ai3i4
− =1. We

iteratively repeat this process until the network is randomized.
2. We next associate original network weights with connections in a

way that closely approximates the positive and negative strengths.
This procedure is equivalent for positive and negative weights. For
positive weights, we begin by ranking all original wij

+ by
magnitude. At the same time, we associate all aij

+=1 in the
network with ŵ

þ
ij = 0, and we rank all aij+ by the expected weight

magnitude, êþij∝ sþi −∑hŵ
þ
ih

� �
sþj −∑hŵ

þ
jh

� �
, noting that êþij = eþij

when all ŵ
þ
ij = 0. We then choose a random aij

+=1, set ŵ
þ
ij to wij

+

of the same rank as the chosen aij
+, remove the chosen aij

+ and wij
+

pair from further consideration, and re-rank all remaining wij
+ and

aij
+. We repeat this process until each positively weighted

connection in the new network is associated with one of the
original positive weights. Re-ranking at every step is important and
allows convergence to the original strengths. In larger networks
however, less frequent re-ranking may be performed without
detriment to accuracy.

We now illustrate the effectiveness of our algorithm with an
example. We consider networks of four equally sized modules with
normally distributed weights centered at 0. Fig. 3A, B shows a
representative network, and an example null model of this network.
Fig. 3C shows the correlation coefficients between positive and
negative strengths of the original network and its null model. These
strength correlations exceed 0.9 for networks of size ≥100, and
exceed 0.95 for networks of size ≥250 (solid lines). On the other
hand, strength correlations effectively vanish when weights are
randomly associated with connections, even if the degrees are
preserved (broken lines). Fig. 3D shows that the correlation co-
efficients between the positive and negative weights of the original
and null model networks are very weak, which suggests an effective
randomization. Strength correlations in empirical networks are likely
to be even higher (see Results) because empirical networks typically
have nonuniform degree distributions.
Results

In this section, we apply our measures to functional connectivity
networks constructed from datasets in the 1000 Functional Con-
nectomes Project (Biswal et al., 2010). The 1000 Functional
Connectomes Project is an international open-access repository of
resting-state functional connectivity MRI datasets. For the following
analyses, we characterized functional connectivity networks from 18
available sites in this repository (Fig. 4). The functional network
associated with each site represents the group-average network of all
subjects in that site. Each network contains 112 cortical and
subcortical regions defined according to the Harvard-Oxford atlas, a
probabilistic anatomical landmark-based atlas (Makris et al., 1999;
Table S1). Demographic, recording and preprocessing details associ-
ated with these networks are described in Biswal et al. (2010) and
references therein. The networks were kindly provided by Xi-Nian
Zuo and Mike Milham, and are available on the project website
(http://fcon_1000.projects.nitrc.org/).

http://fcon_1000.projects.nitrc.org/


Fig. 3. Degree-, weight- and strength-preserving null model. (D) A network with a maximal number of positive within-module connections (warm colors), a maximal number of
negative between modules connections (cool colors), and a normally distributed weight distribution with mean of 0. (B) A null model of the network in (A), reordered by modular
organization. (C) Correlation coefficients between positive (red) and negative (blue) strengths of the original and null model networks (solid lines), as a function of network size.
Correlations between degree-preserving, but strength-non-preserving networks are shown for comparison (dashed lines). (D) Correlations between connection weights in the
original and null-model networks. Error bars represent the standard error of the mean from 10 simulations.
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Goodness of high-modularity partitions

Network weights were near-normally distributed around a mean
of 0 (Figure S1), and consequently all networks had large numbers of
negative weights. We first considered the effect of these weights by
studying properties of high-Q+, Q⁎, QGJA and Q− partitions. The
respective modularity measures incorporate differing influences of
negative weights, from absent influence in Q+ to sole influence in Q−.
Fig. 5 shows properties of these high-modularity partitions averaged
over all degenerate partitions of each network. Increasing influence of
negative weights was associated with reduced numbers of modules
and increasedmodule size (Fig. 5A, B), with larger numbers of within-
module positive weights and a lower density of these weights (Fig. 5C,
D) and with increased non-rescaled contribution of negative weights
(i.e. Q−) and reduced non-rescaled contributions of positive weights
(i.e. Q+) (Fig. 5e). High-Q− partitions were associated with very low
Fig. 4. The examined resting-state functional MRI networks from the 1000 Functional Conn
parcellated using the Harvard-Oxford Atlas. Node order is in Table S1.
values of non-rescaled contributions of positive weights (Fig. 5E), and
with very high numbers of discovered degenerate partitions (Fig. 5F).
These partitions were objectively less optimal than the other
partitions, supporting our argument for a less important role of
negative weights in partition determination.

Most current studies characterize functional network topology
indirectly, by characterizing sparse and binary representations of
these networks (Rubinov and Sporns, 2010). We next studied
properties of high-modularity partitions of these representations, by
considering binary networks with preserved 10%, 20%, 30%, 40% and
50% of the strongest positive connections. Fig. 6 shows properties of
high-modularity partitions associated with these networks, averaged
over all degenerate partitions of each network. For meaningful
comparison, we computed properties of these partitions in the
original fully connected networks; this allowed us, for instance, to
examine organization of negative weights in these partitions even if
ectomes Project. All networks represent group averages over all subjects at each site,
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the binary representations did not have negativeweights. Fig. 6 shows
that reduced numbers of preserved connections in the binary
networks was associated with increased numbers of modules and
reduced module size (Fig. 6A, B), with smaller numbers of within-
module positive weights and a higher density of these weights
(Fig. 6C, D). Non-rescaled contributions of positive weights peaked
when binary representations preserved 20% of strongest connections,
while representations with fewer connections had low non-rescaled
contributions of both positive and negative weights (Fig. 6E) and high
numbers of degenerate partitions (Fig. 6F).

We finally compared properties of observed high-modularity
partitions to properties of high-modularity partitions of constructed
null models. Null models had highly conserved strengths: the
strength-strength correlation coefficient for empirical networks and
their null model was 0.993±0.002 for positive strengths and 0.996±
0.001 for negative strengths (mean±standard deviation). Figs. 5 and
6 show that null models had substantially smaller numbers of within-
module positive weights, a lower density of these weights and lower
non-rescaled contributions of positive and negative weights. These
findings suggest that observed properties of high-modularity parti-
tions of empirical networks were not associated with weight, degree
and strength properties of these networks.

Degeneracy of high-modularity partitions

Fig. 5F and 6F shows that the empirical networks had many
degenerate high-modularity partitions. The number of discovered
partitions varied for modularity measures and network topologies.
Measures or topologies that ignored important weight information
(by maximizing Q– or by discarding a large number of weights) had
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substantially larger numbers of degenerate partitions. On the other
hand, null models of all networks had very few degenerate partitions.
The number of degenerate partitions associated with weight-
conserving characterizations may hence reflect inherently present
degeneracy, but not spurious degeneracy due to loss of information.

Figs. 5G and 6G show average distances between degenerate high-
modularity partitions of the same network. In general, distances
between partitions of empirical networks were much smaller than
distances between partitions of corresponding null models. Despite
this, distances between partitions of empirical networks remained
substantial. For example, Fig. 7A shows topologies of four represen-
tative high-Q* degenerate partitions. These partitions all have very
similar Q* but differ in their organization, as reflected graphically and
quantified with inter-partition distances. Fig. 7B shows the distance
matrix of all discovered high-Q* degenerate partitions of all empirical
networks. Clusters on the diagonal represent distances between
partitions of the same network, while clusters off the diagonal
represent distances between partitions of different networks. Be-
tween-network partition distances were higher than within-network
partition distances. Movie S1 loops through all discovered high-Q*
degenerate partitions in Fig. 7B.

Fig. 8 shows averages of all degenerate partitions of individual
networks, and hence the within-module connection likelihoods in
these networks. Degenerate partitions revealed a substantial module
overlap inmany networks. This overlap implies that certain regions or
connections are not clearly associated with single modules. Fig. 9A
shows the mean within-module connection likelihood matrix
averaged over all matrices in Fig. 8 and illustrates that many within-
module connections were not consistently present between net-
works. Fig. 9B shows the topology of connections that were present
inside modules in more than 90% of cases. These connections form
four bilaterally symmetric modules (Table 1): 1) a large frontotem-
poroparietal module which includes primary somatosensory, motor
and auditory areas; 2) a default-networkmodule which includes parts



Fig. 7. Exploration of high-Q* degenerate partitions. (A) Illustration of four degenerate partitions from the NIMH network. For each partition, labels specify the value of Q*, and the
distance to the left-most partition. (B) Distances between all discovered degenerate partitions of all networks.

Fig. 8. Within-module connection likelihood matrices, computed by averaging degenerate partitions within each network.
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Fig. 9. (A) Averaged within-module connection likelihood matrices from Fig. 8.
(B) Binary representation of the matrix in (A), showing connections with greater than
90% within-module likelihood. Table 1 lists regions in the four large connected
components of this matrix.
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of the prefrontal cortex, cingulate cortex and the inferior parietal
lobule; 3) a temporolimbic module which includes visual association
areas, amygdala and hippocampus; 4) a predominantly occipital
module which includes the primary visual area. The discovered
modules broadly agree with recent similar reports (Fair et al., 2009;
He et al., 2009; Meunier et al., 2009) and our estimate of the default
network agrees with convergent evidence for the composition of this
network from multiple functional MRI approaches (Buckner et al.,
2008). Our estimates of module composition are conservative as we
only consider modules with highly stable connections. Consequently,
Table 1
Consistent modules in 18 examined networks. These modules were bound by within-
module connections present in more than 90% of examined partitions (see Fig. 9).

Region Left Right

Module 1 Precentral gyrus X X
Supplementary motor cortex X X
Postcentral gyrus X X
Supramarginal gyrus, anterior X X
Superior temporal gyrus, anterior X
Superior temporal gyrus, posterior X X
Heschl's gyri X X
Planum polare X X
Planum temporale X X
Insular cortex X X
Central opercular cortex X X
Parietal opercular cortex X X

Module 2 Frontal pole X X
Superior frontal gyrus X X
Middle frontal gyrus X X
Inferior frontal gyrus, pars triangularis X
Paracingulate gyrus X X
Caudate X X
Angular gyrus X X

Module 3 Temporal pole X X
Temporal fusiform cortex, anterior X X
Temporal fusiform cortex, posterior X X
Middle temporal gyrus, anterior X X
Inferior temporal gyrus, anterior X X
Amygdala X X
Hippocampus X X
Parahippocampal gyrus, anterior X X
Parahippocampal gyrus, posterior X X

Module 4 Lingual gyrus X X
Cuneal cortex X X
Lateral occipital cortex, inferior X X
Supracalcarine cortex X
Intracalcarine cortex X X
Temporal occipital fusiform cortex X X
Occipital fusiform gyrus X X
Occipital pole X X
we did not associate 41 regions (37% of all examined regions) with
specific modules.

Properties of regional centrality

We finally examined the correlation between regional centrality
measures within networks. As above, we considered measures that
use positive or negative weights alone, measures that treat positive
and negative weights symmetrically (s′+–s′−, h+–h−) and our
proposed measures that treat positive and negative weights asym-
metrically (s′*, h*). Fig. 10A shows the correlation between the
strength and diversity measures within individual partitions for these
four cases, averaged over all degenerate partitions. Diversitymeasures
were computed on their respective partitions (e.g. h+ was computed
on high-Q+ partitions, while h* was computed on high-Q* partitions),
but the choice of partition types did not qualitative change our results.
Correlations between strength and diversity reflect the consistency of
two complementary measures of regional importance and are clearly
highest for the s′*,h* pair of measures. Fig. 10B–D shows scatter plots
of regional strength and diversity, with data pooled from all 18
networks. Regions with simultaneously high s′* and h* were
predominantly heteromodal, limbic and paralimbic (i.e. transmodal)
in origin, and included the insula, the superior temporal cortex, the
orbitofrontal cortex, the amygdala, the anterior cingulate cortex and
the temporal pole.

Discussion

We defined measures of modularity, high-modularity degeneracy
and centrality in complex functional brain networks, and we
described a null model against which these measures may be
assessed. We applied our measures to an ensemble of resting-state
functional MRI networks and demonstrated degeneracy of high-
modularity partitions and strong correlations between two comple-
mentary measures of centrality.

Our measures characterize fully connected, positively and nega-
tively weighted functional networks. In contrast, most measures in
current use characterize sparse and binary representations of
functional networks. Sparse representations are typically constructed
by defining arbitrary weight thresholds, require the exploration of
many thresholds, and are consequently associated with multiple
statistical comparison problems. Furthermore, thresholds are some-
times chosen not to preserve strong connections and remove weak
connections, but to achieve levels of sparseness at which between-
group differences are pronounced. In this study, we showed that
partitions computed on increasingly sparse representations became
increasingly less optimal. Our proposed measures may obviate the
need for these arbitrary analyses and open the way toward more
sound and reliable network characterizations.

Our measures incorporate negative weights but recognize the
fundamentally different role of positive and negative weights in
network organization. The nature of negative correlations in resting-
state functional MRI remains controversial (Murphy et al., 2009; Fox
et al., 2009) although recent studies unambiguously demonstrate the
neurophysiological origin of strong negative correlations (e.g. Chang
and Glover, 2009). We note that our measures primarily depend on
the relative difference between weight magnitudes and secondarily
on the sign of the weights. For instance, when we linearly mapped the
weight range [−1,1] to the range [0,1], such that all negative
correlations were transformed into weak positive correlations, we
found that properties of the resulting high-modularity partitions
remained broadly similar (result not shown).

To the best of our knowledge, we are the first to report degeneracy
of high-modularity partitions in functional brain networks. Analytical
evidence for the presence of this degeneracy in real-world networks
(Good et al., 2010) strongly suggests that degeneracy is a true feature
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of functional brain networks and not an artifact of noisy measure-
ments or imprecise node definition. Current characterizations of the
modularity in functional networks typically focus on only one high-
modularity partition or report highly reproducible partitions (Joyce
et al., 2010). We argue that such characterizations are incomplete for
two reasons. Firstly, a single observed modularity partition is unlikely
to represent a true global optimum because modularity maximization
algorithms are approximate and because observed partitions are
subject to recording and preprocessing distortions. Secondly and
more importantly, degenerate partitions have the potential to
collectively capture dynamic regional interactions that cannot be
possibly detected with single partitions. These interactions may
include context-dependent regional activation in distinct functional
systems or switching between distinct systems in the resting state
(e.g. Bressler and McIntosh, 2007). Our consideration of degenerate
partitions led us to consider the likelihood with which connections
bind nodes into coherent modules. This view is related to notions of
cluster stability (Bellec et al., 2010), connection-based modules (Ahn
et al., 2010) and overlapping modules (Palla et al., 2005).

We purposefully restricted network characterization to measures
with simple neurobiological interpretations. It is important to
emphasize that connections in cross-correlation-based functional
networks do not occupy physical space and typically represent the
dynamic outcome of numerous direct and indirect network in-
teractions (Koch et al., 2002; Honey et al., 2009). Several popular
measures of network topology are difficult to interpret in these
networks. For instance, measures of wiring cost are difficult to
interpret because sparse anatomical topologies can generate highly
coherent and “costly” functional patterns (Vicente et al., 2008).
Measures based on paths, such as characteristic path length and
small-worldness, are also difficult to interpret because functional
networks are fully connected and statistical relationships between all
pairs of regions are already directly expressed by connection weights
between these regions. Short characteristic path lengths may reflect a
large number of inter-modular connections, but not necessarily
correspond to high functional integration, as is often suggested.
Such ambiguities underscore the desirability of combining functional
connectivity with an underlying structural connectivity model
(Sporns et al., 2005) and are likely to become more apparent with
further characterization of increasingly highly-resolved and fully-
connected functional networks. We hope that our proposed approach
will enable more meaningful characterizations of functional networks
across conditions or subjects and will stimulate further discussion on
the use and interpretation of functional brain network measures.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.03.069.
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