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The use of elastic analysis is prevalent in the design of building structures even under loading conditions where
inelasticity would be expected. Accordingly, geometric and material properties used in the elastic analyses must
be carefully selected to maintain accuracy. Steel-concrete composite columns experience different forms of in-
elasticity. Concrete cracking is the source of much of the inelasticity and occurs at relatively low levels of load,
but partial yielding of the steel, slip between concrete and steel, and concrete crushing also contribute to losses
in stiffness. In this paper, the behavior of composite columns is characterized at the cross section and member

levels through comparisons between inelastic and elastic analyses. Then, through a broad parametric study,
specific practical design recommendations are developed for the elastic flexural rigidity of composite columns
for the determination of lateral drifts under service loads. The recommendations in this paper provide simple and
robust values for the stiffness of composite columns to be used for drift computations involving lateral loads.

1. Introduction

Building structures are typically designed with the expectation that
they will experience inelasticity during their design life. Different forms
of inelastic behavior will occur at different levels of loading. In steel-
concrete composite members, concrete cracking may occur under re-
latively low loads, slip may occur at moderate loads, and steel yielding
and concrete crushing may occur relatively high loads. Despite the in-
creasing use of inelastic analysis, which can track this behavior ex-
plicitly, elastic analysis remains prevalent in design. Thus, the expected
inelasticity must be accounted for implicitly in the elastic analysis. One
way of accomplishing this is through appropriate modifications of the
geometric and material properties assumed in the analysis.

In elastic analyses with frame elements, the behavior of cross sec-
tions is represented by elastic rigidities which define the stiffness of
cross sections in various modes of deformation, for example the axial
stiffness, EA, the flexural stiffness, EI, the shear stiffness, GA, and the
torsional stiffness, GJ. For moment frame systems, the dominant mode
of deformation is typically bending, thus EI is of prime importance.

Elastic analyses are used for many different purposes in the design
of building structures, and the appropriate elastic geometric and ma-
terial section properties may differ depending on the purpose of the
analysis. For strength design, appropriate elastic section properties ty-
pically reflect the level of inelasticity at the “ultimate” limit state.
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Alternatively, when computing deflections due to wind loading for
story drift checks, appropriate elastic section properties typically reflect
the level of inelasticity at a “service loading” level. The elastic section
properties used for service loading level design checks are often greater
than those for the determination of required strengths. For example, in
the ACI Code, the moment of inertia is permitted to be increased by a
factor of 1.4 for service load analysis [2] and in the AISC Specification,
the stiffness reductions associated with the direct analysis method are
not intended for determining deflections [3].

While a variety of potential uses for elastic flexural rigidity exist,
they are not all equally common in practice. All structures are evaluated
for strength which typically includes using an elastic flexural rigidity
within design equations to determine the compressive strength of col-
umns and within a second-order analysis to determine required
strengths. The appropriate effective flexural rigidity for these uses was
the subject of recent research and changes to code provisions [3,8]. The
evaluation of serviceability drift limits is equally important, especially
for moment frames where drift limitations may control the design.
However, less attention has been paid to the appropriate effective
flexural rigidity for this use. Another common use of the elastic flexural
rigidity is within an Eigenvalue analysis to compute fundamental per-
iods for the determination of seismic loads as was investigated by Perea
et al. [20]. An example of a less common use of the elastic flexural
rigidity is to define the elastic component of a concentrated plasticity
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Fig. 1. Composite cross sections.

beam element or other beam element where geometric and material
nonlinearity are handled distinctly [22].

In this paper, the stiffness of steel-concrete composite columns is
tracked first at the cross-section level then at the member level to
provide accurate and practical guidance on the elastic flexural rigidity
of such members for the specific purpose of determination of lateral
drifts under service loads. Both concrete-filled steel tube (CFT, Fig. 1a
and b) and encased or steel-reinforced concrete (SRC, Fig. 1¢) columns
are investigated. This research focuses on short-term behavior, such as
deformations caused by wind loading, and thus the effects of creep and
shrinkage are not included.

2. Literature review

Structural steel has a relatively high proportional limit, thus, the use
of the gross section properties and modulus of elasticity is widely
considered safe and accurate for analysis at service loads. For de-
termination of required strengths per the direct analysis method, a re-
duction of 0.8 is applied to all stiffness of all members that contribute to
the lateral stability of the structure with a further reduction of t;, on EI
(tp is a factor that varies between 0 and 1 and depends on the axial
compression within the member) [3]. These reductions account for the
partial yielding (accentuated by residual stresses) that occurs in mem-
bers under combined bending and axial load.

Concrete cracks in tension and has a relatively low proportional
limit in compression. Several different recommendations and options
for the flexural rigidity are given in the ACI Code [2] depending on the
use of the value. A relatively low flexural rigidity is used to determine
the moment magnification of nonsway frames. Relatively higher flex-
ural rigidities are permitted for use in elastic analyses to determine
required strengths or lateral deflections at ultimate loads. Two primary
options are given. For the simple option, the flexural rigidity for col-
umns is recommended as 70% of the product of the modulus of elas-
ticity of the concrete and the gross moment of inertia (Eq. (1)) based on
the work of MacGregor and Hage [15]. The more complex expression
for the flexural rigidity takes into account the effects of load and steel
ratio (Eqg. (2)). These equations were developed by Khuntia and Ghosh
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[11,12] based on parametric computational studies on reinforced con-
crete cross sections. To determine lateral deflections at service loads,
the ACI Code [2] permits the use of Eq. (1) or (2) multiplied by 1.4.
Other studies have also focused on the flexural rigidity of reinforced
concrete members [16,9,4,13].

EI = 0.7E], )
El = E.I (2a)
A M, P,
I={0.80 + 25=* (1— . —0.5—”) < 0.875I,
Ag RH o (2b)

where E. = modulus of elasticity of concrete, I, = gross moment of
inertia of the cross section, A, = area of steel reinforcing, Ay = gross
area of the «cross section, M, =required bending moment,
P, = required axial compression, H = section depth, and P,, = cross-
sectional axial capacity.

A variety of approaches and relations have been proposed to eval-
uate the elastic rigidity of composite members. The different re-
commendations are not necessarily comparable since they were often
developed with different objectives and for different purposes (e.g.,
determination of axial strength, assessment of deformations, and use in
nonlinear finite element formulations).

The effective flexural rigidity, El.s, given in the AISC Specification
[3] is intended for use within a column curve approach to compute the
axial compressive strength of composite columns. Different expressions
are provided for this rigidity for SRC (Eq. (3)) and CFT (Eq. (4))
members. The effective flexural rigidity is also used, with reductions,
for determining required strengths within the direct analysis method
(EIpa, Eq. (5)). These expressions are based on computation analyses of
small frames as well as an evaluation of column and beam-column
experimental results [8]. The expressions are new to the 2016 AISC
Specification; previous expressions were similar in form and based solely
on evaluations of experimental results [14].

Ely = Egl; + EgI + CE I (SRC) (3a)
Ci =025+ 3[M) <07
Ag (3b)
EIcff = EjI; + EgIy + GE I, (CFT) (4a)
A A
C; =045 + {g) <09
g (4b)
Elpa = 0.64ELy 5)

where E; = modulus of elasticity of steel, I, = moment of inertia of the
steel shape, I, = moment of inertia of the reinforcing, I. = moment of
inertia of the concrete, and A; = area of the steel shape.

In the ACI Code [2], composite columns are treated much the same
as reinforced concrete columns. A slightly different formula is re-
commended for the determination of the moment magnification for
nonsway frames, but, otherwise no special formulas are given.

In Eurocode 4 [5], two equations for the effective flexural rigidity
are provided. The first, (EDes (Eq. (6)), is for the determination of the
member slenderness to be used within a column curve to determine
axial strength. The second, (EDgn (Eq. (7)), is to be used within an
elastic analysis to determine required strengths. For both equations, the
effective rigidity is taken as the sum of the individual components with
factors reducing the concrete contribution. For (EI).gy, an additional
reduction factor is applied to the summation.

(EDeyy = EyI; + Egl, + 0.6E.I, 6)

)

Other recommendations can be found in the literature. Schiller et al.
[22] summarized published elastic rigidity recommendations for

(EDegy,r = 0.9(EgI; + EsI + 0.5EI.)
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rectangular concrete-filled steel tubes (RCFT) with a focus on use in
nonlinear beam-column element formulations. Axial, flexural, shear,
and torsional rigidity were investigated separately. It was determined
that for axial and flexural elastic rigidities, using the initial stiffness
with the gross section properties is appropriate for defining the elastic
component of a concentrated plasticity element. However, an alter-
native flexural rigidity was recommended for more general use within
elastic analysis in which only a portion of the flexural rigidity from the
concrete is included. Roeder et al. [21] investigated the flexural rigidity
of circular concrete-filled steel tubes (CCFT) through comparisons to
available experimental results and proposed a new expression for EI
where the concrete contribution depends on the axial load and the steel
ratio. Tikka and Mirza [23,24] developed expressions for the flexural
rigidity of SRC members through parametric computational studies on
composite beam-columns.

3. Behavior of cross sections

Among the simplest nonlinear models for composite cross sections is
to assume that plane sections remain plane, the steel behaves elasti-
cally, and the concrete behaves elastically in compression but is cracked
and can sustain zero stress in tension. These assumptions correspond to
a state of moderately low loading after the concrete has cracked, but
prior to any significant concrete crushing or steel yielding, and are
often used in reinforced concrete design to determine the stiffness of
beams [18]. Utilizing these assumptions, the cracked elastic stiffness
will depend on the location of the neutral axis and can be expressed in
the form of Eq. (8), where the concrete contribution, Cracked, fOr a given
cross section depends only on the load eccentricity, e.

EIcracked = ESIS + EsIsr + Ccracked (e)EcIc (8)
Elvacked—EsIi—E; I
C e) = cracke sdsTEslgr
cracked( ) E.L (9)

For a given cross section shape, the concrete contribution can be
computed as a function of non-dimensional properties. The concrete
contribution factor as a function of the load eccentricity for CCFT sec-
tions for a variety of properties is shown in Fig. 2. The results in Fig. 2
were computed by stepping through a series of assumed locations of the
neutral axis. For each, C.qceqa Was determined as the ratio of the
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Fig. 2. Cracked elastic concrete contribution factor for CCFT.
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moment of inertia of the concrete in compression (i.e., on one side of
the neutral axis) to gross moment of inertia of the concrete and the load
eccentricity was determined as the ratio of bending moment to axial
load, which were both determined per unit curvature based on the
neutral axis location. A negative curvature indicates that the section
was under net tension. In this case, the concrete contribution is defined
only by the load eccentricity normalized with respect to a ratio of the
cross section compressive and flexural strengths (P,, and M, respec-
tively), the material stiffness ratio Ey/E,, and the steel ratio A;/Ag. The
cross section strengths are determined in accordance with the AISC
Specification [3] noting that, in this study, local buckling is neglected
and CFT sections with internal reinforcement are excluded. The cross
section axial strength, P,,, is given by Egs. (10) and (11), where C,
equals 0.85 for rectangular sections and 0.95 for round sections. The
cross section moment strength, M,,, is determined by the plastic stress
distribution method defined within the AISC Specification [3].

B = szAs + F;)srAsr + 0~85fC’Ac (SRC) (10)

B = BAs + GCof A, (CFT) an
where F, = steel yield stress, Fy, = reinforcing yield stress, and
f’c = concrete compressive strength.

The results of Fig. 2 confirm the bounds of the concrete contribution
as 0 when all the concrete is in tension and 1 when all the concrete is in
compression. A concrete contribution of around 0.5 indicates that the
neutral axis is near the centroid of the cross section, which occurs for a
range from about pure bending (e = e or Mp,/(e P,) = 0) to M,,/(e
P,,) = 0.25. For a better sense of these normalized values, results from
the case of a CCFT section with A;/A; = 0.12 and E,/E. = 7 are plotted
in Fig. 3 on an interaction diagram constructed using the plastic stress
distribution method. For the construction of the interaction diagram,
the steel yield stress was taken as F, = 345MPa and the concrete
compressive strength was taken as f’. = 36.4 MPa, which corresponds
to the selected modular ratio. These results are applicable for any size of
CCFT section with the given steel ratio. As noted above, the value of
Cerackea 1S near 0.5 for the case of pure bending and increases relatively
slowly traversing up the interaction diagram around the balance point.
After M,,,/(e Pyo) = 0.5, Cirackeq increases rapidly up to the maximum
value of 1. A similar pattern can be seen traversing the interaction
diagram in tension.
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Fig. 3. Example interaction diagram with cracked elastic results.
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3.1. Evaluation by inelastic analysis

While analyses that use the “cracked elastic” assumptions described
in the previous section can identify aspects of the behavior of composite
columns, a more complete picture can be obtained using more accurate
and complex constitutive relations for the steel and concrete within
fiber analyses. For this type of analysis, the cross section is divided into
many small areas, termed fibers, each with an assigned uniaxial con-
stitutive relation. Under a given section deformation (e.g., axial strain
at the centroid and curvature) the axial strain at each fiber is calculated
assuming that plane sections remain plane (neglecting slip between the
steel and concrete); this strain is then used to compute the stress and
tangent modulus at each fiber. These values are integrated over the
section to obtain section forces (e.g., axial load and bending moment)
and stiffness (e.g., EA and EI). The stiffness obtained directly from the
integration under any given loading condition is a tangent stiffness and
is useful in the analysis; however, the secant stiffness is of more im-
portance to this study since the goal is to recommend stiffness values
that, when used in an elastic analysis, result in deformations equivalent
to those from an inelastic analysis.

The constitutive relations assigned to the fibers are critical to the
accuracy of this method. The following describes the steel and concrete
constitutive relations used in this study for SRC and CFT cross sections.

Wide-flange shapes are modeled with elastic-perfectly plastic con-
stitutive relations and the Lehigh residual stress pattern [10]. Reinfor-
cing steel is assumed to have negligible residual stress and is also
modeled with an elastic-perfectly plastic constitutive relation. Residual
stresses in cold formed steel tubes vary through thickness. To allow a
reasonable fiber discretization of the CFT sections, residual stresses are
included implicitly in the constitutive relation. A multilinear con-
stitutive relation is used in which the stiffness decreases at 75%, 87.5%,
and 100% of the yield stress to approximate the gradual transition into
plasticity observed in cold-formed steel (Fig. 4) [1]. In addition, the
yield stress in the corner region of the rectangular members is increased
to account for the additional work hardening in that region. The in-
crease in yield stress is a function of the ratio of inside bending radius to
thickness, which is taken as unity, and the ratio of steel ultimate
strength to steel yield strength, F,/F,, which is estimated by Eq. (12)
[71.

E,/F, = 1 + 4190F, [MPa] 16! 12)

The Popovics model is selected for concrete in compression, with
the peak compressive stress taken as f’. or greater to account for con-
finement provided by the steel shape and reinforcing [7]. The strain at
peak compressive stress, €', is taken as Eq. (13), with increases to ac-
count for confinement. Spalling behavior is incorporated into the model

14 T T T T T
12 - -1
1k \ ==
Steel constitutive relation
0.8 for corner region of RCFT

example shown with F /F =1.2

Normalized Stress (o/F,)

0.6 -1
Steel constitutive relation
04 for CCFT and flat region i
' of RCFT
0.2 -1
0 ! ! ! ! !
0 1 2 3 4 5 6

Normalized Strain (¢/z,)

Fig. 4. Steel constitutive relation for CFT.
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Fig. 5. Concrete constitutive relation.

for the cover concrete of SRC sections by overriding the stress-strain
response with linear degradation to zero-stress starting at two times the
strain at peak stress (Fig. 5).

e, = f! [MPa]'/4/1150 13)

The modulus of elasticity of concrete used in the analysis is calcu-
lated by Eq. (14) taken from the ACI Code [2] for normal weight con-
crete. Eq. (14) is equivalent to the expression in the AISC Specification
[3] when the density is 2372 kg/m?>. Other expressions for the modulus
of elasticity have been proposed as more accurate for high-strength
concrete and could have been used in the analysis. However, it is not
the intention of this work to develop design recommendations that
implicitly include a correction for any potential inaccuracies in the code
specified formula for the concrete modulus. It is important to note that
Eq. (14) is used as an initial modulus in this work, whereas it is defined
as a secant modulus to 0.45f". within the ACI Code [2].

E, [MPa] = 4733,/f/ [MPa] 14)

Concrete in tension is also modeled using Popovics equation noting
that the shape of the monotonic tension stress-strain response of con-
crete has been shown to have a descending branch similar to that of
concrete in compression [6]. The peak tensile stress, f*,, is taken as Eq.
(15) and the strain at peak tensile stress, ¢’,, is taken as Eq. (16) [26].
Starting at twice the strain at peak stress, Popovics equation is over-
ridden with a linear stress-strain response to zero-stress (Fig. 5). Many
of the analyses are performed under non-proportional loading, thus
portions of the cross section are subject to a minor strain reversal as
they initially are loaded in compression then as the bending moment
increases unload and experience tension. The constitutive relations
employ cyclic rules [6,7] which handle these reversals with little effect
on the results.

f/ [MPa] = 0.50,/f, [MPa] 15)
g = 1.23f//E, (16)

These constitutive relations have been validated against hundreds of
experimental results from composite members under a variety of
loading conditions and with a wide range of material and geometric
properties [7]. Such comparisons have confirmed the validity of the
assumptions made in the development of the model (e.g., neglecting the
effect of the hoop stress on the behavior of the steel tube). These con-
stitutive relations have also been used (with the exception of concrete
in tension) in previous studies for the development of design re-
commendations [8]. Since all of the analyses performed in this study
are two-dimensional, strips are used for the fiber section. The nominal
height of the strips was 1/30th of the section depth (e.g., for a CCFT



M.D. Denavit et al.

Engineering Structures 160 (2018) 293-303

~ 1 Non-proportional Cracked —
ZC Elastic Analysis (Solid) <X
% P - — - “"“‘\
< 0.8 — 2= ‘,,-"' Extreme compressive —
9] - Lot strain reaches €',
§ It
= 0.6 — -~ ‘ "‘u"" Non-proportional Inelastic —
= , 27 e Analysis (Solid)
35 Extreme tensile = “,‘-‘
S strain reaches ¢, P ” e \
m 0.4 — . ot Secant Stiffness from Inelastic Analysis (ET . ) —
3 e
= Z
© N i ; : :
g 02— }\.,-\ Proportional Cracked Elastic Analysis (Dashed) —
o s
§ ,“,ﬁ" Proportional Inelastic Analysis (Dashed)

o | I I I I I I I I

0 0.5 1 15 2 2.5 3 3.5 4 4.5

Normalized Curvature (xxHx103)

Fig. 6. Cross section moment-curvature analysis results.

section, approximately 30 steel and 30 concrete strips of near equal
height were used).

The results of several fiber section analyses on a SRC cross section
using different constitutive relations and different loading patterns are
shown in Fig. 6. The analyzed cross section has equal outside dimen-
sions of 915 mm and an embedded W360 x 262 steel shape (resulting
in a steel ratio of A;/A; = 0.012). The steel reinforcing is comprised of
12 #32 bars (resulting in a reinforcing ratio of A;/A, = 0.040) grouped
in the corners (such as shown in Fig. 1c¢) with a clear spacing of 1.5
times the bar diameter. A clear cover of 38 mm is provided between the
outside face of the cross section and the lateral reinforcing which is
comprised of #10 ties spaced at 305mm. Material strengths are
f’c = 28 MPa, F,, = 345 MPa, and F,,, = 420 MPa.

Three different constitutive relations were used in the analyses.
Results labeled as inelastic analysis use the constitutive relations de-
scribed in this section. Results labeled as cracked elastic analysis use an
elastic constitutive relation for the steel and elastic-no-tension con-
stitutive relation for the concrete as described in the previous section.
Results labeled as elastic analysis use elastic constitutive relations for
both the steel and concrete. Two different types of loading were used.
Under non-proportional loading, an axial compression load of
P = 0.2P,, = 6900kN was applied then held constant as a bending
moment of M = M,,, = 4410 kN m was applied. Note that the moment
capacity of the cross section is greater than M,, at this level of axial
compression. Under proportional loading, the axial compression and
bending moment were applied simultaneously with an eccentricity of
e = M;,,/0.2P,, = 639 mm.

Examining the results of Fig. 6, several observations can be made.
First, with the exception of the proportional cracked elastic analysis, the
initial stiffness of each of the analyses is nearly identical, confirming
that under low loads, the use of gross cross sectional properties (i.e.,
Elgs5, Eq. (17)) is appropriate. Second, the deformation of the inelastic
analysis is greater than that of the cracked elastic analysis, indicating
that while a portion of the stiffness reduction can be attributed to
cracking, other forms of inelasticity must be accounted for when de-
termining appropriate secant stiffness values. In this case, all of the
inelasticity comes from the concrete as no yielding occurs in the steel or
reinforcing under the applied loads. Two points on the load-deforma-
tion curve from the non-proportional inelastic analysis are identified in
Fig. 6. The first point is where the extreme tensile strain reaches ¢’, (Eq.
(16)); this point is associated with cracking and is where significant
inelasticity initiates. The second point is where the extreme compres-
sive strain reaches ¢’. (Eq. (13)); this point is associated with the in-
itiation of concrete crushing. Third, inelasticity initiates at higher

applied moment under non-proportional loading as compared to pro-
portional loading because the initial compression reduces the tensile
strain, thus delaying the opening of cracks.
EIgross = EgI; + Egly + E.l. 17)

A key result from Fig. 6, is the secant stiffness from the inelastic
analysis. This stiffness is unique to the particular applied loads, but at
these applied loads, an elastic analysis that uses this stiffness (termed
ElLjasic Since it is intended to be used within an elastic analysis) would
give the same curvature as from the inelastic analysis. In Fig. 7, Elyqgic
results from many pairs of applied axial load and bending moment are
shown. Each dot represents one analysis to determine El,;.; the shade
of the dot is representative of the ratio of the resulting value of El 4. to
Elgoss, with lighter shades representing lower secant stiffness. The
nominal cross section strength interaction diagram [14] is also in-
cluded, as is the allowable cross section strength interaction diagram
which was obtained by factoring each point in the nominal interaction
diagram down by a safety factor of 2.0 and left by a safety factor of 1.67
in accordance with the method presented in the commentary to the

1.2 T T
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Fig. 7. Cross section secant stiffness results.
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AISC Specification [3]. The allowable strength can roughly be con-
sidered the upper bound of service level loads. Values of El ., were
capable of being obtained outside the nominal design interaction dia-
gram because the selected constitutive relations differ somewhat from
the assumptions in the plastic stress distribution method.

As expected, the secant stiffness obtained from the inelastic analysis,
Eliasic, varies significantly with applied loads. Two contours of the
results are also shown in Fig. 7, one at Elqgic = 0.9Elg0s and one at
Eljqstic = Elgr (EQ. (3)) (Elgr = 0.547Els, for this cross section). The
Eljqstic = 0.9El,s contour is intended to show under what range of
loads the use of gross section properties would be accurate or only
modestly (roughly 10%) unconservative (i.e., predicting stiffer response
with lower deformation). This range included axial loads up to 0.5P,, in
pure compression but only up to 0.1M,, in pure bending, and covers
primarily the higher axial load half of the allowable interaction dia-
gram. Since the allowable cross section strength interaction diagram
can roughly be considered to be the envelope of service load level
loading, Fig. 7 indicates that El, is likely too high for general use
within an elastic analysis.

Similarly, the Elqasic = Els contour indicates the range of loads
where the use of El in an elastic analysis is accurate or conservative
(i.e., predicting softer response with higher deformation). This range
encompasses a larger range of loads than that for Eleasic = 0.9Egross,
including axial loads up to P,, in pure compression but only up to
0.2M,, in pure bending. Nonetheless, the range covers most of the
envelope of service load level loading, particularly for axial compres-
sion greater than about 0.1P,,. Thus, the results of Fig. 7 show that for
this cross section, El is likely appropriate for columns with at least a
modest amount of axial compression, but that a lower value is necessary
for beams or columns with light gravity loads.

4. Behavior of members

Basing the flexural rigidity solely on cross-sectional behavior can
lead to underestimates of the stiffness since it is common for the mo-
ment to vary across a member. For example, in a typical moment frame
subjected to lateral load, the columns are subjected to double curvature
bending with higher magnitude of bending moments at the member
ends and lower magnitude of bending moments in the middle. Based on
the observations from the previous section, the varying bending mo-
ment will result in varying stiffness. A stiffness representative of an
average along the length is necessary to reasonably approximate the
overall lateral drift deformations.

The generic beam-column shown in Fig. 8 will be used as the basis
for analysis in this study. Member level analysis results, analogous the
cross-section level results of Fig. 6, are shown in Fig. 9. In Fig. 9, the
same SRC cross section as for Fig. 6 is used, but with the length of the
column taken as 10 times the section depth (i.e., L = 9.15m) and the
stiffness of the rotational springs at the top and bottom of the column
taken as infinite. The non-proportional loading is applied with an initial
constant axial compression load of P = 0.2P,, = 6900 kN followed by
the application of horizontal load up to Fy = 2M,,/L = 964kN. The
proportional loading is applied with a ratio of applied horizontal to
vertical load of Fy/P = 2M,,,/(0.2P,,,L) = 0.140. The analyses are per-
formed using the same constitutive relations as described above within
a mixed beam finite element formulation [7]. Six elements were used
along the length of the column, each with three integration points, a
sufficiently dense finite element discretization to provide convergent
results.

The observations for Fig. 9 are similar to those for Fig. 6. One dif-
ference is that the secant stiffness, El ., was determined iteratively
such that the second-order elastic analysis provided the same peak
deformation as the second-order inelastic analysis. An alternative ap-
proach is to select an elastic stiffness such that the elastic analysis
provides the same peak moment as the inelastic analysis. In this simple
case, where the peak moment and peak deformation occur at the same
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Fig. 9. Beam-column load-deformation analysis results.

location, the different approaches result in the same value.

The results of the computation of El,qg;. for various pairs of axial
compression and second-order bending moment is shown in Fig. 10,
these results are presented in the same manner and are analogous to the
cross-section level results of Fig. 7. The red dashed lines in Fig. 10 re-
present the nominal and allowable beam-column strength interaction
diagrams. The allowable strength is being used again as a proxy for the
upper bound of service level loading. Note that only three points are
used for these diagrams in accordance with recommendations in the
commentary to the AISC Specification [3]. In comparing Figs. 10 and 7,
the fact that the contours from the beam-column results encompass a
larger range of axial load and bending moment indicates that the cross-
section level results underestimate the secant stiffness at the member
level. Figures similar to Fig. 10 are presented for a wider range of
composite cross sections in Denavit and Hajjar [7].

4.1. Influence of structural parameters
The preceding results have shown the influence of applied loads on

the stiffness of composite columns, however, results have only been
presented for one cross section. In this section, the influence of
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structural parameters such as material and geometric properties will be
investigated. The results in this section will use the same model and
approach as the preceding results, but be based on columns of varying
steel yield stress, concrete compressive strength, steel ratio, column
length, and column boundary conditions. The base configuration, from
which variations will be performed is a square CFT column with outside
dimensions of 305 mm, steel ratio of A;/A, = 0.10, steel yield stress of
F, = 350 MPa, concrete compressive strength of f'. = 28 MPa, column
length of L = 3.05m (10 times the section depth), and infinite spring
rotational stiffness at top and bottom (kg top = ke,por = °°), resulting in a
top-to-bottom moment ratio of 1.0.

The results of the analyses are presented in Fig. 11 where each sub
figure displays the results of several analyses where one parameter was
varied from the base configuration. Note that variation in the moment
ratio was obtained by varying the rotational stiffness of the bottom
spring. For each analysis, El.qsic Wwas determined at the specified axial
compression load and a moment equal to M,,,/1.67. This specific mo-
ment was chosen as being representative of the allowable moment for
low axial load and what may roughly be deemed as the upper limit for
service loading levels. This choice is appropriate for the development of
recommendations of elastic flexural rigidity for determination of de-
flections at service loads, which is the focus of this paper. Other
methods are appropriate for the development of recommendations for
other purposes, for example, the elastic flexural rigidity for determi-
nation of internal forces for strength design [8]. It should be noted that
concrete cracking is the primary inelastic effect at this level of load, as
seen, for example, in the similarity of results between the cracked
elastic analysis and inelastic analysis in Fig. 9. It is nonetheless im-
portant to conduct the inelastic analyses, as they better capture the
continuum of behavior over a wide range of cases, including cases
where the applied load does not cause cracking and those where other
sources of inelasticity are significant.

The values of El,4;c were normalized using Eq. (18) (noting that for
these analyses E;, = 0). The form of Eq. (18) was chosen since it is
expected that the resulting design recommendations will be formulated
as the summation of the gross properties of the steel components plus
the product of a factor and the gross properties of the concrete com-
ponent. The concrete is not the cause of all stiffness reductions since
steel yielding can occur, but it is a convenient form for design and is
consistent with existing design provisions.
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In Fig. 11, the steel ratio was varied to as low as 0.01, which is the
lower limit for composite columns in the AISC Specification [3]. This
range includes cases that would not be considered compact. However,
local buckling is neglected in this study, both by not modeling it in the
inelastic analyses and by not including the strength reductions in
strength calculations. The results were included in Fig. 11 because the
steel ratio has a strong influence on the behavior of composite columns
and there is value in some accounting of the full range. Specifically, it is
expected that the recommendations developed in this study can be
extended to noncompact and slender sections with minimal validation.
Such a validation should consider the reduced likelihood of local
buckling occurring at the lower level of loading investigated in this
work. In fact, the validation could consider an even lower level of
loading since the applied loads are based on strengths calculated ne-
glecting the effect of local buckling in this study.

The normalization of applied loads and results in Fig. 11 allows for
the comparison among the wide variety of cases investigated and allows
for direct comparisons to the expected design recommendations, how-
ever, it does make identifying specific reasons for specific trends diffi-
cult. The identifiable trends are nonetheless important. First, in almost
all cases the concrete contribution factor increases with increasing axial
compression. Second, the cross-sectional properties (i.e., F, f’;, and As/
A,) have a much larger influence on the results than the beam-column
properties (i.e., column length and rotational spring stiffness). With the
exception of the zero-length cases, which were run as a cross section,
the length of the column had negligible effect on the resulting concrete
contribution factor. Note, however, that all analyses in this study ne-
glect shear deformations. Adjusting the stiffness of one of the rotational
springs also had a negligible effect on the resulting concrete contribu-
tion factor. Only a slight increase is noted for moment ratios around
0.75 when a greater proportion of the length of the column has mo-
ments less than the maximum by a margin.

4.2. Parametric study

A wider parametric study is necessary to develop recommendations
suitable for the range of material and geometric properties permitted in
the design of composite columns. In the previous section, the influence
of length and rotational spring stiffness was noted to be small. This
observation was consistent with the results of analyses not presented
here across a variety of different cross sections. Thus, all members
evaluated in this parametric study will use a length-to-depth ratio of 10
and fixed-fixed boundary conditions (kg p = kg,por = ). The cross
sections chosen for investigation in this work are categorized into four
groups (1) CCFT, (2) RCFT, (3) SRC subjected to strong axis bending,
and (4) SRC subjected to weak axis bending. Within these groups,
material and geometric properties were selected to span practical
ranges of steel strength, concrete strength, steel ratio, and reinforcing
ratio for the SRC sections (CFTs with longitudinal reinforcing bars are
excluded in this work). Parametric variations are given in Table 1 for
the CFT cross sections and in Table 2 for the SRC cross sections.

Both the outside diameter of the CCFT cross sections and the outside
dimension of the RCFT cross sections (only square sections were in-
vestigated) were taken as a constant 305 mm, noting that this choice is
irrelevant once the results are normalized. The thickness was calculated
to achieve specified steel ratio and did not necessarily conform to a
commonly produced shape. Each parameter was run with each other
parameter, resulting in (12 steel ratio values) x (9 steel yield stress
values) x (14 concrete compressive strength values) = 1512 total
analysis cases. Again, it is important to note that the range of steel
ratios examined includes those associated with noncompact and slender
sections despite the fact that local buckling is neglected in this study.
Thus, the results of this study are only strictly applicable to compact
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Table 1
Parametric variations for CFT members.

Parameter Values

Steel ratio, A,/A, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20,
0.25, 0.30, 0.35, and 0.40
240-520 MPa (increments of 35 MPa)

20-111 MPa (increments of 7 MPa)

Steel yield stress, F,
Concrete compressive strength,

fe

Table 2
Parametric variations for SRC members.

Parameter Values

W360 x 1299, W360 x 990, W36 x 677,

W360 x 314, W360 x 262, W360 x 196,

W360 x 134, and W250 X 73 (Ay/Ag = 0.198, 0.151,
0.103, 0.048, 0.040, 0.030, 0.020, and 0.011)
240-520 MPa (increments of 35 MPa)

20-111 MPa (increments of 7 MPa)

Steel shape

Steel yield stress, F,

Concrete compressive
strength, f

Reinforcing
configuration

Reinforcing yield
stress, Fys

4 #32, 12 #32, 20 #36, and 28 #36 (A,/Ag = 0.004,
0.012, 0.024, and 0.034)
280 MPa, 420 MPa, and 520 MPa

sections or sections with stiffeners that prevent local buckling.

For the SRC cross sections, the outside dimensions were taken as
905 mm. A clear cover of 38 mm was provided from the outside face of
the concrete to the ties. The longitudinal reinforcing steel was placed
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symmetrically within the section and grouped in the corners with a
clear spacing between the bars of 38 mm or 1.5 times the diameter of
the bars, whichever was greater. The ties were spaced at 305 mm and
are constructed with #10 bars when #32 longitudinal bars are used and
#13 bars when #36 longitudinal bars are used. Each parameter was run
with each other parameter, resulting in (8 steel shapes) x (9 steel yield
stress values) X (14 concrete compressive strength values) X (4 re-
inforcing configurations) x (3 steel reinforcing yield stress va-
lues) = 12,096 total analysis cases.

For each case, an inelastic analysis was run subjecting the column
first to constant axial compression, then to increasing horizontal force
until the second-order bending moment reached M,,/1.67, at which
point, the lateral drift at the top of the column was recorded. Then, the
elastic stiffness, El g, corresponding to the lateral drift was de-
termined as described above and normalized using Eq. (18). Results for
the CCFT cross sections and SRC cross sections subjected to strong axis
bending are shown in Fig. 12. The results for the other cross section
types are similar and omitted for brevity. Each individual analysis is
represented as one point. However, since the points overlap, histograms
have been added for each unique steel ratio to clarify the distribution of
the calculated concrete contribution factors.

Egs. (19)-(22) were developed, by observation of the results shown
in Fig. 12, as practical recommendations for the elastic flexural rigidity
for use in determination of lateral deflections at service loads. These
equations were developed considering that an underestimate of Elq;c
is typically conservative, thus the minimum values of C in Fig. 12 were
of greater importance than the maximum values. However, to prevent
Egs. (19)-(22) from being overly conservative, some cases do results in
an overestimate of El,;c when compared to the analytical results.
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Fig. 12. Parametric study results — concrete contribution factor.

Also, as seen in previous results, the El,. generally increases with
axial compression for service loading level. Thus, the results from the
analysis with zero axial load were conservatively assigned a range of
applicability of P < 0.1P,, and the results from the analyses with
P = 0.1P,, or 0.2P,, were conservatively assigned a range of applic-
ability of P = 0.1P,,.

In all cases, Elsc is taken as the summation of the flexural rigidity
for each of the components but the concrete component is factored
down by some amount. That amount depends on the member type and
level of axial compression. For the case of low axial compression, the
factor is equal to 0.4 times the concrete contribution factor used in El,
specifically, C; (Eq. (3b)) for SRC and C3 (Eq. (4b)) for CFT. For the case
of higher axial compression, the factor is a constant, specifically 0.4 for
SRC and 0.6 for CFT. These factors are plotted in Fig. 12.

Elyasic = EsIy + Byl + 0ACE I, (SRC,P < 0.1B,,) 19)
Elasic = EyI; + EI, + 04E.I,  (SRC,P > 0.1B,,) (20)
Eligsic = EI; + 04CEI,  (CFT,P < 0.1B,) (1)
Eljasic = Egl, + 0.6E.I,  (CFT,P > 0.1B,) (22)

The results of Fig. 12 are wuseful for formulating design

recommendations, however, given that the goal of these re-
commendations is accurate determination of deflections, a comparison
of the resulting deflections is a more direct assessment. The peak de-
formation at the target second-order moment from the inelastic ana-
lysis, Ainetastic, is compared to the peak deformation at the same target
moment from elastic analyses, Agqsic, in Fig. 13. Two cases of elastic
analyses were run, one using the El,.. recommendations of Egs.
(19)-(22), and another using El.4 as given in Egs. (3) and (4).

For the CCFT results using Elasc, most results are grouped near
Aclastic/ Ainetasiic = 1 indicating that the proposed recommendations are
accurate. There is more dispersion in the SRC results, however, rela-
tively few cases yield results where the elastic deformation is higher
than that indicated by the inelastic analysis indicating that the pro-
posed recommendations are conservative. The results using El show
somewhat increased unconservative error. However, given the accuracy
of determining the stiffness of structures, the use of ElLg could poten-
tially be justified. Such use could be efficient in the design processes
since the elastic stiffness used to determine require strengths is also
based on El [3].
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5. Discussion
5.1. Behavior of frame systems

Just as aspects of member level behavior are missed by examining
only cross section level behavior, aspects of frame level behavior are
missed by examining only member level behavior. In an individual load
case, different members within a frame will be loaded to different de-
grees. The more highly loaded members will experience more in-
elasticity while the more lightly loaded members will not. When ex-
amining system response such as story drifts, it is the average behavior
that is important. Furthermore, the amount of axial compression within
a column has a significant influence on the resulting stiffness. Axial
compression has been held constant in the previous analyses (i.e., non-
proportional loading), however, columns in frames may experience
variation in axial load as lateral loads are applied. Unfortunately, the
range of possible frame configurations makes a parametric study, such
as was conducted at the member level, challenging.

5.2. Bounded solution

The focus of this paper has been to develop recommendations for
creating elastic models of building structures that can accurately pre-
dict lateral drifts under service loads. In many cases of design, the level
of approximation provided by the recommendations presented in this
paper is suitable. However, for important or sensitive structures, it may
be appropriate to conduct further analysis. There exists variation in the
results (e.g., Fig. 13) which were used to calibrate the design re-
commendations. There also exists variation between the nominal and
in-situ parameters. The elastic modulus of concrete, for instance, can be
expected to have a coefficient of variation on the order of 12% [17].
Noting these variations, if additional analysis is deemed appropriate, a
reasonable approach would be to identify expected upper and lower
bounds of the flexural rigidity and use them to determine upper and
lower bounds of deflections.
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5.3. Elastic rigidities other than EI

This paper has also focused solely on the flexural rigidity, EI
However, other cross section rigidities contribute to the stiffness of the
structure and their values should be carefully selected.

In the AISC Specification [3], the axial rigidity of composite columns,
EA, is taken as the summation of the elastic axial rigidities of each
component (Eq. (23)). This is in agreement with most studies as sum-
marized by Schiller et al. [22].

EAelasiic = EsAs + EsAg + EcA. (23)

The shear rigidity, GA, is necessary when shear deformations are
included in the elastic model (i.e. Timoshenko beam theory). Tomii and
Sakino [25] performed experiments on RCFT members and re-
commended an expression for GA. For CCFT and SRC members, no
suitable expressions for GA have been found in the literature, so it is
recommended to use the shear rigidity of either the steel or concrete
section alone.

The torsional rigidity, GJ, is necessary for three-dimensional ana-
lyses. For CFT members, Perea [19] developed expressions for the
torsional rigidity based on a series of full scale slender beam-column
tests. For SRC members, no suitable expressions for GJ have been found
in the literature, so it is recommended to use the torsional rigidity of
either the steel or concrete section alone.

6. Conclusions

This paper presents the results of a detailed study of the stiffness of
composite columns at the cross section and member levels with the goal
of developing recommendations for elastic design procedures. The se-
cant stiffness was seen to vary with both the type of loading (which
influences the location of the neutral axis) and the magnitude of
loading. Thus, the choice of elastic flexural rigidity depends on the
purpose of the elastic analysis and the type of behavior that is expected
to be captured. Specific practical design recommendations were de-
veloped for the elastic flexural rigidity for determination of deflections
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at service loads (Egs. (19)—(22)). The ability to estimate lateral drifts at
service loads is important for building design and existing re-
commendations are lacking. The form of the recommended expressions
for the elastic flexural rigidity was taken as the gross flexural rigidity of
the steel and reinforcement plus a factor times the gross flexural rigidity
of the concrete. The factor applied to the concrete contribution was
taken as the main variable in the development of the recommendations.
This factor was shown to vary significantly with cross section properties
such as steel ratio and concrete compressive strength, and less so for
beam-column properties such as length and boundary conditions.
Nonetheless, a broad parametric study showed that the simple re-
commended expressions were suitable for capturing the behavior in a
conservative manner, however, further experimental validation is still
warranted.
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