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Abstract: This study undertook stability analysis of nailed soil slopes using the limit-equilibrium method (LEM) and considering a three-
dimensional (3D) rigid-body rotational failure mechanism with the assumed slip surface being a part of a sphere. The moment equilibrium of
the 3D wedge formed by the slope surface and the slip surface along with the nails embedded in it were analyzed as a whole. A specific-
purpose computer code was written for factor-of-safety (FS) computation; the developed computer code is capable of analyzing an unrein-
forced slope and a nailed slope. The critical slip surface and the corresponding minimum FS value of the unreinforced slope were initially
determined, taking into account all possibilities of failure (base failure, slope failure, and toe failure). For the critical slip surface so obtained,
nails were then introduced at desired positions, and the FS value for the nailed slope was then estimated with the developed procedure. The
developed method and computer code were verified by comparing the FS values of some benchmark problems [two-dimensional (2D) and
3D] obtained by the proposed method with those reported in the literature. The critical slip surfaces obtained from the proposed method were
also compared with some of the benchmark problems. A parametric study was conducted to determine the effects of the inclination and spac-
ing of the nails on the FS values.DOI: 10.1061/(ASCE)GM.1943-5622.0000932.© 2017 American Society of Civil Engineers.
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Introduction

For infrastructural developments in congested urban areas, it is of-
ten necessary to excavate soils either vertically or with steep slopes
that may not have an adequate factor of safety (FS). Soil nailing is a
very common technique that is generally adopted for such slopes so
that the FS is increased to the desired level. In recent years, soil nail-
ing has gainedmomentum all over the world as a preferred, popular,
and cost-effective method for construction of such steep-cut slopes
and also in the in situ stabilization of natural slopes. The construc-
tion process of soil nailing and installation of the nails is extremely
flexible and allows for adjustment of nail directions to maximize
the reinforcing action. Soil nailing can be effectively implemented
in natural cohesive materials, such as silty clays, low-plasticity
clays, and naturally cemented sand/gravel deposits. It is not recom-
mended for sands and gravel without cohesion, organic clays, or ex-
pansive and swelling soils (Lazarte et al. 2003).

Several methods are available for analysis and design of nailed
slopes based on limit-equilibrium, limit-analysis, finite-element,
and finite-difference methods. The limit-equilibrium method
(LEM) gained more popularity among practicing engineers because
of its reasonable accuracy and simplicity. Assuming plane-strain

conditions, two-dimensional (2D) LEM is generally used to analyze
such slopes for stability computations (Juran et al. 1990; Maleki
and Mohammad 2012; Patra and Basudhar 2005; Rotte et al. 2011;
Sabhahit et al. 1995; Wright and Duncan 1991; Yuan et al. 2003).
Very often, the 2D analyses do not correctly represent the failure
mode, are conservative, and underestimate the FS (Hovland 1977;
Chen and Chameau 1983), which may result in a costly design.
Three-dimensional (3D) studies have also been carried out for
nailed slopes using finite-element and finite-difference methods
(Wei and Cheng 2010; Zhang et al. 1999; Halabian et al. 2012).
Some 3D LEMs were developed in the past for unreinforced
slopes (Anagnosti 1969; Baligh and Azzouz 1975; Hovland 1977;
Chen and Chameau 1983; Leshchinsky and Huang 1992; Lam
and Fredlund 1993; Ahmed et al. 2012). Analyses of unreinforced
slopes show that 3D FS values are generally greater than the cor-
responding 2D FS values (Hovland 1977; Wei et al. 2009; Chen
and Chameau 1983; Baligh and Azzouz 1975 etc.). In some cases,
however, 3D FS values were reported to be less than the corre-
sponding 2D values (Hovland 1977; Chen and Chameau 1983).
Therefore, 3D analysis is also desirable in these cases for safety
considerations.

An overview of the literature shows that little attention has been
given to simpler 3D LEM-based stability analyses of nailed slopes.
Thus, this study developed a simple analytical procedure based on
limit equilibrium for the 3D analysis of unreinforced slopes that can
be further extended to compute the FS values of nailed soil slopes.
This method of analysis can be adopted for the preliminary design
of such slopes, and the chosen design may be checked with finite-
element analysis to determine if the deformations are within permis-
sible limits.

Analysis

A soil slope of height hs with inclination a with the horizontal is
shown in Fig. 1. To increase the stability of the slope, nails were

1Visiting Faculty, Civil Engineering Dept., Indian Institute of
Technology (BHU), Varanasi 221005, India; formerly, Professor, Dept. of
Civil Engineering, Indian Institute of Technology Kanpur, Kanpur
208016, India (corresponding author). E-mail: pkbd@iitk.ac.in

2Deputy General Manager, Solapur Super Thermal Power Project,
NTPC Ltd., Solapur 413215, India. E-mail: anubhav@ntpc.co.in

3Vice President, Operations and Delivery, Niranta Solutions and
Services Pvt. Ltd. (NSSPL), Bangalore 560102, India. E-mail:
lakshminarayana.mr@niranta.in

Note. This manuscript was submitted on February 18, 2016; approved
on February 7, 2017; published online on June 7, 2017. Discussion period
open until November 7, 2017; separate discussions must be submitted for
individual papers. This paper is part of the International Journal of
Geomechanics, © ASCE, ISSN 1532-3641.

© ASCE 04017067-1 Int. J. Geomech.

 Int. J. Geomech., 2017, 17(9): 04017067 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

 o
n 

06
/1

9/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)GM.1943-5622.0000932
mailto:pkbd@iitk.ac.in
mailto:anubhav@ntpc.co.in
mailto:lakshminarayana.mr@niranta.in


driven in the slope at an angle, h , with horizontal and vertical spac-
ings of Sh and Sv, respectively.

For determining the critical slip surface and the correspond-
ing value of the minimum FS, the problem was cast as a mathe-
matical programming problem. The trial slip surfaces were
assumed to be part of a sphere. The analysis was based on the
following assumptions:
1. The rotational failure of the wedge is bounded by the slope sur-

face, and the slip surface is spherical in shape (Figs. 2 and 3).
2. The soil is homogeneous and isotropic.
3. Failure could occur by any of the following modes: base fail-

ure, slope failure, and toe failure.
The forces acting on the free body of the failure wedge (sectional

view of the symmetrical plane) are shown in Fig. 3. The analysis
was carried out considering the equilibrium of the free body as a
whole. The method of analysis presented in this paper follows the
basic procedure developed earlier by Lakshminarayana (1997).

The cohesive force is assumed to act at the point where the vertical
line drawn through the center of gravity of the sliding block intersects
the slip surface. Considering the moment of all forces about the rota-
tional axis, the FS of the nailed slope can be expressed as

FS ¼ R c0As þ tan w 0 W cosuð Þ� �
þP Nfð Þ Lmð Þ

RW sinu
(1)

where R ¼ radius of spherical failure surface; As ¼ surface area of
failure mass; W ¼ weight of sliding mass; u ¼ angle made by the
tangent drawn at the intersection of the vertical line drawn through
the center of gravity of the sliding mass and slip surface, with hori-
zontal; Nf ¼ tensile force contribution from each nail; Lm ¼ per-
pendicular distance from the direction of the nail force to the axis of
rotation of the sliding mass; c0 ¼ effective cohesion of soil; and
w 0 ¼ angle of shearing resistance of soil.

The analysis was carried out in two steps. First, the mathematical
model was developed for determining the critical FS and the corre-
sponding failure surface for an unreinforced slope. Then nails were
introduced in the stability analysis for calculation of the enhanced
FS of nailed slopes.

Computation of Geometrical Parameters of Failure Mass

A sectional view of the symmetrical plane of the 3D slope is
shown in Fig. 4. If X, Y, and Z represent any arbitrary point on
the spherical slip surface (shown as a circle in the cross section
in Fig. 4) with Xc, Yc, and Zc as its center, the equation can be
expressed as follows:

ðX � XcÞ2 þ ðY � YcÞ2 þ ðZ � ZcÞ2 ¼ R2 (2)

For simplicity, the symmetrical plane of an arbitrary spherical fail-
ure surface is assumed to be lying on the xy-plane. The center of the
failure surface is pðXc; Yc; 0Þ. To make the formulation simpler, a
local coordinate system has been considered in which the origin is
at the center of rotation of the sliding mass. The details of the trans-
formation of the coordinate system are shown in Fig. 4. The trans-
formed equation of the sphere in the local coordinate system with
radius Rwill be

x2 þ y2 þ z2 ¼ R2 (3)

With the failure mass being symmetrical about the z-axis, the z-
coordinate of the sphere and planes will not appear in the equations
for calculation of the FS.

Let the coordinates of the crest and toe of the slope in the
global coordinate system be AðX1; Y1Þ and A0ðX2; Y2Þ, respec-
tively. For transformation into the local coordinate system, the
relationship between the coordinates of these points can be
expressed as

Fig. 2. 3D view of failure surface

Fig. 3. Free-body diagram of failure block

Fig. 1. 3D failure mass with nails

© ASCE 04017067-2 Int. J. Geomech.

 Int. J. Geomech., 2017, 17(9): 04017067 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

 o
n 

06
/1

9/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



x1 ¼ X1 � Xc; x2 ¼ X2 � Xc (4)

y1 ¼ Y1 � Yc y2 ¼ Y2 � Yc (5)

where Aðx1; y1Þ and A0 ðx2; y2Þ are in the local coordinate system.
To determine the FS for any spherical slip surface, the required

parameters are as follows:
• Total weight of soil bounded by crest plane, inclined plane,

bottom plane, and spherical surface (W) from the volume
computation

• Center of gravity (CG) of the soil mass (W) with respect to the
y-axis

• Surface area of the failure block
The geometrical parameters (i.e., volume, surface area, and CG

of the failure block) required for obtaining the FS can be computed
by dividing the symmetrical section (Fig. 5) into three parts: CBC

0
,

ABC, and A
0
B

0
C

0
. If the volumes of CBC

0
, ABC, and A

0
B

0
C

0
are rep-

resented by V1, V2, and V3, respectively, then the total volume (V)
of the failure block ABC

0
B

0
A

0
is given by

V ¼ V1 � V2 þ V3 (6)

Similarly, the net surface area of the failure block can be
expressed as

As ¼ As1 � As2 þ As3 (7)

If the distance of the CGs of the parts CBC
0
, ABC, and A

0
B

0
C

0

from the y-axis are CG1, CG2, and CG3, respectively, then the CG
of the failure block can be expressed as

CG ¼ CG1ð Þ V1ð Þ � CG2ð Þ V2ð Þ þ CG3ð Þ V3ð Þ
V1 � V2 þ V

(8)

Part CBC0

Fig. 6 shows CBC
0
, which is formed as inclined plane cuts the

sphere at a distance d from the center of rotation. Consider an axis L

with origin at the center of the sphere and passing perpendicular to
the plane CC

0
. The volume of an element with thickness dl at a dis-

tance l from the origin is given by

dv ¼ p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � l2
p �

dl (9)

The volume ofCBC
0
can be obtained by integrating Eq. (9) as

V1 ¼
ðR
d
p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � l2
p �

dl (10)

On simplification, Eq. (10) becomes

V1 ¼ p

3
2R3 � 3R2d þ d3ð Þ (11)

Similarly, the moment of inertia of the elemental volume dv
aboutO is given by

Fig. 4. Global and local coordinate system

Fig. 5. Scheme for computation of the surface area: discretization of
failure block

© ASCE 04017067-3 Int. J. Geomech.
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dM ¼ lp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � l2
p �2

dl (12)

and themoment of inertia ofCBC
0
is given by integrating Eq. (12) as

M1 ¼
ðR
d
lp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � l2
p �2

dl ¼ p

4
R4 � 2R2d2 þ d4ð Þ (13)

The distance of the CG of CBC
0
from center O along axis L can

be computed as

CG0
1 ¼

M1

V1
¼
Ð R
d lp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � l2
p �2

dlÐ R
dp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � l2
p �

dl
¼ 3 � R4 � 2R2d2 þ d4ð Þ

4 � 2R3 � 3R2d þ d3ð Þ

(14)

Now, the distance of the CG of CBC
0
from the y-axis can be

obtained as

CG1 ¼ ðCG0
1Þsina (15)

The surface area ofCBC
0
can be evaluated by

As1 ¼ 2pRðR� dÞ (16)

Parts ABC and A0B0C0

For the derivation of expressions for calculating geometric parame-
ters, ABC and A

0
B

0
C

0
can be considered as the volume between the

boundary of the sphere and two planes that intersect at an angle a
(Fig. 7).

AC and AB are two planes that intersect at an angle a at the point
Aðx1; y1Þ inside a sphere of radius R. The volume bounded between
the inclined plane AB, the horizontal plane AC, and the sphere
boundary can be given by

V2 ¼
ðyt
y1

ð ffiffiffiffiffiffiffiffiffiffi
R2�y2

p

y�y1
tan a�x1ð Þ

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2�y2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2�y2

p dzdxdy (17)

where yt is the y-coordinate of the pointC (Fig. 7).
Eq. (17) can be simplified as

V2 ¼ 2
ðyt
y1

ð ffiffiffiffiffiffiffiffiffiffi
R2�y2

p

y�y1
tan a�x1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p� �
dxdy (18)

For integration of Eq. (18), the inner limits of integration are
changed to 0 and 1, as follows:ðb

a

ðg2ðyÞ
g1ðyÞ

f ðx; yÞdxdy ¼
ðb
a

ð1
0
f ½ð1� vÞ � g1ðuÞ þ v � g2ðuÞ; u�½g2ðuÞ

� g1ðuÞ�dudv (19)

where, y ¼ u; and x ¼ ð1� vÞ � g1ðuÞ þ v � g2ðuÞ.
Using Eq. (18), the volume V2 can be expressed as

V2¼2
ðyt
y1

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� 1��ð Þ� y�y1

tana
�x1

� �
þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�y2

p	 
2s
�u2

8<:
9=;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�y2

p
� y�y1

tana
�x1

� �	 

dudv (20)

Eq. (20) is integrated numerically using Simpson’s rule. Similarly,
themoment of inertia of the part ABC can be expressed as

M2 ¼ 2
ðyt
y1

ð ffiffiffiffiffiffiffiffiffiffi
R2�y2

p

y�y1
tan a�x1ð Þ

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p� �
dxdy (21)

The inner limits of integration of Eq. (21) are also converted to 0
and 1, as in the case of Eq. (18), and then numerically integrated
using Simpson’s rule.

The distance of the CG of the volume of ABC from the y-axis
can be evaluated as

CG2 ¼ M2

V2
(22)

InEqs. (20) and (21), yt is the y-coordinate of the pointC. The equa-
tionof theplaneAC that ispassing through thepointAðx1; y1Þ andmak-
ingananglea (slope i ¼ tan a)with thehorizontal is givenby

y� y1 ¼ iðx� x1Þ (23)

Substituting Eq. (23) in the equation of sphere gives

Fig. 6. Part CBC0

Fig. 7. Part ABC of failure block

© ASCE 04017067-4 Int. J. Geomech.
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x2 þ ½y1 þ iðx� x1Þ�2 ¼ R2 (24) Solving Eq. (24), x can be obtained as

x ¼
�2i y1 � i � x1ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i y1 � i � x1ð Þ½ �2 � 4 � 1þ i2½ � � y1 � i � x1ð Þ2 � R2

h ir
2 1þ i2ð Þ (25)

Substituting a positive value of x in Eq. (23), the y-coordinate of
the pointC (yt) can be obtained.

The adopted procedure for evaluating the surface area of ABC is
described herein. If the surface equation Fðx; y; zÞ ¼ c lying above
the projection R on a ground plane directly beneath it, then the sur-
face area is given by

S
0 ¼

ðð jrFj
jrF � nj da (26)

where S
0 ¼ surface area; n ¼ unit vector normal to the ground

plane; da ¼ elemental area; and rF ¼ gradient of function
Fðx; y; zÞ ¼ c, as follows:

rF ¼ bi ∂
∂x

þbj ∂
∂y

þ bk ∂
∂z

� �
F x; y; zð Þ (27)

in the present case, that is

Fðx; y; zÞ ¼ x2 þ y2 þ z2 (28)

Eqs. (27) and (28) give

rF ¼ 2xbi þ 2ybj þ 2xbk (29)

jrFj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 2R (30)

jrF � nj ¼ 2z ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2 � x2

p
(31)

Therefore, the surface area is given by

As2 ¼
ðyt
y1

ð ffiffiffiffiffiffiffiffiffiffi
R2�y2

p

x1

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2 � y2

p !
dxdy (32)

By substituting x ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p
Þsin u and dx ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p
Þ

cos u du , Eq. (32) canbe simplifiedas

As2 ¼ R �
ðyt
y1

p

2
� arcsin

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p� �	 

dy (33)

which can be further simplified to

As2 ¼ p

2
R � yt � y1ð Þ � R

ðyt
y1

arcsin
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � y2
p� �	 


dy (34)

Eq. (34) for calculating surface area is integrated numerically
using Simpson’s rule. It can be seen that A

0
B

0
C

0
is similar to ABC,

and therefore the geometric parameters can be calculated with the
methods that are applied for part ABC.

From this mathematical formulation, various geometrical pa-
rameters for assumed failure mass (base failure, toe failure, or face
failure) required to compute the FS value can be obtained.

Effective Length and Lever Arm of Nails

The total length of the nail to be provided is the length of the nail
within failure surface la and the length of the nail anchored beyond
the failure surface le, as follows:

L ¼ la þ le (35)

To determine the length of the nail beyond the slip surface, the
following procedure is used. Let the nail be placed at a point
pðnx; ny; nzÞ on the inclined surface of the slope and at an angle h
with the horizontal. Let qðc; dÞ be the point at which the nail inter-
sects the critical slip surface. For these calculations, the local coor-
dinate system has been considered with (0, 0, 0) as the center of the
slip surface (local coordinate system as per Fig. 4). The radius of
the circle at distance nz from the origin, which falls on the external

surface of a sphere, can be written as Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðnzÞ2

q
, and the

equation of the circle at the location of the nail is given by

x2 þ y2 ¼ R2
n (36)

The equation of the line along the nail can be written as

y� ny ¼ ðx� nxÞtanh (37)

Let tan h ¼ ni; then Eq. (38) becomes

y� ny ¼ ðx� nxÞni (38)

Solving Eqs. (36) and (38) for x gives

x ¼
�2ni ny� ni � nxð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ni ny� ni � nxð Þ� �2 � 4 1þ n2i

� �
ny� ni � nxð Þ2 � R2

n

h ir
2 1þ n2i
� � (39)

© ASCE 04017067-5 Int. J. Geomech.
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By substituting a positive value of x in Eq. (38), the value of y
can be obtained. The value of ðx; yÞ will be the coordinate at which
the nail intersects the critical slip surface [i.e., qðc; dÞ]. Now the
length of the nail within the slip surface is given by

la ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnx� cÞ2 þ ðny� dÞ2

q
(40)

The effective length of the nail can be obtained from Eq. (35).
Now the perpendicular distance of the nail from the center of rota-
tion ð0;0Þ can be obtained from the following equation:

lm ¼ �ni � nxþ nyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2i þ �1ð Þ2

q (41)

The computer program for the computation of the coordinates,
effective length of nails, and so forth was verified by plotting the ge-
ometry of the slope, slip circle, and nails in AutoCAD.

Tensile Force from Nails

Only the tensile resistance of the reinforcement is included, and the
effect of shear and bending is neglected. The tensile force Tn in a
nail is given by

Tn ¼ p � de � le � tbond (42)

where de ¼ nail/hole diameter; le ¼ length of the nail anchored
beyond the failure surface; and tbond ¼ bond stress between nail/
grout and soil.

The tensile force must be less than the yield strength of the nail
Ty. This condition has been kept as a constraint in the computer
program.

Tn � Ty (43)

It may be noted that as per Federal Highway Administration
(FHWA) guidelines (Lazarte et al. 2003), the tensile force of the
nail increases at a constant slope equal to the pullout capacity per
unit length, reaches a maximum value Tmax, and then decreases to
the value T0 at the nail head [Fig. 8(a)]. However, to simplify the
computer code, the tensile force distribution was slightly modified
by ignoring the force at the nail head [Fig. 8(b)].

In the analysis of a nailed soil structure, themost critical parame-
ter is the limiting bond stress (t bond). The maximum bond stress
available between a nail and soil is a function of the surface of the
nail, the nature of the soil, and the in situ stress in the soil. Cohesive
soils tend to offer a lower bond resistance than granular soils. Nails
that are grouted rather than those driven into ground typically pro-
vide a better bond with soil. Pullout tests should be conducted to es-
tablish the value of bond stress for design. However, in the absence
of pullout test data, the designer may make an estimate of the pull-
out resistance, which will be verified at the time of construction.
The bond stress varies with the depth of overburden, and in the ab-
sence of any pullout test data, the bond stress for a nail can be calcu-
lated by the following equation:

tbond ¼ ci þ g � dj � tan w i (44)

where ci ¼ adhesion intercept at interface between nail and soil;
f i ¼ interface friction between nail and soil; g ¼ unit weight of
soil; and dj ¼ average depth of soil lying above effective length of
jth nail (Fig. 9).

Evaluation of Minimum FS and Critical Slip Surface

Using the developed procedure, a computer code was developed in
MATLAB to determine the FS for the unreinforced slope, as
follows:

FS ¼ R c
0
As þ tan w

0
W cos uð Þ� �

RW sin u
(45)

Fig. 8. Tensile force distribution in nail: (a) FHWAguidelines; (b) considered in present analysis
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The critical FS was obtained by minimizing the objective function
[Eq. (45)] using the optimization scheme fminsearch available in
MATLAB; fminsearch uses the Nelder–Mead simplex algorithm as
described by Lagarias et al. (1999). Optimization Toolbox 4 in the
MATLABuser’sguide (MathWorks2017)maybe referred to fordetails
of this function. For computationof theFS for thegiven soil parameters
andslopegeometry, thedesignvariableswere thecoordinateof thecen-
ter (Xc; Yc) and the radius of the slip surface (R). Because the trial slip
surfaceswere considered symmetrical about the xy-plane, the z-coordi-
nateof thecenterwasnot requiredasadesignvariable.While searching
for the critical slip surface, geometric and behavior constraints were
imposed so that the slip surfacewasphysicallypossible and the compu-
tations made would be meaningful. Corresponding to this critical fail-
ure surface, nails were introduced in the slope, and the FS values for
nailed slopeswerecalculatedusingEq. (1).

Validation of the Developed Procedure

The developed computer program was checked for its correctness
by hand calculations at different stages. The geometric parameters
were checked by plotting the slope, slip circle, and other features
and measuring the distances to the scale on AutoCAD. The program
was also validated by working through selected problems available

in the literature and comparing the solutions with those obtained by
the developed method. The comparisons were also made with the
2D solutions obtained through some of the latest software.

To compare the FS values of an unreinforced slope obtained
using the proposed method with 2D analysis, a problem previously
solved by Chang (1992) was taken up, where a slope of 12m (40 ft)
in height (2H:1V) with the soil parameters c

0 ¼ 28 kN·m2 and
w

0 ¼ 20� and a unit weight of soil of 19.68 kN·m3 was considered
(Case 1). Chang (1992) reported the 2D FS of this slope computed
using the then-available various LEM and discrete-element techni-
ques. As a part of the present study, the same slope was analyzed
using the 2D LEM analysis programGEO5 and the program FLAC/
Slope 5, which is based on a strength-reduction technique (SRT).
The obtained FS values were then compared with those reported by
Chang (1992) and the proposed 3D method (Table 1). The FS val-
ues computed with the presently available software programs were
lower than those reported by Chang (1992). Because of this varia-
tion in the results, two more problems initially solved by Chen and
Chameau (1983) and reported by Hungr (1987) for a 6.1-m-high
slope (2.5H:1V) were considered for analysis. In the first case, the
properties of the homogenous soil were c

0 ¼ 14:4 kN·m2 and w
0 ¼

25� (Case 2), and for the second problem, the soil properties were
c
0 ¼ 28:7 kN·m2 and w

0 ¼ 15� (Case 3). For both problems, the
unit weight of soil was taken as 20 kN·m2. The results of various
analyses for both problems are presented in Tables 2 and 3,
respectively.

Tables 2 and 3 show that the FS values computed using the latest
software programs were lower than those reported in the literature.
Therefore, for comparison purposes, the results of the simplified
Bishop’s method obtained byGEO5 are used for all cases presented
in this paper. From the comparison of the FS values computed with
the 3D analysis method as proposed, it can be seen that the 3D anal-
ysis gave 4.79 and 4.66% higher FS values for Case 1 (Table 1) and
Case 2 (Table 2), respectively, compared with those of the 2D anal-
ysis. For Case 3 (Table 3), the 3D FS was 10.36% higher than the
2D FS. It has been reported that 3D analysis generally produces 10
to 20% higher FS values than the corresponding values obtained by
2D analysis. Thus, the differences found were less than those
reported in the literature, and the 3D analysis of the unreinforced
slope as computed may be considered to be correct.

Fig. 9. Active length of nail

Table 1. Comparison of FS Values Obtained from Different Methods—Case 1

Method

FS (2D) FS (3D)

Literature (Chang 1992)

Present analysis

Lakshminarayana (1997) Present analysisGEO5 (LEM) FLAC/Slope 5 (SRT)

Ordinary 1.93 1.84 1.93 2.26 2.03
Simplified Bishop’s 2.08 1.94
Spencer’s 2.07 1.94
Janbu’s 2.04 —

Discrete element 1.92 —

Table 2. Comparison of FS Values Obtained from Different Methods—Case 2

Method (LEM)

FS (2D) FS (3D)

Literature (Hungr 1987)

Present analysis

Lakshminarayana (1997) Present analysisGEO5 (LEM) FLAC/Slope 5 (SRT)

Ordinary — 2.37 2.56 2.81 2.65
Simplified Bishop’s 2.76 2.53
Spencer’s — 2.53
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Further, for Cases 2 and 3, the slip surfaces obtained from
different methods were compared with the symmetrical plane of
the failure mass obtained by the proposed method (Fig. 10). For
Case 2, the slip surface obtained by the proposed method was
deeper than that obtained by the simplified Bishop’s method but
close to the slip surfaces obtained by Chen and Chameau (1983)
and by the ordinary method of slices. A major part of the slip
surface fell in the failure zone that was predicted by FLAC/
Slope 5 (2D). Similar observations were noted for Case 3 also.
In this case, the slip surface obtained by the proposed method
was deeper than that obtained by Chen and Chameau (1983) and
the simplified Bishop’s method (present analysis); however, it

was very close to that obtained by the ordinary method of slices
(Fig. 10).

For validation of the proposed method, the problem solved by
Chen and Chameau (1983) using 2D and 3D methods (both LEM
and FEM) was also considered. The stability analysis was per-
formed for a 9-m-high embankment with a slope of 1.5H: 1V. The
soil was homogeneous, with a unit weight of 19 kN·m3 and the soil
properties c0 ¼ 34:5 kN·m2 and f 0 ¼ 6�. The results of various
analyses for the problem are presented in Table 4.

The 3D FS obtained with the proposed method was 10.3% lower
compared with that obtained by Chen and Chameau (1983) using
FEM. It was 10.1 and 15.3% lower than the values obtained by

Table 3. Comparison of FS Values Obtained from Different Methods—Case 3

Method

FS (2D) FS (3D)

Literature (Hungr 1987)

Present analysis

Lakshminarayana (1997) Present analysisGEO5 (LEM) FLAC/Slope 5 (SRT)

Ordinary — 2.57 2.72 3.20 3.00
Simplified Bishop’s 2.87 2.72
Spencer’s — 2.72

Fig. 10. Comparison for failure surfaces obtained from different methods
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Lakshminarayana (1997) and Chen and Chameau (1983), respec-
tively, using LEM. However, the FS value calculated by the pro-
posed 3D method was approximately 5 to 8.5% higher than the val-
ues obtained by 2D methods (LEM, FEM, and SRT). In all cases,
the FS values obtained from the proposed 3D analysis were found
to be higher compared with those obtained by 2D analysis.

Parametric Analysis of Nailed Slopes

A 9-m-high, homogeneous soil slope with an angle of 508 was con-
sidered for the analysis of a nailed slope (Fig. 11). The soil parame-
ters as described previously for Case 2 were considered in the analy-
sis. It was assumed that the soil slope would be reinforced by 6-m-
long, 25-mm-diameter nails (steel, fy ¼ 500MPa) and that the nails
would be installed horizontally by cement grouting in 150-mm-di-
ameter holes. Chu and Yin (2005, 2006) conducted laboratory
pullout tests and interface shear tests on a cement-grouted nail
and surrounding soil. Most of the results showed that the cohesion
and friction angle for the soil–nail interface were almost the same
as the cohesion and friction angle of soil. It has also been reported
that the shear stress–displacement behavior of the soil–grout
interface showed behavior similar to that of soil alone. Based on
the interface shear test between compacted, completely decom-
posed granite (CDG) soil and cement grout, Hossain and Yin
(2014) also reported that a compacted CDG soil–cement grout
interface behaves as a rough interface. Therefore, in the present
analysis, the interface cohesion and friction angle were consid-
ered the same as those for soil. However, in many conditions, the
interface shear strength between the nail and soil may be lower
than the soil shear strength (Pradhan et al. 2006).

With the proposed 3D analysis method, the FS of the unrein-
forced slope was found to be 1.051. After incorporating nails with
horizontal and vertical spacings of 1m, the FS was increased to
1.321.

The inclination of the nails affects the FS values of the nailed
slopes. Soil nails are generally installed at 10–20° from horizontal.
A nail inclination of less than 10° should be avoided to ensure effec-
tive grouting, and nails with an inclination that is too steep (more
than 40–45°) may be in compression and do not contribute to stabil-
ity (Lazarte et al. 2003). However, to investigate the effects of the
inclination of the nails on the FS for parametric study. the inclina-
tion was varied from 0 to 508. For a 9-m-high 508 slope, the FS
increased from 1.55 to 1.76 with an increase in nail inclination from
0 to 258 and then decreased to 1.43 on a further increase of nail in-
clination to 50°.

To study the effect on nail inclination along with slope angle,
the slope angle was also varied from 50 to 308. Fig. 12 shows the
variation of the FS with nail inclination for different slope angles.
It was found that optimum nail inclination changed with a change
in slope angle. For the slope under consideration, the FS increased

with an increase in nail inclination from 0 to 258 and then
decreased with a further increase of nail inclination for 50, 45,
and 40° slope. However, for lower slope angles (35 and 30°), the
FS increased for nail inclinations from 0 to 35° and then
decreased.

To study the effect of slope angle on the increase in the FS values
of a reinforced slope with respect to an unreinforced slope, the FS
values computed for optimum nail inclination were plotted against
slope angles (Fig. 13). It was found that an increase in the FS value
of a reinforced slope with respect to an unreinforced slope increased
with slope angle.

For a given slope geometry, soil parameters, and nail inclination,
the effect of nail spacing on the FS was studied. From the previous
problem, a slope with a 408 angle and a nail inclination of 258 (opti-
mum angle) was considered. In general, nails are placed in a grid
pattern with equal spacing in both directions, and a minimum of

Table 4. Comparison of FS Values Obtained from Present Analysis and 3D Analysis Available in the Literature

Method

FS (2D) FS (3D)

Literature (Chen
and Chameau 1983)

Present analysis Literature

Present analysis
(LEM)

GEO5
(LEM)

FLAC/Slope 5
(SRT)

Chen and Chameau
(1983)

Lakshminarayana
(1997)

LEM 1.59 (Spencer’s) 1.58 (Spencer’s/simplified
Bishop’s)

— 1.90 1.90 1.70

FEM/FDM 1.62 — 1.57 2.01 Lakshminarayana
(1997)

Lakshminarayana
(1997)

Fig. 11. Section of soil-nailed slopes

Fig. 12. Influence of nail inclination and slope angle on FS values of
soil-nailed slopes
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1-m spacing shall be provided considering drilling for two adjacent
nails (Lazarte et al. 2003). Also, for spacing above 2.5m, some
local failures between nails may occur. However, to get more infor-
mation on the effect of spacing of nails, this study varied the spacing
from 1 to 3.5m. Considering practicality in installation of nails, the
top and bottom rows were fixed at 1m from the slope crest and the
bottom of the slope. The nail spacing in between these two rows
was varied. In the first case, the spacing was varied equally in both
directions (Sh and Sv). In the second case, the horizontal spacing
(Sh) of the nails was fixed as 1.0m, and the vertical spacing (Sv) was
varied. In the third case, the vertical spacing (Sv) of the nails was
fixed as 1.0m, and the horizontal spacing (Sh) was varied. The var-
iations of the FS with nail spacing for the three cases are shown in
Fig. 14. It can be seen that in all the cases, there was a steep decrease
in the FS values with an increase in the nail spacing from 1 to 2.5m.
Beyond a 2.5-m spacing of nails, there were no significant changes
in the FS values. It was also observed that the FS values were almost
identical in cases where only the horizontal or vertical spacing of
the nails was varied up to 2m; however, beyond 2-m spacing, the
reduction in FS resulting from an increase in the vertical spacing
was more than that resulting from an increase in the horizontal
spacing.

Conclusions

Using the new procedure described in this paper, it is possible to
first determine the critical slip surface corresponding to the mini-
mum FS of soil slopes considering 3D failure surfaces. If the slope
under consideration is found to have an inadequate FS value, nails
can be introduced in the stability analysis for calculation of an
enhanced FS value for a nailed slope with the critical slip surface
that has been found earlier. The comparison of the FS values for
some benchmark problems as obtained from the developed proce-
dure and those reported in the literature and obtained through soft-
ware programs showed that the developed procedure/computer
code gives satisfactory results. For comparison, one LEM-based
commercially available program and one SRT-based program were
used in this study. In all cases, the FS values obtained from the pro-
posed 3D analysis were found to be higher compared with those
obtained by 2D analysis. Very good agreement was found with
respect to the location and shape of the slip surfaces as obtained
from the present approach and the results obtained from the soft-
ware and those reported in the literature. Using the developed
method, the effect of soil nails oriented at arbitrary angles for a
given slope was studied. A computer program was developed for
analyzing the problem, which was checked for its correctness. It
was found that optimum nail inclination did not remain constant
with the angle of the slope but changed with a change in slope angle.
For a given slope geometry, soil parameters, and nail inclination,
the effect of nail spacing on the FS was also studied. For the given
slope, the FS values were found to decrease quickly with an
increase in nail spacing from 0.5 to 2.5m. Beyond 2.5-m spacing of
nails, there were no significant changes in FS values.
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