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a b s t r a c t 

The spectral-based features, typically used in Automatic Speech Recognition (ASR) systems, 

reject the phase information of speech signals. Thus, employing extra features, in which 

the phase of the signal is not rejected, may fill this gap. Embedding the speech signal in 

the Reconstructed Phase Space (RPS) and then extracting some useful features from it, is 

a recently considered approach in this field. In this paper, we will follow this approach 

by evaluating some useful features from the Recurrence Plot (RP) of the embedded speech 

signals in the RPS; the proposed features are evaluated via applying a two-dimensional 

wavelet transform to the resulted RP diagrams. The proposed features are examined in an 

ASR task alone and in combination with the traditional Mel-Frequency Cepstral Coefficients 

(MFCC). For the second case, using English TIMIT corpus, 3.94% absolute classification accu- 

racy improvement in the phoneme recognition accuracy rate, against using only the MFCC 

features is gained. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In recent decades, a variety of linear models for speech coding, synthesis, and recognition with acceptable performances

have been introduced. In this way, many types of research achieved improvement in the field of speech recognition by

employing novel methods [1,2] or the detection of mispronunciation using Hidden Markov model [3] ; however, there are

nonlinear aerodynamic phenomena in the human speech production system which generally could not be included in lin-

ear models [4] . Therefore, nonlinear methods could potentially provide effective computational models to extract acoustic

features which are useful for the nonlinear phenomena detection [4] . Furthermore, some recent studies have shown that

utilizing nonlinear characteristics may improve the performances of the ASR systems [5] . 

Usual ASR systems exploit frequency domain features like Mel frequency cepstral coefficients [6] . The traditional fre-

quency domain methods typically extract only the first and second order properties from the spectral patterns of speech

signals [7] . However, there are many signals produced via nonlinear differential equations that have wide spectral character-

istics [8] . In such cases, the frequency domain techniques are deficient, because it is impossible to dissociate the information

of such a signal only in the frequency domain [5] . 

In addition, the speech signal shows some chaotic behaviors due to the existence of nonlinear phenomena such as the

turbulence [9] . Studies about dynamical systems and chaos theory resulted in a kind of signal representation, a multi-

dimensional trajectory embedded in the reconstructed phase space [4–6] . Following this approach, some useful features
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were introduced, such as Lyapunov exponents (LE) and the Fractal Dimensions (FD) which investigate chaotic and nonlinear

dynamical properties of the signals. Lyapunov exponents of the signals mapped to the phase space are evaluated to charac-

terize a multi-dimensional chaotic time series [10] . In [11] , the Fractal dimension of the speech signal and the MFCC features

are simultaneously utilized in the ASR system. By adding these nonlinear features to the entire process, the experiment con-

ducted on the Broadcast News ASR system in Spanish has shown 1.36% correct word rate (CWR) improvement against the

baseline system which uses the MFCC features alone [11] . 

Recently, some non-classic feature extraction algorithms are directly developed over the multi-dimensional RPS transfor-

mation of the speech signal. The embedding process is performed using a set of input-output pairs reconstructed via the

time delayed based approach. By selecting a sufficient dimension for the reconstructed space, the underlying theory guar-

antees that the dynamics of signals are fully accommodated in the attractors constructed by embedding them into the RPS.

To extract beneficial parameters from the transformed signals, many studies in this field concentrated on the assessment

of dynamical invariants [7,10] which do not rely on the initial conditions [4] . Some recent research have utilized statistical

distributions such as the Gaussian Mixture Model (GMM) and applied it to signal trajectories appeared in the RPS [5-8] . In

[8] , the Poincaré section is employed as an effective tool to analyze the trajectories generated in the RPS, and a statistical

modeling approach based on the GMM is applied to the Poincaré sections of the speech attractors to extract parameters

which could help the ASR performance. Moreover, Ref. [9] applied a multi-dimensional linear method to model the speech

trajectory reconstructed inside the RPS, using the Multivariate Autoregressive (MVAR) method, to improve the performance

of the involved ASR system. In [12] , a set of the Gaussian Mixture Models (GMMs) were trained over the phoneme attractors

in the RPS, via which a proper feature vector could be evaluated; the posterior probabilities of different phonemes are then

estimated by an MLP-based classifier. By applying this approach, 1.89% absolute accuracy rate improvement (for FARSDAT

corpus) was gained, compared to the baseline system which used only the MFCC features. 

As aforementioned, the reconstructed trajectories in the phase space could carry nonlinear dynamics of the involved

systems; however, these high-dimensional trajectories could not be directly visualized. As the recurrence property is an

essential feature of dynamical systems, it could be employed to investigate the system’s behavior in the RPS domain. To

follow this approach, the Recurrence Plot (RP) as a useful tool may be exploited to analyze the speech trajectories in the RPS

[13] . In fact, the RP computes a binary square matrix to represent some main specifications of the phase space trajectories

[13] . 

In this paper, a two-step approach is introduced: first, the speech signal is embedded in the phase space; next, it is pa-

rameterized using the recurrence property analysis of dynamical systems. In the final step, the RPS-based evaluated features

resulted from the first step are combined with the common MFCC features to improve the extended continuous speech

recognition (CSR) task. 

1.1. Contribution 

Investigating new efficient feature extraction methods to be applied to speech signals is an essential topic in the field of

ASR tasks; the ultimate viewpoint of these efforts is basically to improve the performance of the designed and implemented

systems. In this paper, we intend to follow and verify that the reconstructed phase space is a proper tool for capturing

the signal nonlinear dynamics and compensating the phase information lack which occurs for common popular spectral

features like the MFCC; however, the high computational demand of these features and the low accuracy condition that

appears while evaluating some of them, makes this approach difficult or somewhere impractical for many real-time appli-

cations. To overcome these limitations existed for some previous proposed RPS-based techniques [12] , this paper proposes

an effective algorithm to extract proper auxiliary features from speech trajectories reconstructed in the phase space. The

proposed method benefits from the feature extraction methods introduced in the speech and image fields, simultaneously.

In this approach, the one-dimensional speech signal is converted into a two-dimensional image, as is dubbed the RP; the

accuracy improvement of the ASR system is obtained by combining the features extracted from the RP-based images of

the phone acoustic signals and the traditional MFCC spectral features promised for speech recognition purposes. Moreover,

by conducting proper experiments, it is shown that the proposed features keep their performance in noisy conditions too;

this is not the case for the features directly evaluated from the RPS domain, for they are typically sensitive to the initial

conditions and the environmental noise [8] . 

The rest of this paper is organized as follows. Section 2 describes the embedding procedure that enables us to reconstruct

the trajectory of a speech signal in the phase space. This section also gives a brief synopsis of the recurrence plot and the

way it demonstrates some aspects of the dynamics of speech signals [13] . In the following, the proposed feature extraction

methods applied to the RP images will be described in detail. Issues of dimensionality reduction based on the Linear Dis-

criminant Analysis (LDA) and the Forward feature selection are also discussed in Section 2 . The experimental methodology

and data description are described in Section 3 . The experimental results and discussion are presented in Section 4 . The

paper is concluded in Section 5 . 

2. Material and methods 

As mentioned earlier, based on the RPS and RP theories, speech frames are converted into the RP-based images. Image

processing methods are then used to extract proper features from the RP images. Since the wavelet transform has been used
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extensively in the field of image processing, the discrete wavelet transform (DWT) approach is applied to the RP images.

These features are then combined with Mel-Frequency Cepstral Coefficients (MFCCs) to improve speech recognition process.

Given that the dimension of the wavelet-based features is high, it must be reduced to proper values to be suitable to be fed

to the final classifier. Hence, two-dimension reduction methods, the forward feature selection and the linear discriminant

analysis (LDA) are examined for this purpose. 

2.1. The reconstructed phase space 

The theoretical basis of the signal embedding in the phase space could be found in Whitny, Takens and Sauer works [12] .

According to embedding theory, a dynamical system could be fully described by its output signals transformed as trajectories

in the RPS [10] . By embedding a signal into a phase space with a sufficient dimension, the generated attractor topologically

keeps the dynamics of the original signal [4–6] ; via this approach, the nonlinearities of a signal could be considered in its

related trajectory transformed in the RPS [7] . Suppose a time series of X = { x 1 , x 2 , . . . , x n } ; its transformation matrix with

dimension “ d ” and time lag “τ ” is given by 

X = 

⎡ 

⎢ ⎢ ⎣ 

x 1+ ( d−1 ) τ

x 2+ ( d−1 ) τ

. 

. 

x N 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

x 1+ ( d−1 ) τ . x 1+ τ x 1 
x 2+ ( d−1 ) τ . x 2+ τ x 2 

. . . . 

x N . x N−( d−2 ) τ x N−( d−1 ) τ

⎤ 

⎥ ⎦ 

(1)

Narayanan and Alwan [14] suggested the mutual information measure for estimation of the proper time lag between

speech samples. It is shown that the value of 6 is a proper selection for this parameter in the speech signals with 6 kHz

sampling rate [8] . Next, the minimum possible embedding dimension is calculated via an investigative method, like the

false neighbors [15] . Kokkinos and Maragos [4] used false neighbors measure to determine the embedding dimension. An

appropriate value for the embedding dimension of speech signals is 8 [8] . 

2.2. The recurrence plot 

The recurrence property is a basic attribute of dynamical systems utilized to describe the system’s behavior in the RPS

[11] . In 1987, Eckmann [16] introduced the recurrence plot (RP) approach to picture the recurrences of dynamical systems.

Recurrence plots are also beneficial for the analysis of the short and non-stationary data [13] . 

The method permits the identification of system features which cannot be seen using other known techniques. If { x i } N i=1
is the trajectory of a system’s output embedded in the RPS, where N is the number of the observed states [13] , the corre-

sponding RP could be evaluated through the following recurrence matrix 

R i, j = 

{
1 , x i ∼= 

x j 
0 , x i � = x j 

i, j = 1 , 2 , . . . , N (2)

where R i, j compares the states of the system at times i and j [13] . If the states are similar, this is indicated by scheduling a

“1” in the matrix. If the states are rather different, the corresponding value in the matrix must be zero. The RP matrix can

be defined as 

R i, j = θ
(
ε − x i − x j 

)
i, j = 1 , 2 , . . . , N (3)

where ɛ is the threshold of the distance, θ (.) denotes the Heaviside function, and . is the employed vector norm. If ɛ is put

too small, we cannot gain useful information about the system. Vice versa, when ɛ is put too large, the number of objects

increases and causes thicker and longer diagonal structures than they actually are [13] . In this paper, a symmetric RP with

a fixed ɛ and the Euclidean norm [13] is used. 

In addition to the recurrence plot approach, the recurrence quantification analysis (RQA) is also utilized as a method to

detect dynamical changes occurs in a signal. The RQA is based on quantifying the certain aspects of the nearest neighbors

which appear for a signal embedded in the phase space [17] ; The RQA involves estimation of some parameters (called

recurrence parameters) that describe the structures in the RP [18] . These structures are single dots, diagonal and vertical (or

horizontal) lines [19] . The structures within a RP are related to different dynamics within the system. It is shown that this

approach is computationally expensive [20] . So, in this work, we preferred to exploit the RP directly to analyze the involved

speech frames. 

2.3. Feature extraction 

Processing of a two-dimensional image is a branch of the signal processing field. Many of the concepts employed to

analyze one-dimensional signals are also applicable to images; the main difference between these two appears in the for-

mulations, where two indices are needed to point at an input pixel. The Feature extraction from images can be done in two

domains: the spatial domain and the transformed domain. In the first case, processing of a digitized image is carried out di-

rectly by point processing in the original space. In the second approach, the original image is first transformed, by a method
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Fig. 1. Two-channel filter bank for implementing the discrete wavelet decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

like the wavelet transform, into a new space, and the proper features are then extracted from it. Applying a professional

feature extraction method could improve the following classification phase where needed. Here, two approaches by which

the features are extracted from the RP-based images, including the dynamical invariants and the wavelet-based features, are

introduced in Sections 2.3.1 and 2.3.2 respectively. 

2.3.1. Dynamical invariants extracted from the RPs 

Three beneficial and important features extracted from the RPs introduced in the literature are detailed in this section: 

1. The distributions of diagonal lines in the RP; these parameters encode some principal properties of the system like

the complexity scales and the predictability. The reverse of the longest diagonal in the RP is equivalent to the largest

Lyapunov exponent of the system [13] . The number of the found diagonal lines and their mean are evaluated as two

distinct structural features [13] . 

2. Auto mutual information: The mutual information is an effective method to quantify the amount of dependencies within

or between time series [13] . The mutual information of a system could be given by 

I x q ( τ ) = 2 H q − H q ( τ ) (4) 

where H q is the qth-order Renyi entropy of x i , H q ( τ ) is the qth-order joint Reyni entropy of x i and x i + τ . Auto mutual

information is extracted from the RPs as the third feature [21] . Estimation of the Reyni entropy is carried out using the

means of the RP. 

3. Entropy: in this part, the Reyni entropy [21] is calculated as the fourth feature 

2.3.2. The feature extraction using the wavelet transform 

The wavelet transform (WT) is regarded as a revolution in the modern signal processing field. The WT could be employed

to present a time-frequency description of a signal. Many researches utilized the wavelet transform as a powerful tool

in their feature extraction stages. Wavelets are used in two main structures: The Continuous Wavelet Transforms (CWT)

[22] and the Discrete Wavelet Transforms (DWT) [22] . The latter one is typically implemented via a filter bank description.

One example of the DWT application, based on a two-channel filter bank, is shown in Fig. 1 . The filter bank is consisted of

a low pass filter h 0 [n] and a high pass filter h 1 [n]. The block of 2 ↓ represents the down-sampler operator, which acts by a

factor of 2. The outputs of the filter bank are two series of coefficients that their z-transforms are shown by C(z) and D(z)

so-called approximation and details outputs, respectively [22] . In other words, various information levels can be extracted

by decomposing the original signal using a wavelet system with an orthonormal basis [22] . 

The wavelet transform could be implemented in different decomposition levels; however, high decomposition levels sig-

nificantly increase the computational cost and time needed for the entire process. So, in this work, we preferred to use the

discrete wavelet transform with only two decomposition levels. 

A time signal g ( t ) can be decomposed into approximation and details coefficients as given by 

g ( t ) = 

+ ∞ ∑ 

k = −∞ 

c ( k ) ϕ k ( t ) + 

+ ∞ ∑ 

j=0 

+ ∞ ∑ 

k = −∞ 

d ( j, k ) j,k ( t ) (5) 

where c ( k ) and d ( j, k ), are the approximations and details coefficients, respectively. 

Since the wavelet basis functions are short waves ( ϕ k ( t )) generated by scaling the original mother wavelet ( � j, k ( t )), they

are well-localized in time and scale domains [22] . In a classification task, in which the employed features are extracted via a

wavelet transform approach, the choice of the mother wavelet is important and needs some careful considerations, because

it has deep influences on the output features and classification results [22] . In this work, a 2-Dimensional wavelet packet

decomposition scheme, with different decomposition levels, is used as the main transformation method applied to the RP

images. 

In this study, a simple phone recognition task is used to search for a proper mother wavelet that to be applied to the RP

images; we exploit the forward feature selection algorithm and a multiclass support vector machine toolbox (LibSVM) [23] ,
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Fig. 2. The block diagram of the search algorithm to find the best mother wavelet among some known ones. 

Table 1 

Classification results (accuracy rates in %) obtained via 4 different 

mother wavelets. 

Mother wavelet The selected feature number Accuracy rate% 

Db4 7 64 .3 

Sym4 3 13 .62 

Coif2 5 26 .81 

Bior6.8 6 57 .35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as the employed classifier, to find the best mother wavelet among some predefined ones. Fig. 2 shows the block diagram of

the employed search algorithm. 

First, 20 percentages of FARSDAT corpus is randomly selected and the related RP images are extracted from these se-

lected speech signals. A two-level wavelet packet decomposition scheme, using distinctively 4 different mother wavelets,

Daubechies4 (Db4), Symlet4 (sym4), Coiflet2 (coif2) and Biorsplines6.8 (bior6.8), are then applied to the RPs extracted from

the experimental data. Next, Shanon entropy [21] and energy values are evaluated via the wavelet transform of the RP-

based images. This leads to a 32-dimensional feature vector for each of the employed mother wavelets. Next, the forward

feature selection method is utilized for dimensionality reduction of the features which led to different numbers of features

remained for different mother wavelets. Finally, the selected features are separately fed to a multiclass SVM classifier with

a linear kernel [23] , employed for a simple isolated phoneme recognition task; in the following, the phoneme classification

accuracy rates are distinctly calculated for different mother wavelets. The results of this experiment are shown in Table 1 .

According to the results, for the current task, the Db4 is the best mother wavelet among the examined mother wavelets.

According to the first row of Table 1 , for Db4 mother wavelet, one of the 7 remained features is from the set of 16 energy

coefficients and the other 6 ones are from the entropy coefficients; these two kinds of features are distinctly evaluated over

the wavelet decomposed images. The decomposed parts of a sample phone /a/ is shown in Fig. 3. 

2.4. Dimensionality reduction methods 

Two dimensionality reduction methods, the forward feature selection algorithm and the linear discriminant analysis

(LDA), needed to reduce the dimension of the crude evaluated RPS-based features, are briefly explained in Subsections

2.4.1 and 2.4.2 , respectively. 

2.4.1. Feature selection 

The feature selection is an important topic in the statistics and machine learning areas. Feature selection algorithms

(FSAs) select subsets of the features which contain useful information from the data to improve the performance of the sub-

sequent classifier [24] . The best subset is consisted of the least number of features that via which significantly growth in the

accuracy is gained; so, by applying this approach, to implement more efficient classification phase, unimportant attributes

are formerly being eliminated. In the literature, there are many feature selection methods introduced for dimensionality re-

duction in the feature space. In many works, this is a necessary preprocessing phase to remove irrelevant features, because

they may cause greater computational costs and lead to some over fitting situations. As a basic idea, it is logical to neglect

those input features which have a little impact on the final classifier output. It is shown that the feature selection process

could enhance accuracy in many classification applications [24] . 

In this field, two common techniques, the forward and backward feature selection [24] are widely used. In this paper, the

forward selection algorithm is used to reduce the dimensionality of the feature space. This approach begins by choosing an

empty initial subset and iteratively, one by one, adding the selected features to it. The feature addition procedure continues

until it does not significantly decrease the predefined error criterion. Let assume a set of input features as { x 1 , x 2 , . . . , x M 

} ,
where M is the original dimension of the feature space. First, a Leave-one-out cross validation (LOOCV) error is measured

for the existed one-component subsets, { x 1 }, { x 2 }, . . . , { x M 

} , to find the best individual feature. Next, the algorithm searches

for the best subset including two components, which one of them is the first selected feature; in the following, the input
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Fig 3. The one-level decomposition of a phoneme /a/ sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

subsets with three, four, and more features are appraised. Finally, the best subset of the input features is selected that gains

the most reduction in the error criterion [24] . 

2.4.2. Feature transformation 

The dimensionality reduction in a feature space could also be done using feature transformation methods. Linear Dis-

criminant Analysis (LDA) is an effective method to find a linear transformation of features for dimensionality reduction

purpose. The LDA considers the differences among classes of data [25] and simultaneously decorrelates the transformed

features. Although, in the case of the sophisticated systems with non-Gaussian distributions, the LDA may face difficulties

to preserve essential data for the classification purpose, this approach has been a successful approach in the major of its

applications. In this work, the LDA is employed as a transformation algorithm to reduce the dimensionality of the input

space. For the purpose of dimensionality reduction, we can project original features only into the several first bases; in this

manner, the useful information is almost kept in the transformed features to be employed in the final classification process

[25] . The LDA transformation is defined as 

F LDA = W 

T 
LDA .F (6) 

where F denotes the feature vector of the underlying system, W LDA is appraised from Eigen decomposition method and the

superscript T is the transpose operator. 

In this work, the LDA algorithm is performed over the extracted features obtained via the Db4 wavelet transform (32-

dimensional feature vector) of the RP images created from the speech signals. The employed speech signals are taken from

FARSDAT corpus. After sorting the Eigen values evaluated by implementing the LDA method, the first 10 highest ones and

their assigned Eigen vectors were kept to construct the transformation matrix. In this manner, a 32 ×10-dimensional trans-

formation matrix is obtained. Using this transformation matrix leads to 10-dimensional transformed feature vectors. The

diagram of the sorted Eigen values is shown in Fig. 4 . We see that the first 6 Eigen values have considerable values and the

4 rest are very small; so, it is reasonable to make the transformation matrix by using only the corresponding Eigen vec-

tors of the first 6 selected Eigen values; this leads to a 32 ×6 transformation matrix. Hence, the dimensionality of the final

transformed feature vector reduces to 6 and the compressed wavelet-based features will appear as 6-dimensional vectors

for each frame. 

3. Experimental methodology 

3.1. System overview 

In this work, the proposed features are evaluated from the recurrence plot representation of speech frames transformed

to the RPS; it is shown that the combination of the proposed features with the MFCC features causes considerable improve-

ment in the performance of the conventional used ASR system. Fig. 5 shows the schematic diagram of the proposed feature
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Fig. 4. The Diagram of the first ten Eigen values obtained via the LDA algorithm. 

Fig. 5. The overall scheme of the proposed feature extraction and the following recognition approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extraction method and the following experimental setup employed for the validations of the methods. As shown in this

figure, first of all, segmentation of the speech signals into 25 ms frames with 60% overlap is done. The resulted frames are

reconstructed in the RPS to create the related trajectories, as shown in Fig. 5 . Next, the recurrence plots of these trajectories

are evaluated to probe the signal behavior. A variety of methods could be used to extract proper features from the generated

RPs. We utilize dynamical invariants of the RP and 2D wavelet transform to extract useful features from the RPs. By applying

one level discrete wavelet transform to the RP images, some energy and entropy based features are evaluated from them.

Because, the extracted RP-based features typically appear in high dimensional vectors, a proper feature selection or reduc-

tion method is needed to be next applied to them. The combination of the conventional frequency domain features, here

the MFCC, and the proposed features are then fed to a phoneme recognition system which basically is reconstructed from

the Hidden Markov Models. To examine the benefits of the proposed features, the phoneme recognition accuracy obtained

via employing different feature combinations is considered. 

3.2. Database 

The experiments are performed exploiting two TIMIT and FARSDAT corpora, which include English and Persian speech

files, respectively. FARSDAT [26] is a small continuous speech corpus with a limited vocabulary of about 1200 words. The

sampling rate of the wave signals is 16 kHz. FARSDAT includes 6080 utterances from 304 speakers, 20 sentences spoken in

two sessions by each speaker. The speakers are from 10 dialect regions of Iran. FARSDAT speech signals are phonetically

tagged by precise hand-labeled boundaries which could be used to extract desired isolated phoneme sets. 
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Table 2 

The evaluated features are indexed by numbers 1 to 56 as scheduled below. 

Feature Index Description 

1–39 (1) MFCC coefficients 

40–41 (2) Properties of the RP Diagonal lines ( Section 2.3.1 ) 

42 (3) Auto mutual information ( Section 2.3.1 ) 

43 (4) Reyni entropy ( Section 2.3.1 ) 

44 (5) One energy coefficient selected from the wavelet-based features ( Section 2.4.1 ) 

45–50 (6) Entropy coefficients selected from the wavelet-based features ( Section 2.4.1 ) 

51–56 (7) wavelet-based features transformed by the LDA ( Section 2.4.2 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMIT [9, 27] is a well-known English database which contains 6300 utterances (about 322 minutes) from 630 speakers,

from eight greater dialect regions of the United States. The sampling rate of the speech signals is 16 kHz. In this research,

we have utilized the training and test parts of TIMIT to conduct the needed experiments. The training subdivision includes

10 sentences from each of 462 speakers, but only the SI and SX sentences are eliminated, resulting in 3696 sentences. The

SI and SX sentences (eight sentences at all) are pronounced by all the speakers in TIMIT corpus. We omitted these sentences

from the training dataset, to avoid the problem of over fitting during training phase of the proposed system. The used test

subdivision provides 1344 sentences from 168 speakers without the SA sentences. The original 64 phoneme TIMIT corpus is

decreased to 39 phonemes set (CMU/MIT Standards) to be used in constructing the acoustic models. 

In this work, speech signals are segmented into 25 ms frames with 60% overlap and are then processed and applied to

the involved HMMs. 

4. Experimental results 

In this section, we evaluate the efficiency of the proposed RP-based features inside a typical CSR task. 

The Hidden Markov Model Toolkit (HTK) [28] is especially designed for development of Hidden Markov Models (HMMs).

Moreover, it is supported by some auxiliary functions which make it a well-known toolkit for speech recognition purposes

[28] . As mentioned earlier, this free and open source software is employed to conduct the experiments. 

To show the benefits of the proposed features for the continuous speech recognition task, we conduct some valuable

experiments in this field. The recognition system is composed of six-state monophonic HMMs with eight Gaussian mixtures

in each state [8] . Moreover, the silent is modeled by a three-state HMM. The performance of the CSR system is evaluated by

the accuracy (ACC %) of the recognized phone sequences as given by 

AC C % = 

(
1 − S + I + D 

N 

)
× 100 (7) 

where S is the number of substitutions, I is the number of insertions, D is the number of deletions, and N denotes the

original number of phones. 

In Section 2.3 , a number of different RP-based feature extraction methods were introduced. Some of these approaches are

relatively old and are introduced in the literature; the remained ones are newly proposed in the current study. We combine

these features in different ways with the MFCC to examine the benefits of adding the RP-based features to the typical MFCC

features in the CSR task. Previously, some CSR experiments are conducted which employ the proposed features in different

groups to investigate their benefits when the MFCC features are not presented. Table 2 shows how the different groups of

the evaluated features are numbered. MFCC features (row 1 of the table) are consisted of 13 MFCC features plus its delta

and delta-delta values that leads to a 39-dimensional vector. Rows 2, 3 and 4 of the table, show the RP-based features

introduced in Section 2.3.1 . Features indexed in rows 5 and 6 together are the best 7 wavelet-based features selected via

the forward selection algorithm, aforementioned in Section 2.4.1 ; they were formerly denoted in row 1 of Table 1 . The one

scheduled in the row 5 of Table 2 is selected from the energy coefficients evaluated from the wavelet decomposition of the

RP-based image, and the other 6 ones, selected from the entropy of the wavelet coefficients, are put in the row 6 of the

table. The last row of this table is assigned to wavelet features which the LDA is applied to them to reduce their dimension

from 32 to 6. These features were introduced in Section 2.4.2 . 

The CSR results using the proposed features in individual groups for FARSDAT and TIMIT corpora are shown in Table 3 .

Fig. 6 shows the results for different combination of the proposed RP-based features with MFCC features. 

Typically, speech recognition systems work reasonably well in clean conditions but work poorly under noisy conditions.

In this paper, the preliminary experiments were conducted over TIMIT database without adding noise; following these ex-

periments, to move toward more realistic conditions, different noises with various power levels were added to the clean

speech signals. Two different white and babble noises at different SNRs were added to the TIMIT corpus and the exper-

iments were conducted over this constructed noisy database to evaluate the robustness of the proposed method against

the noisy conditions. Again, the obtained results show the superiority of the proposed features combined with the MFCC

features against the MFCC features alone. 

The results are shown in the Figs. 7 and 8 for “Babble” and “White” noises, distinctively. 
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Table 3 

The CSR accuracy results (in %) using individual groups of the RP-based features for 

the FARSDAT and TIMIT test sets. 

Features Indexes FARSDAT(Persian speech data) TIMIT(Enlish speech data) 

40–43 14 .18 10 .54 

42–43 34 .39 28 .43 

44–50 45 .48 38 .31 

42–50 51 .56 45 .48 

51–56 44 .96 38 .73 

42–43 & 51–56 51 .64 41 .85 

Fig. 6. The CSR accuracy results (in %) using the combination of the MFCC and the RP-based features for FARSDAT and TIMIT test sets. 

Fig. 7. The CSR accuracy results (in %) obtained over the Noisy TIMIT test set (created by adding “Babble" noise), using the different combinations of the 

MFCC and the proposed RP-based features. 

 

 

 

 

 

 

 

 

 

 

4.1. Discussion 

The current work shows that the information extracted from the recurrence plots of speech trajectories in the phase

space is valuable for the following automatic speech recognition task. Of course, the spectral based features like the MFCC

have proved their benefits in this task and could not be easily replaced by novel features. In this study, as a start point to

evaluate this idea, the proposed features are not seriously targeted to be individually exploited in the ASR task; but, are

viewed as some complementary features to be added to the known and proved features like the MFCC. This is worthy to

remind that to find the typical spectral features, the phase of the speech signal is neglected; in this point of view, the RPS-

based features may be proper features to compensate a part of this lack of information. The recurrence plot representation

could effectively transfer the specifications of cyclic trajectories embedded in the phase space. The experimental results

verify that by first applying the RP transformation to speech signals and then extracting some proper features from the

resulted 2-dimensional signal, we are supported by some features of the underlying speech production system that could

not be fully captured by the common spectral based ones. 
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Fig 8. The CSR accuracy results (in %) obtained over the Noisy TIMIT test set (created by adding “White" noise), using the different combinations of the 

MFCC and the proposed RP-based features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The RP transformation leads to a 2-dimensional signal, like an image. We examined that the application of wavelet

packet decomposition over the resulted image, using the db4 mother wavelet, could be led to some proper features which

have considerable benefits for the involved speech recognition task. Table 3 shows that using only the proposed features in

an ASR system is not adequate to obtain satisfactory results; moreover, it shows that the wavelet-based features selected

via the forward selection algorithm provided better performance in comparison to the other RP-based features. 

Of course, we found that the combination of the RP-based features with the spectral-based features could considerably

promote the following CSR process. Features no. 40, 41, 44 did not show good performances in the conducted experiments.

As shown in Fig. 6 , using FARSDAT and TIMIT corpora, the combination of RP-based features (selected by the forward feature

selection method) with MFCC features respectively led to 3.80% and 3.94% absolute classification accuracy improvement

against the baseline-system which uses only the MFCC as the input feature set. Furthermore, for noisy speech recognition,

using the combination of the MFCCs and the RP-based features still yields to better results, compared to using only the

MFCC features. 

Moreover, the experiments indicate that in low SNRs, the proposed features are less sensitive to additive white noise than

the additive babble noise. The difference could be resulted from the nature of the white noise which is coherently different

from the speech signal and when they are simultaneously transformed to the RP plane, could be better discriminate from

each other. This could be compared with conditions that these two are mixed in the time or frequency domain. 

Improvements resulted from the proposed features, for the clean and noisy data (15 dB and 10 dB, white noise), re-

spectively are equal to 3.94%, 3.29% and 3.62%. These results verify that the proposed features keep their benefits for the

following CSR task even for nearly powerful noises. In the other words, the combined features have better performance in

comparison to only MFCC features whether for clean or noisy data. Of course, the performance of the CSR system degrades

at high levels of noise. For example, they became useless for low SNRs, like 0 dB, as could be seen in Figs. 7 and 8. 

5. Conclusion 

In this work, we searched for a nonlinear feature extraction method, employing the RPS theory, to capture some non-

linear features from the human speech production system. Speech frames were first embedded in the RPS, utilizing Taken’s

theory. Using the speech trajectories in the phase space and the recurrence property of the dynamical system, the related

RP pattern was generated. The known dynamical invariants were next derived from the resulted RPs; moreover, the wavelet

decomposition was applied to the RPs and then by evaluating Shanon entropy and the energy of the coefficients, some pure

wavelet-based features were resulted. The linear discriminant analysis and the forward feature selection algorithms were

then applied to them. 

There is an important notice that, in the speech recognition field, the proposed features alone, even with enough embed-

ding dimension and applying appropriate feature selection methods, do not work as well as the proved features obtained

via frequency domain analysis. So, we combined them with the traditional MFCC features. The proposed feature set showed

good performance in the ASR experiments. In this way, we gained 3.80% and 3.94% absolute classification accuracy growth

in the speech recognition accuracy for FARSDAT and TIMIT corpora, respectively. This is very considerable, and verifies that

the proposed RP-based features could significantly help to CSR applications which typically are faced to very short time

series (frames with about 25 ms lengths). Of course, this study does not reject this probability that by modifying this ap-

proach in the future, the RPS-based features may become a complete replacement for the spectral based features like the

MFCC. 
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