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Abstract

Plants precisely time the onset of flowering to ensure reproductive success. A major factor in seasonal control of 
flowering time is the photoperiod. The length of the daily light period is measured by the circadian clock in leaves, and 
a signal is conveyed to the shoot apex to initiate floral transition accordingly. In the last two decades, the molecular 
players in the photoperiodic pathway have been identified in Arabidopsis thaliana. Moreover, the intricate connections 
between the circadian clockwork and components of the photoperiodic pathway have been unravelled. In particular, 
the molecular basis of time-of-day-dependent sensitivity to floral stimuli, as predicted by Bünning and Pittendrigh, 
has been elucidated. This review covers recent insights into the molecular mechanisms underlying clock regula-
tion of photoperiodic responses and the integration of the photoperiodic pathway into the flowering time network in 
Arabidopsis. Furthermore, examples of conservation and divergence in photoperiodic flower induction in other plant 
species are discussed.
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Introduction

Plants carefully time the onset of flowering to the appropriate 
season of the year to ensure reproductive success. Premature 
flowering limits vegetative growth and thus the accumulation 
of sufficient resources, while flowering too late puts the devel-
oping seeds at risk of harmful environmental conditions in the 
autumn, such as frost. A major determinant of floral transi-
tion is the relative duration of light and dark, as the change of 
daylength over the year is a reliable indicator of seasonal pro-
gression (Srikanth and Schmid, 2011; Andres and Coupland, 
2012). Plants keep track of daylength, the photoperiod, with 
the help of an endogenous timekeeper. This clock synchro-
nizes physiological and molecular processes to the day–night 
cycle, enabling plants to anticipate upcoming conditions 
(Green et al., 2002; Dodd et al., 2005). The endogenous clock 
has for some time been implicated in photoperiodic flower-
ing time control (Bünning, 1936). It was also known that the 
photoperiod is perceived in the leaves and thus a signal has to 
travel to the shoot apex to initiate flowering. This led to the 
concept of ‘florigen’—hormone-like substances transmitting 

the command to flower within the plant (Chailakhyan, 1936). 
Additionally, the idea of graft-transmissible floral repressors, 
‘antiflorigens’, was put forward (Lang and Melchers, 1943).

Elucidation of the molecular events underlying photoperi-
odic time measurement and relaying this information to the 
site of flower initiation gained momentum with Arabidopsis 
thaliana emerging as a model organism for flowering time 
control (Redei, 1962; Koornneef et al., 1991). Twenty years 
ago, the central player of the photoperiodic pathway was 
cloned from the constans mutant that flowers irrespective 
of daylength (Putterill et al., 1995). Around the same time, 
the first clock components were cloned, providing an entry 
to dissect the connection between circadian timing and pho-
toperiodic response (Schaffer et al., 1998; Wang and Tobin, 
1998; Fowler et al., 1999). Identification of an ever-increasing 
array of clock components and insights into their molecular 
properties progressed in parallel with in-depth characteriza-
tion of flowering time mutants and targeted biochemical and 
cell biology approaches to unravel molecular players of the 
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external and internal coincidence mechanism and resolve 
the identity of florigens and antiflorigens. In addition, math-
ematical modelling predicted new interactions within the 
photoperiodic pathway that were confirmed experimentally 
(Salazar et al., 2009). The importance of the circadian clock 
in flowering time control was further emphasized by a field 
study combining genome-wide association and quantitative 
trait loci mapping, where clock-related genes, not previously 
connected to flowering in greenhouse conditions, were identi-
fied (Brachi et al., 2010).

Here we review recent insights into the molecular mecha-
nisms underlying clock regulation of photoperiodic responses 
and the integration of the photoperiodic pathway into the 
flowering time network in Arabidopsis. Furthermore, we 
point out emerging conservation and divergence in photoper-
iodic flower induction in plant species where the information 
is less comprehensive.

The circadian timing system in Arabidopsis 
thaliana

The core clockwork of the ‘circadian’ (meaning about a day) 
timing system operates at the level of single cells. It com-
prises molecular feedback loops through which clock pro-
teins generate their own 24 h rhythm. The blueprint of the 
Arabidopsis clock serves as a reference for clocks in other 
plants (McClung, 2013; Staiger et al., 2013). Of note is that 
while the principle of timekeeping is conserved in eukaryotes, 
the molecular components of plant clocks are distinctly dif-
ferent from those of mammals and insects, which share a high 
degree of homology (Young and Kay, 2001).

Initially, the core clock in Arabidopsis was viewed as a 
series of feedback circuits through which clock components 

reciprocally or sequentially repress each other. Two related Myb 
transcription factors LATE ELONGATED HYPOCOTYL 
(LHY) and CIRCADIAN CLOCK ASSOCIATED1 
(CCA1) whose expression peaks at dawn repress TIMING 
OF CAB EXPRESSION1 (TOC1)/PSEUDO-RESPONSE 
REGULATOR1 (PRR1), peaking at dusk (Schaffer 
et  al., 1998; Wang and Tobin, 1998; Alabadi et  al., 2001) 
(Fig.  1). Inhibition of TOC1 transcription by CCA1 and 
LHY additionally involves a co-repressor complex of 
CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10), 
DE-ETIOLATED1, and DDB1 (Lau et  al., 2011). TOC1/
PRR1 is the founding member of a family of PRRs that peak 
in a serial manner over the day, starting with PRR9 in the 
morning, followed by PRR7, PRR5, and then TOC1 peaking 
around dusk (Matsushika et al., 2000). The PRRs including 
TOC1 sequentially repress CCA1 and LHY in the course of 
the day (Nakamichi et al., 2010; Gendron et al., 2012; Huang 
et  al., 2012; Carre and Veflingstad, 2013). Recently it was 
found that CCA1 and LHY repression by PRR9, PRR7, and 
PRR5 relies on co-repressors of the TOPLESS/TOPLESS-
RELATED (TPR) family (Wang et al., 2013).

Another important regulatory element is the evening com-
plex (EC) comprising EARLY FLOWERING 3 (ELF 3), 
ELF4, and the DNA-binding factor LUX ARRHYTHMO 
(LUX), all peaking at the end of the day (Dixon et al., 2011; 
Herrero et al., 2012; Nusinow et al., 2011). The EC is under 
negative control by CCA1 and LHY (Lu et al., 2012). The 
EC in turn represses PRR9, PRR7, PRR5, and TOC1, and 
as a consequence repression of LHY and CCA1 is alleviated.

Post-translational processes contribute to adjust the period 
of clock protein oscillations to 24 h (Schöning and Staiger, 
2005; Mas, 2008). ZEITLUPE (ZTL), an F-box protein subu-
nit of an SCF ubiquitin ligase complex with a light-regulated 
LOV (LIGHT, OXYGEN, VOLTAGE) protein interaction 

Fig. 1.  Conceptual model of the Arabidopsis circadian clockwork. The interaction of clock components (ovals) is shown. Rectangles represent accessory 
factors; arrows indicate activation; arrows with blunt ends represent repression; adjoining ovals/rectangles indicate protein interaction. See text for details. 
(This figure is available in colour at JXB online.)
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domain, interacts with the clock protein GIGANTEA (GI). 
During the day, blue light enhances the interaction with GI 
so that ZTL is stabilized at specific times of the day, resulting 
in ZTL protein oscillations (Kim et al., 2007; J. Kim et al., 
2013). ZTL also interacts with PRR5 and TOC1 to target 
them for proteosomal degradation in the cytoplasm (Mas 
et al., 2003). Interaction between PRR5 and TOC1 enhances 
TOC1 accumulation in the nucleus and thus shields TOC1 
from degradation (Wang et al., 2010).

While the components of these clock feedback loops 
all interact by reciprocal or sequential repression, posi-
tive elements have been unveiled more recently. FAR-RED 
ELONGATED HYPOCOTYL3 (FHY3), FAR-RED 
IMPAIRED RESPONSE1 (FAR1), and HY5 activate ELF4 
during the day (Li et al., 2011), and CCA1 and LHY repress 
ELF4 at dawn through direct interaction with these activa-
tors. The REVEILLE (RVE) family with homologues of 
CCA1 and LHY comprises members that positively regulate 
clock gene expression (Farinas and Mas, 2011). RVE8 pro-
motes PRR5 and TOC1 expression. PRR5 in turn binds to 
the RVE8 promoter and presumably represses RVE8, thus 
giving rise to yet another feedback loop (Rawat et al., 2011; 
Hsu et al., 2013).

LIGHT-REGULATED WD1 (LWD1) and (LWD2) are 
activators of PRR9, PRR7. and PRR5 (Wang et al., 2011). In 
addition, the morning-phased and red light-activated NIGHT 
LIGHT-INDUCIBLE AND CLOCK-REGULATED1 
(LNK1) and LNK2 promote expression of a subset of early 
evening genes, among them ELF4 and PRR5, while they are 
directly repressed by PRRs, creating another negative feed-
back loop (Rugnone et al., 2013). Furthermore, they interact 
with CCA1, LHY, RVE4, and RVE8, acting as co-activa-
tors of PRR5 and ELF4 transcription (Xie et al., 2014). In 
addition, LNK1 and LNK2 activate FLAVIN BINDING, 
KELCH REPEAT, F-BOX1 (FKF1), an important regulator 
of photoperiodic flowering. Overall, the increasing number 
of reciprocal interactions suggests that the clockwork is best 
represented by an intricate web of connections (Fogelmark 
and Troein, 2014).

To attain synchrony with day and night, the clock is entrained 
via the red/far-red-absorbing PHYTOCHROMES (PHYA–
PHYE), the blue light-absorbing CRYPTOCHROMES 
(CRY1 and CRY2), and the LOV domain proteins ZTL, 
FKF1, and LOV KELCH PROTEIN 2 (LKP2) (Devlin, 
2002; Fankhauser and Staiger, 2002). Clock protein oscilla-
tions in turn control biological processes, the clock outputs, 
so that photosynthetic activity or growth take place at the 
optimal time of day for maximal performance and so that 
seasonal processes including photoperiodic flowering occur 
at the right time of the year.

Photoperiodic flowering

In many plants, the length of the light phase, the photoperiod, 
determines flowering time (Garner and Allard, 1920). Long-
day (LD) plants including Arabidopsis and the crop plant 
Hordeum vulgare flower in response to increasing daylength. 

Short-day (SD) plants include Oryza sativa, sorghum, and 
chrysanthemum. Erwin Bünning was the first to implicate 
an endogenous rhythm of alternating light-sensitive (phot-
ophile) and dark-sensitive (scotophile) phases in photoperi-
odic timekeeping (Bünning, 1936). This rhythm is generated 
by a biological clock itself  entrained by the day–night cycle, 
and plants distinguish LDs and SDs based on whether ambi-
ent light coincides with the photophile or scotophile phase. 
This was further specified in the external coincidence model 
of an endogenous rhythm that needs to interact productively 
with light to trigger the photoperiodic response (Pittendrigh 
and Minis, 1964). It was also taken into consideration that 
multicellular organisms harbour populations of oscillators 
with defined phase relationships. According to the internal 
coincidence model, the photoperiodic response would then 
result from the interaction of two endogenous rhythms fall-
ing into phase. Thus, the function of light would be to control 
the phase relationship of these rhythms (Pittendrigh, 1972).

Experimental proof for the involvement of the clock in 
photoperiodic flowering came from mutants affected in both 
circadian and photoperiodic timekeeping (Hicks et al., 1996; 
Schaffer et  al., 1998; Wang and Tobin, 1998; Fowler et  al., 
1999). Subsequently it was found that the circadian clock and 
light signalling control the activity of CONSTANS (CO), the 
key component of the photoperiodic pathway, in the leaves. 
CO belongs to the B-Box Zinc-Finger Family (BBX), with 
the B-box B1 and B2 protein interaction domains at the 
N-terminus. The C-terminal domain can bind DNA and is 
known as the CCT (CO, CO-like, and TOC1) domain. CO 
activates transcription of FLOWERING LOCUS T (FT) and 
the more weakly expressed TWIN SISTERS OF FT (TSF) in 
leaf phloem companion cells (Samach et al., 2000; Yamaguchi 
et al., 2005). The FT protein then moves through the phloem 
to the shoot apical meristem (Corbesier et al., 2007; Jaeger 
and Wigge, 2007; Mathieu et  al., 2007). Interaction with 
the bZIP transcription factors FD and FD PARALOGUE 
(Abe et al., 2005) activates floral integrator genes including 
SUPPRESSOR OF CONSTANS OVEREXPRESSION1 
and APETALA1, entailing induction of a cascade of down-
stream genes, leading to flowering.

Temporal control of CO transcription

An intricate network of factors shapes CO expression at the 
transcriptional and post-translational level to confine FT 
transcription to LDs (Fig. 2). In non-inductive SDs, the CO 
mRNA undergoes circadian oscillations with a peak at zt8 
(Zeitgeber time 8, i.e. 8 h after dawn) to zt10 (Suarez-Lopez 
et al., 2001). The CO protein is degraded in darkness, however, 
and does not accumulate. CO transcription is repressed in the 
morning by the CYCLING DOF FACTOR (CDF) proteins 
(Fornara et al., 2009). The CDF1 binding site, CTTT, is part 
of a 7 bp sequence CTTTACA that occurs in multiple repeats 
in the CO promoter (Imaizumi et al., 2005). Natural varia-
tion in the number of these repeats caused by a 7 bp inser-
tion/deletion polymorphism correlates with flowering time 
(Rosas et al., 2014). CDF1 and CDF2 levels are regulated by 
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proteolytic degradation via a light-dependent complex of the 
clock proteins GI and FKF1. In SDs, GI peaks at zt7 and 
FKF1 peaks at zt10 (Fornara et al., 2009). Thus, both pro-
teins are expressed during darkness and do not interact so 
that the CDFs remain active (Sawa et al., 2007). In LDs, the 
FKF1 and GI rhythms become synchronized, peaking around 
zt13, and the proteins undergo a blue light-dependent com-
plex formation which stabilizes FKF1 (Sawa et  al., 2007). 
The FKF1–GI complex then targets CDF1 and CDF2 to the 
proteasome, and the relief  from repression allows CO expres-
sion with a peak around zt12–zt16. This allows CO protein to 
accumulate in the light and stimulate FT transcription. The 
light-dependent interaction of FKF1 and GI is similar to the 
interaction of ZTL with GI during the circadian cycle. To 
date, a role for ZTL in photoperiodic flowering has not been 
described.

Recently, additional factors have been identified that 
control CO expression. ELF4 regulates the access of  GI 
to chromatin by sequestering GI from the nucleoplasm 
into subnuclear bodies preferentially during the night, thus 
restricting its ability to bind to the CO promoter (Y. Kim 
et  al., 2013). DAY NEUTRAL FLOWERING (DNF) is 
expressed between zt4 and zt6 in SDs and acts to repress CO 
around this time (Morris et al., 2010). This occurs indepen-
dently of  the GI–FKF1–CDF1 module. As DNF encodes 
a membrane-bound E3 ligase, it may affect CO stability. 
The FLOWERING BHLH (basic helix–loop–helix) pro-
teins FBH1, FBH2, FBH3, and FBH4 act as transcriptional 
activators of  CO (Ito et al., 2012). Binding of  FBH1 to the 
CO promoter occurs throughout the day, suggesting that 
any timed activity would require post-translational regula-
tion. FBH1 is also connected to the circadian clock through 

binding and repression of  the CCA1 promoter (Pruneda-Paz 
et al., 2014).

PHYTOCHROME AND FLOWERING TIME (PFT1)/
MED25, a subunit of the Mediator complex that bridges 
transcription factors with RNA polymerase II, promotes CO 
expression and FT expression in a CO-independent man-
ner (Inigo et al., 2011). Recently, the function of PFT1 was 
shown to depend on the photoperiod and on the length of a 
short tandem repeat region encoding a 90 amino acid region 
enriched in Q (Rival et al., 2014). PFT1 complemented pft1-
2 late flowering in LDs when the tandem repeat region was 
shorter or longer than in the wild-type protein, whereas it 
complemented pft1-2 early flowering in SDs only with the 
authentic length of the Q-rich region. As proteosomal deg-
radation is crucial for PFT1 function, it has been suggested 
that reduced degradation in SDs could convert PFT1 from an 
activator to a repressor.

Regulators of CO on the chromatin level have also been 
described. The histone-binding protein MULTICOPY 
SUPPRESSOR OF IRA 1 (MSI1) is part of chromatin-
modifying complexes and is needed for efficient activation of 
CO during photoperiodic flowering induction (Steinbach and 
Hennig, 2014).

Regulation of CO protein

In addition to the elaborate regulation of CO transcription, 
CO protein accumulation is restricted in non-inductive con-
ditions until light exposure acts to overcome this inhibition 
(Fig.  2). CO protein is targeted for proteosomal degrada-
tion by a complex of the RING motif-containing E3 ubiq-
uitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 

Fig. 2.  Photoperiodic regulation of CO and FT in inductive LDs. The patterns of CO transcript (top), CO protein (middle), and FT transcript (bottom) 
during the day are displayed with promotive regulators indicated on the left and repressive regulators on the right. Activators of CO transcription include 
MSI1 and FBH1-4; repressors include the CDFs and DNF. Activators of CO protein accumulation include FKF1 and PHL; repressors include the COP1–
SPA complex, phyB, and HOS1. Activators of FT transcription include CO, NF-YB and NF-YC, AS1, CIB1, and STO; repressors include TEM1 and 
TEM2, CDFs, and SMZ. The end of the arrows indicates the time of day when the factors are active. (This figure is available in colour at JXB online.)
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(COP1) and SUPPRESSOR OF PHYTOCHROME A-105 1 
(SPA1) in darkness (Laubinger et al., 2006; Jang et al., 2008). 
Thus, the SPA1–COP1 complex prevents accumulation of 
CO in the second half  of the day and throughout the night in 
SDs. Additionally, phyB activated by red light targets CO for 
degradation via an unknown ubiquitin ligase in the morning, 
and another RING finger E3 ligase, HIGH EXPRESSION 
OF OSMOTICALLY RESPONSIVE GENE1 (HOS1), 
binds to CO to destabilize it (Valverde et al., 2004; Lazaro 
et al., 2012).

In LDs, photoactivated CRYs reduce the activity of the 
COP1–SPA1 complex. CRY1 binds to the SPA1 C-terminus 
to prevent SPA1 from binding to COP1 (Lian et al., 2011; Liu 
et al., 2011), whereas CRY2 binds to the SPA1 N-terminus, 
promoting SPA1 binding to COP1 but repressing the SPA1–
COP1 activity (Zuo et al., 2011). In addition to CRY1 and 
CRY2, the far-red-absorbing PHYA contributes to CO stabi-
lization (Valverde et al., 2004). An interaction of COP1 with 
MIDGET, a regulator of a topoisomerase complex, is nec-
essary for COP1/SPA1-controlled repression of flowering in 
SDs by an unknown mechanism (Schrader and Uhrig, 2013). 
Furthermore, FKF1 binds to CO in response to blue light, 
helping to stabilize CO in the afternoon (Song et al., 2012b). 
Furthermore, PHYTOCHROME-DEPENDENT LATE-
FLOWERING (PHL) accelerates flowering through red 
light-dependent interaction with phyB and CO, thus antag-
onizing the inhibitory effect of phyB on CO protein (Endo 
et al., 2013).

Collectively, the appropriate phasing of CO relative to 
light and dark and the light-dependent stabilization of the 
CO protein in LDs show features of both the internal and the 
external coincidence models: synchronization of the endog-
enous GI and FKF1 rhythms in LDs allows degradation of 
CDFs in LDs to create the CO transcript pattern, and regula-
tion of FKF1 activity by blue light through its LOV domain 
and of COP1/SPA1 activity through CRYs at the peak of CO 
oscillations allows CO protein accumulation.

The importance of an endogenous rhythm matching the 
environment for proper flowering has also been shown by 
using light–dark cycles that are longer or shorter than 24 h 
and alter transcript oscillations relative to dawn and dusk 
(Roden et  al., 2002). This showed that the perception of 

daylength relies on adjustments of the phase angle of circa-
dian rhythms relative to the light–dark cycle.

Co-ordination of FT transcription

A number of proteins collectively ensure expression of FT 
at the right time of the day (Fig. 3). An upstream region of 
5.7 kb is required to drive sufficient FT expression to com-
plement the ft-10 late flowering mutant (Adrian et al., 2010). 
CO binds to two so-called CO-responsive elements (COREs) 
in the promoter-proximal part via its CCT domain and acti-
vates FT transcription, presumably via a glutamic acid-rich 
region (Tiwari et al., 2010). Additionally, CCAAT boxes at 
around –5.3 kb that are binding sites for trimeric NUCLEAR 
FACTOR Y (NF-Y) complexes enhance CO-mediated FT 
activation (Tiwari et al., 2010). This effect is due to interac-
tion of CO with the NF-YB and NF-YC subunits (Wenkel 
et al., 2006; Cai et al., 2007; Kumimoto et al., 2008). Long-
distance chromatin loops have been detected at the FT pro-
moter that bring the distal enhancer elements close to the 
proximal promoter bound by CO (Cao et  al., 2014). These 
loops are preferentially formed at the end of the light period 
when CO activity and FT transcription peak. NF-Y com-
plexes assembled at the distal CCAAT boxes thus may play a 
role in recruiting CO to the COREs.

The CDF proteins which are crucial repressors of CO also 
bind to the FT promoter to repress it in the morning (Song 
et al., 2012b). Furthermore, FKF1 and GI also bind directly 
to the FT promoter (Sawa and Kay, 2011), and FKF1 may 
remove CDF1 to promote FT expression (Song et al., 2012b). 
Thus, transcriptional timing of CO and of FT shares the same 
logic. Additionally, CRYPTOCHROME-INTERACTING 
BASIC-HELIX–LOOP–HELIX1 (CIB1) is activated by inter-
action with CRY2 and induces FT expression at the end of the 
day (Liu et al., 2008). Thus, in addition to an indirect influence 
on FT activation via entrainment of the circadian clock and 
via blue light-dependent stabilization of GI and FKF1, CRY2 
also directly regulates FT. Notably, two other blue light recep-
tors, ZTL and LKP2, counteract proteosomal degradation of 
CIB1 in the absence of blue light (Liu et al., 2013) (Fig. 4).

Furthermore, several factors have been identified that 
regulate FT chromatin. At the end of LDs, CO enables the 

Fig. 3.  Internal and exogenous cues converging on FT. Factors responding to photoperiod, gibberellin level, age, and temperature, respectively, that 
modulate FT transcription in the leaves are indicated. (This figure is available in colour at JXB online.)
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recruitment of histone deacetylases to FT, resulting in down-
regulation of FT expression (Gu et al., 2013). Thus, CO regu-
lation by the photoperiodic pathway not only sets in motion 
FT expression but also leads to subsequent dampening, pre-
sumably to fine-tune FT levels. A Polycomb group complex 
directly represses FT during the night to prevent photoper-
iod-independent flowering (Y. Wang et al., 2014). At dusk, its 
binding to FT chromatin is disrupted by the photoperiodic 
pathway, enabling FT activation.

The TEMPRANILLO (TEM1) and TEM2 transcription 
factors compete with CO for binding to the FT promoter 
and thus antagonize CO activity (Castillejo and Pelaz, 2008). 
TEM1 and TEM2 also interact with GI, suggesting that GI 
contributes to FT regulation also via regulation of the stabil-
ity of FT repressors (Sawa and Kay, 2011). Moreover, TEM1 
and TEM2 repress GA3OXIDASE1 (GA3OX1) and GA3OX2 
encoding gibberellic acid (GA) biosynthetic enzymes and thus 
also repress flowering through the GA-dependent flowering 
pathway (Osnato et al., 2012). GAs have been assigned a role 
in response to inductive LDs through activation of FT tran-
scription in leaves and of the SQUAMOSA PROMOTER 
BINDING PROTEIN LIKE (SPL) genes in the shoot apical 
meristem (Porri et al., 2012). Furthermore, ASYMMETRIC 
LEAVES 1 (AS1) binds to the FT promoter and interacts 
with CO to regulate FT expression (Song et al., 2012a). AS1 
also positively regulates GA20OXIDASE and thus may also 
affect FT indirectly via increased GA levels and derepression 
of SPL3.

Expression of TEM1 and TEM2 is promoted by 
SENSITIVITY TO RED LIGHT REDUCED1 (SRR1) 
(Johansson and Staiger, 2014). SRR1, a pioneer protein, 
was identified based on its role in red light signalling and 
clock regulation (Staiger et  al., 2003). Furthermore, its 
importance for flowering time control was noticed in natu-
ral conditions (Brachi et al., 2010). SRR1 inhibits flowering 
in non-inductive conditions by promoting the expression of 
direct FT repressors, among them also CDF1 and the major 
repressor of flowering, the MADS box transcription factor 
FLOWERING LOCUS C (FLC), and thus SRR1 influences 

flowering through photoperiod-dependent and -independent 
pathways.

Repression by FLC is also alleviated by exposure to cold 
temperatures during winter, enabling flowering upon increas-
ing daylength in spring. This vernalization process involves 
epigenetic silencing of FLC and has been reviewed recently 
(Ream et al., 2012; Song et al., 2013). FLC is also down-regu-
lated by endogenous regulators collectively referred to as the 
autonomous pathway, among them the chromatin modifica-
tion factors FVE and FLOWERING LOCUS D, as well as 
the RNA-binding proteins FCA, FPA, and FLK (Rataj and 
Simpson, 2014). FLC and several components of the autono-
mous pathway have been shown to affect the period of the 
clock (Edwards et al., 2006; Salathia et al., 2006). A glycine-
rich RNA-binding protein that affects flowering time through 
regulating FLC and which is rhythmically expressed, in turn 
regulates circadian transcripts, pointing to cross-talk between 
the circadian system and the floral-promoting network 
beyond photoperiodic timekeeping (Streitner et  al., 2008, 
2010; Schmal et al., 2013; Löhr et al., 2014). Among other 
members of the B-box family that have been connected to 
photoperiodic regulation is SALT TOLERANT (STO) or 
BBX24 that has B1 and B2 B-boxes but no CCT domain. It is 
under circadian control and activates FT expression by com-
peting with FLC (Li et al., 2014). Recently, BBX19 that also 
has B1 and B2 B-boxes but no CCT domain and oscillates in 
antiphase to CO has been identified as a negative regulator 
of flowering in LDs (C.-Q. Wang et al., 2014). Physical inter-
action of BBX19 with CO leads to reduced FT expression, 
suggesting that BBX19 acts through a novel mechanism, 
sequestering CO to prevent premature FT activation.

As well as low temperature, ambient temperature also has 
a decisive role in flowering time. SHORT VEGETATIVE 
PHASE (SVP) represses FT via direct binding to the pro-
moter. Another MADS-box protein, FLOWERING LOCUS 
M, occurs as two temperature-dependent alternative splice 
variants that differentially interact with SVP to repress FT 
preferentially at lower temperatures (Pose et  al., 2013). 
PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) 
mediates early flowering at high temperatures by binding to 
the FT promoter (Kumar et al., 2012). Depending on the time 
of day of warm temperature exposure, flowering is regulated 
via FT-dependent and FT-independent pathways (Thines 
et al., 2014).

FT expression during development

Among components that regulate FT expression during plant 
development are microRNAs (miRNAs). An age-dependent 
pathway of flower induction is defined by miRNA156 (Wang 
et  al., 2009). While early in development, during the juve-
nile vegetative phase, Arabidopsis is refractory to flowering 
cues, it becomes responsive during the adult vegetative phase. 
A high miR156 level in young plants leads to cleavage of the 
SPL transcripts. miR156 decreases with development as a 
result of sugars accumulating through photosynthesis (Yang 
et  al., 2013; Yu et  al., 2013). Declining miR156 levels then 
allow SPL3 to accumulate and bind to the FT promoter to 

Fig. 4.  Three modes of action of CRY2 in photoperiodic flower induction. 
CRY2 entrains the circadian clock that in turn mediates CO oscillations. 
CRY2 interacts with CIB1 to regulate FT transcription. CRY2 inhibits the 
activity of the COP1–SPA1 complex to prevent CO degradation in LDs. 
Arrows indicate activation; arrows with blunt ends represent repression; 
the broken arrow indicates protein interaction. (This figure is available in 
colour at JXB online.)
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activate transcription. Another miR156 target, SPL9, acti-
vates MIR172 transcription. Thus, miR172 levels increase 
with age, with a concomitant decrease in its targets, the FT 
repressors SCHLAFMUETZE, SCHNARCHZAPFEN, 
and TARGET OF EAT1, 2, and 3 (Mathieu et al., 2009). GI 
also stimulates increased miR172 levels in LDs, defining a 
CO-independent branch of the photoperiodic pathway (Jung 
et  al., 2007). Furthermore, TEM1 levels inversely correlate 
with FT during early development, and TEM1 represses FT 
during the juvenile phase (Sgamma et al., 2014), and levels 
of FLC and SVP also decrease with leaf age (Li et al., 2008).

FT protein function

FT and TSF are members of a gene family with similarity 
to phosphatidylethanolamine-binding proteins in mammals. 
A  large body of work demonstrated that FT protein is the 
mobile signal conveying the output of the photoperiodic 
pathway in the leaf to the site of flower initiation (Turck et al., 
2008). While FT is small enough to move passively through 
plasmodesmata, a first regulator of FT trafficking has been 
described. FT-INTERACTING PROTEIN1 (FTIP1) is an 
endoplasmic reticulum (ER) membrane protein that regulates 
FT transport from phloem companion cells into sieve ele-
ments, and genetic evidence suggests that FTIP1 may also act 
to transport TSF (Liu et al., 2012). Mutation of D17 and V18 
impaired the ability of FT to induce flowering when expressed 
specifically in companion cells, suggesting that these residues 
control the interaction with a regulator of transport (Ho and 
Weigel, 2014).

FT shares ~60% identity with TERMINAL FLOWER1 
(TFL1) that represses flowering, raising the question about 
the difference between the antagonistic proteins. Notably, 
mutation of a single residue, Y85, in FT to H conferred a 
weak TFL1 activity, whereas the reciprocal mutation of H88 
in TFL1 to Y conferred a weak FT-like activity (Hanzawa 
et  al., 2005). Subsequently, the difference between the two 
proteins was largely attributed to an external loop (Ahn 
et al., 2006). Evidence for the critical role of the loop comes 
from Beta vulgaris that harbours two FT orthologues, BvFT1 
with repressing function and BvFT2 with activating function. 
Swapping the loop domains with three amino acid differences 
converted BvFT1 into an activator, whereas the converse 
mutations convert BvFT2 into a repressor (Pin et al., 2010).

Similarly, the obligate SD plant Chrysanthemum seti-
cuspe harbours FT-like proteins with antagonistic functions. 
CsFTL3 is activated in SDs and promotes flowering (Oda 
et al., 2012). Chrysanthemum seticuspe ANTI-FLORIGENIC 
FT (CsAFT) is activated in non-inductive LDs and represses 
flowering (Higuchi et al., 2013). The antagonism of CsAFT 
and CsFTL3 occurs through competing for CsFDL1, an FD 
homologue. Importantly, CsAFT acts systemically and thus 
represents an ‘antiflorigen’ (Fig. 5).

Recently, the Weigel laboratory undertook a large-
scale functional screen of mutagenized FT proteins (Ho 
and Weigel, 2014). Mutations that transformed FT into 
a TFL1 mimic altered the surface charge. Whereas this 
did not impair interactions with FD, FD PARALOGUE, 

and 14-3-3, the interaction with several TEOSINTE 
BRANCHED, CYCLOIDEA, PCF (TCP) transcription fac-
tors was affected. Previously, FT has been shown to interact 
with BRANCHED1/TCP18 that represses differentiation of 
axillary meristems and delays flowering (Niwa et al., 2013).

Based on the homology of FT to phosphatidylethanola-
mine-binding proteins, a putative phospholipid binding activ-
ity was monitored, unravelling binding of FT to diurnally 
oscillating phosphatidylcholine but not to phosphatidyletha-
nolamine in vitro (Nakamura et al., 2014). An increased ratio 
of phosphatidylcholine to phosphatidylethanolamine causes 
early flowering at least partially dependent on FT and TSF, 
providing a first hint that FT phospholipid binding may be 
relevant for its in vivo function.

Photoperiodic regulation in crop species

Understanding seasonal control of flowering beyond 
Arabidopsis is of major interest, as it may ultimately allow 
the breeding of crop varieties that cope better with chang-
ing climate conditions (Jung and Müller, 2009). Through 
mutant analysis and whole-genome sequencing, homologues 
of Arabidopsis photoperiodic regulators have been identi-
fied with similar but also divergent functions, and additional 
components absent in Arabidopsis contribute to photoperi-
odic flowering time control (Andres and Coupland, 2012).

The LD plant Pisum sativum has been used for some time 
as a model to study the control of flowering time and mobile 
flowering signals (Weller et al., 1997). Several of the genetic 
loci associated with the photoperiodic response encode ortho-
logues of Arabidopsis clock genes. LATE BLOOMER1 cor-
responds to GI, DIE NEUTRALIS corresponds to ELF4, 
HIGH RESPONSE TO PHOTOPERIOD corresponds to 
ELF3, and STERILE NODES corresponds to LUX (Hecht 
et  al., 2007; Liew et  al., 2009, 2014; Weller et  al., 2012). 
Furthermore, the characterization of several FT family mem-
bers provided evidence for a more complex scenario of flower 

Fig. 5.  Antagonistic function of CsFTL3 with florigen activity and CsAFT with 
antiflorigen activity. CsFTL3 is produced in leaves in inductive SDs and moves 
systemically to the shoot apex to interact with CsFDL to promote flowering. 
CsAFT is synthesized in leaves in non-inductive LDs and moves systemically 
to the shoot apex to compete for binding to CsFDL and inhibit flowering 
(Higuchi et al., 2013). (This figure is available in colour at JXB online.)
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induction in pea compared with Arabidopsis, relying on cross-
regulation among different FT genes with distinct expression 
patterns and functions, including at least two mobile signals 
(Hecht et al., 2011).

In the LD plant Hordeum vulgare, the closest orthologue 
of CO, HvCO1, causes up-regulation of HvFT1 (Campoli 
et  al., 2011). However, HvCO1 promotes flowering in both 
SDs and LDs and thus does not mediate the response to pho-
toperiod. Rather, photoperiodic flowering is controlled by the 
PHOTOPERIOD1 (Ppd-H1) gene, which is homologous to 
the Arabidopsis clock gene PRR7 (Turner et al., 2005). Ppd-
H1 promotes expression of HvFT1 independently of HvCO1 
but is at the same time also regulated by HvCO. In contrast 
to PRR7, Ppd-H1 does not have a prominent effect on clock 
gene expression (Campoli et al., 2012).

Loss of  function of  the barley ELF3 homologue results 
in rapid flowering in both SDs and LDs (Faure et al., 2012). 
HvELF3 is necessary to maintain photoperiodic sensitiv-
ity in spring barley through repression of  HvFT1 and pro-
duction of  active GAs, whereas Arabidopsis ELF3 has not 
been implicated in GA metabolism (Boden et  al., 2014). 
The HvPhyC photoreceptor has been found to promote 
floral transition by up-regulating HvFT1 independently of 
the circadian clock and of  HvCO1 (Nishida et al., 2013). In 
contrast, another study showed that HvPhyC indeed affects 
circadian oscillations and interacts with the Ppd-H1 pathway 
to promote flowering (Pankin et al., 2014). This is similar to 
wheat PhyC that activates PPD1 and FT1 in inductive LDs 
(Chen et al., 2014).

In rice, the photoperiodic pathway is of major importance 
as rice does not require vernalization. Although flowering in 
SDs, rice shares many features with the photoperiodic path-
way in Arabidopsis (Shrestha et  al., 2014). The orthologue 
of GI, OsGI, is rhythmically expressed and activates expres-
sion of Heading Date 1 (Hd1), the CO orthologue, in both 
SDs and LDs (Hayama et  al., 2003). Hd1 shows a similar 
rhythm to Arabidopsis CO but it has opposing effects on the 
FT orthologue Heading Date 3a (Hd3a), activating Hd3a in 
inductive SDs and repressing it in non-inductive LDs. Thus, 
Hd1 appears to be converted to a floral repressor by light 
exposure in LDs, and coincidence of the Hd1 peak with 
darkness triggers flowering (Ishikawa et  al., 2011). In con-
trast to Arabidopsis, a pathway operating in parallel to the 
OsGI-Hd1 module also activates Hd3a. EARLY HEADING 
DATE 1 (Ehd1), a response regulator without a correlate in 
Arabidopsis, activates RFT1, another FT orthologue (Doi 
et  al., 2004). RTF1 promotes flowering in SDs but also in 
LDs, adjusting flowering to environments differing in pho-
toperiod. The Ehd1–RTF1 pathway is repressed by GRAIN 
NUMBER, PLANT HEIGHT AND HEADING DATE7 
(Ghd7), a CCT domain protein (Xue et al., 2008). The rice 
ELF3 homologue, OsELF3, activates Ehd1 to promote flow-
ering in SDs and represses Ghd7 to promote flowering in LDs 
(Zhao et al., 2012).

The SD plant Sorghum uses an orthologue of Ehd1, 
SbEHD1, to activate flowering in SDs (Yang et  al., 2014). 
SbEHD1 itself  is activated via the SbGI–SbCO module in 
SDs. PRR37 inhibits flowering in LDs by inhibiting SbEHD1 

and CO activity. Thus, PRR37 acts as a repressor of flowering 
in sorghum.

In Beta vulgaris that occurs in both an annual and a bien-
nial form, BOLTING TIME CONTROL1 (BvBTC1) is a key 
regulator (Pin et al., 2012). The biennial variety contains a 
recessive Bvbtc1 allele and requires vernalization to flower in 
LDs. The annual variety contains a dominant BvBTC1 allele 
that promotes bolting independently of vernalization through 
inhibition of the repressor BvFT1 and activation of BvFT2. 
While not much is known about circadian control in beet, 
BvBTC1 shows homology to the clock component PRR7. 
Recently, an additional regulator of bolting time was identi-
fied that oscillates across the day and also acts upstream of 
BvFT1 and BvFT2 (Dally et al., 2014). Its closest homologue 
in Arabidopsis is BBX19, with two B-box zinc fingers simi-
lar to CO but without a CCT domain. It has been proposed 
that BvBBX19 with its two B-box zinc fingers and BvBTC1 
with a CCT domain complement each other through interac-
tion to fulfil a function similar to Arabidopsis CO with both 
B-box protein interaction domains and a CCT DNA-binding 
domain combined (Dally et  al., 2014). As described above, 
protein–protein interaction between Arabidopsis BBX19 
and CO antagonizes CO activity (C.-Q. Wang et al., 2014). 
A detailed comparison of the mode of action of how beet 
BvBBX19 and BBX19 contribute to fine-tune the expression 
of FT genes will provide valuable insights into flowering time 
regulation in annual and biennial varieties.

Conclusion

Photoperiodic flower induction has been extensively stud-
ied on the molecular level. Key elements are promotive and 
repressive factors that shape the daily expression pattern of 
the floral regulators CO and FT by affecting transcription, 
chromatin structure, protein stability, and protein interaction. 
Other flowering time pathway promote flowering through 
disabling repressors of FT. A  common theme is transcrip-
tional up-regulation of FT in inductive photoperiods. While 
the CO–FT module is conserved between LD and SD plants, 
the molecular details leading to FT transcription are distinct 
and provide the basis for differential response to SDs or LDs. 
New components impacting the photoperiodic response con-
tinue to be discovered in crop plants, but also in Arabidopsis. 
These will have to be characterized functionally and placed 
into the photoperiodic pathway.
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