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a b s t r a c t

A new robust adaptive multiple models based fuzzy control scheme for a class of unknown nonlinear
systems is proposed in this paper. The nonlinear system is expressed by using the Takagi–Sugeno (T–S)
method, and some identification adaptive T–S models along with their corresponding controllers, are
used in order to control efficiently the unknown system. The modeling error that is produced due to the

rules. In this paper, in order to solve this problem, we design a control scheme that is based on updating
rules that utilize the σ-modification method. Every T–S controller is updated indirectly by using the
robust updating rules and the final control signal is determined by using a performance index and a
switching rule. By using the Lyapunov stability theory it is shown that σ-modification based rules can
ensure the robustness of the system and define a bound for the steady state identification error. The main
objectives of the robust controller are: (i) to ensure that the real plant system will remain stable despite
the existence of modeling errors and (ii) to ensure that the real plant will track with a high accuracy the
state trajectory of a given reference model. The effectiveness of the proposed method is demonstrated by
computer simulations on a well known benchmark problem.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Robustness issues are very crucial in control systems design,
especially in cases when fuzzy or neural networks (NNs) theory
tools are used to mathematically express an unknown nonlinear
plant [1] along with adaptive control techniques which are used to
control the plant. The necessity for using fuzzy or NNs theory in
system modeling is imperative when the system's nonlinearities
impose difficulties to the controller design procedure. One of the
most popular fuzzy models is the T–S formulation [2]. The main
advantage of this method is that it uses linear submodels which
are fuzzy blended and finally produce the nonlinear fuzzy model.
These linear models are easily controlled by using linear control
techniques and finally another fuzzy blending of the sub-
controllers produces the final nonlinear controller of the system.
Another characteristic of T–S representation is the “universal
function approximation” property which offers the possibility to
approximate any nonlinear function to any degree of accuracy [3].
Although T–S method is very effective when describing a non-
linear system, there is a very important factor that should be taken
s),
into account when someone studies a controller. The system to be
controlled is rarely free of unmodeled dynamics and unknown
nonlinearities. Any approximation error associated with the T–S
modeling inaccuracies is called modeling error and might raise
robustness issues especially when adaptive control techniques are
used [4–6]. In [6], it was shown that a combination of modeling
approximation errors and adaptive control techniques cannot
ensure stability if the adaptive methods are not taking into
account the modeling error. These stability problems could be
surpassed by utilizing some robust adaptive control methods
including injection of small signals to make the regressor of the
adaptive law persistently exciting or modifications to the adaptive
laws by using leakage, parameter projection, dead-zones etc. A
number of these methods has been embodied in the following
fuzzy control schemes: in [7] authors used a robustifying term in
the control signal to cope with unmodeled dynamics and bounded
disturbances, in [8] authors used σ-modification along with
backstepping design and and in [9] authors also used σ-mod-
ification in a direct adaptive fuzzy control scheme.

Adaptive control combines an online parameter estimator with
a control law in order to control classes of plants whose para-
meters are unknown or highly uncertain. Adaptive control meth-
ods can be classified into two main categories according to the way
the unknown parameter estimator is combined with the control
law. In the first category, referred to as “direct” adaptive control,
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the system is parameterized in terms of the desired controller
parameters and afterwards these control parameters are estimated
directly without intermediate calculations involving system para-
meters estimates. On the other hand, in “indirect” adaptive control
the system parameters are estimated online and then used to
calculate the controller parameters assuming that this is the “true”
plant. In general, direct adaptive control is suitable to be used
when the plant can be expressed in a parameterized form invol-
ving only the control parameters and indirect adaptive control is
suitable when the estimated plant is controllable and observable
or at least stabilizable and detectable. A lot of new intelligent
(Fuzzy Systems, NNs, etc.) adaptive control methods have been
developed during the last decade [10–24] in order to deal with
nonlinear systems which are characterized by unknown or highly
uncertain parameters.

In [10], the authors developed a method for controlling
uncertain nonlinear multiinput–multioutput (MIMO) discrete-
time systems. This method which uses a number of subsystems
to compose the MIMO system and high order NNs to approximate
the desired controllers ensures that the output errors converge to
a compact set and that the number of the adjustable parameters is
highly reduced. A method that is based on the modeling of
uncertainties and external disturbances by using fuzzy logic sys-
tems and the backstepping technique was presented in [11] where
the objective was to control a MIMO nonlinear system and finally
it was proven that the robustness to dynamic uncertainties and
external disturbances is improved. In [12], the authors ensured the
robustness by using T–S systems to approximate the unknown
functions of an uncertain MIMO system, developing at the same
time an adaptive control scheme that utilizes “dynamic-surface”
control and “minimal learning parameters” techniques'. In [13],
the authors presented a method for the control of a class of
uncertain single-input/single-output (SISO) nonlinear strict-
feedback systems. More specifically they utilized fuzzy logic to
approximate the desired control signals and then an adaptive
fuzzy controller was constructed via backstepping ensuring the
boundedness of all the signals and minimizing the computation
burden due to the fact that only one adaptive controller needs to
be updated online. An adaptive fuzzy output-feedback dynamic
surface control design with prescribed performance was investi-
gated in [14] for a class of uncertain SISO nonlinear systems in
strict-feedback form ensuring that the dynamic errors converge to
a predefined arbitrarily small residual set for all times and over-
coming the problem of ‘explosion of complexity’ that appears in
other adaptive control approaches. A similar method for MIMO
systems was presented in [15]. Authors in [16] presented an
adaptive fuzzy output tracking control approach for a class of SISO
switched nonlinear systems with completed unknown nonlinear
functions, unmeasured states, unmodeled dynamics and dynamic
disturbances. The importance of this work lies in the fact that this
scheme can be successful without the restrictive condition that all
the states of the controlled systems are available, incorporates the
dynamical signal into the average dwell time period and finally the
unmodeled dynamics are taken into account.

Unlike the adaptive control methodologies used in the afore-
mentioned papers there is a very common case where the adap-
tive fuzzy model approximates the plant which is finally used to
produce the control signal employing the certainty equivalence
principle, i.e. indirect adaptive control methods [17–22]. In [17,18],
the authors proposed a stable control scheme for T–S Models (i.e.
not for the nonlinear plant) that is based on a T–S adaptive model
whose parameters are used by an adaptive controller at every step
in order to form the control signal. In [19], the authors proposed
an indirect adaptive control scheme for discrete-time uncertain
nonlinear systems by using a T–S adaptive model and under the
assumption that the T–S model represents accurately the real
plant (i.e. there is no modeling error). The same assumption was
made in [20] where the authors proposed an adaptive control
scheme for discrete-time state-space T–S fuzzy systems with
general relative degree. In [23,24], the authors enhanced these
adaptive control methods by introducing the multiple adaptive T–
S identification models control scheme architecture which pro-
mises a better performance than traditional single model methods.
These multiple adaptive T–S identification models form the basis
for deriving the corresponding fuzzy controllers which are
designed to control a class of dynamical fuzzy systems. The
aforementioned control schemes appearing in [17–20,22–24] are
designed to be very effective when there is not any modeling error,
that is, when the fuzzy model describes the plant accurately.
Although, it has been experimentally shown that they perform
satisfactorily well when they are applied in the real plant [17,24],
due to modeling errors, the stability analysis which is made only
for the fuzzy model cannot guarantee that the real nonlinear plant
will remain stable. Also, multiple models based control has been
shown to perform better in complex systems that change with
time or their parameters are unknown. In addition, it has to be
noted that the vast majority of the bibliography in multiple models
adaptive control concerns linear plants or special classes of non-
linear plants [25–32] thus the capacity and the usefulness of the
multiple models methods have not be extensively explored,
especially in difficult nonlinear control problems where fuzzy
theory techniques could provide powerful tools for this kind of
problems.

The aim of this paper is to address both issues of robustness
and nonlinearity. It introduces a new robust adaptive control
scheme for nonlinear systems which uses multiple adaptive T–S
models and takes into account the modeling error which is added
to the fuzzy model of the nonlinear system. The parameters of the
identification models are updated using the σ-modification
method and a stability analysis based on Lyapunov theory ensures
the robustness of the controller. A performance index and a
switching rule define the control signal at every time instant. The
steady state identification and reference model errors, which are
unavoidable due to the negative effect of the modeling error, can
be diminished by choosing the appropriate values for the learning
rates in the updating rules and by using enough fuzzy rules in
order to reduce the modeling error.

Compared with the existing results, the main contributions of
the proposed method are as follows: (i) unlike the other works
[17–20,22–24], where the modeling error is neglected, the pro-
posed control scheme makes a substantial improvement by taking
into account the modeling error of the T–S models and providing a
new Theorem which ensures the robustness of the controller; (ii)
multiple models robust fuzzy control is applied to nonlinear sys-
tems extending the results of [25–32] which are using mainly
linear or special nonlinear-plants and (iii) it provides a new fra-
mework in which these three powerful tools (i.e. fuzzy modeling,
multiple models and robust control) can be combined in many
new ways in order to face the difficult nonlinear control problems.

The rest of the paper is organized as follows: In Section 2, the
mathematical expression of the nonlinear plant is given and its
corresponding T–S model is constructed. In Section 3, the multiple
models based controller architecture is described and the
switching mechanism is given. The T–S identification models and
the fuzzy controller expressions are given in Section 4. In Section
5, a robustness analysis based on the σ-modification adaptation
rules is given. Simulation studies results are given in Section 6 and
finally the conclusions of this work are given in Section 7.
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2. Problem formulation

In this section, the problem formulation and some mathema-
tical expressions which make the problem more tractable
are given.

Consider the following nonlinear system:

_x ¼ f ðxÞþgðxÞu ð1Þ
where f : Rn-Rn and g : Rn-Rn are two unknown nonlinear
functions. Assuming that Cðx;uÞ ¼ f ðxÞþgðxÞu on a compact set X �
U is an affine continuous function with Cð0;0Þ ¼ 0 and f(x) is
continuously differentiable on X, then the nonlinear system (1) can
be approximated to any degree of accuracy by using a T–S model
[33,34] which consists of the following fuzzy rules:

Rule i : IF x1ðtÞ is Mi
1 and x2ðtÞ is Mi

2 and …and xnðtÞ is Mi
n;

THEN _xðtÞ ¼ AixðtÞþBiuðtÞþϵi

where i¼ 1;…; l is the number of fuzzy rules, Mi
p; p¼ 1;…;n are

the fuzzy sets, xðtÞARn is the state vector, uðtÞAR is the input
vector, An�n

i ;Bn�1
i are the state and input matrices respectively

which are considered to be unknown and ϵi is the modeling error
for every rule. The matrices Ai;Bi are of the following form:

Ai ¼

0
0 Iðn�1Þ
⋮
αi
n αi

n�1 ... αi
1

2
66664

3
77775; Bi ¼

0
0
⋮
bi

2
6664

3
7775

where Iðn�1Þ is an ðn�1Þ � ðn�1Þ identity matrix.
Using the above fuzzy rules, the final fuzzy model for a pair of

xðtÞ;uðtÞ is given as follows:

_xðtÞ ¼
Pl

i ¼ 1 hiðxðtÞÞðAixðtÞþBiuðtÞÞPl
i ¼ 1 hiðxðtÞÞ

þϵf ð2Þ

where hiðxðtÞÞ ¼∏n
p ¼ 1M

i
pðxpðtÞÞZ0 and Mi

pðxpðtÞÞ is the grade of
membership of xpðtÞ in Mp

i for all i¼ 1;…; l, p¼ 1;…;n, ϵf ARn is
the modeling error due to the fuzzy modeling and Jϵf Jod, i.e. the
modeling error is bounded. The main objective of this paper is the
design of a robust controller that will be able to make the real
plant follow a reference model which is given as follows:

_xm ¼ Adxm ð3Þ
where xmARn is the state vector of the desired reference model
and An�n

d is a stable matrix in companion form. Eq. (2) can be
expressed in the state space parametric model (SSPM) [35] form as
follows:

_xðtÞ ¼ AdxðtÞþ
Pl

i ¼ 1 hiðxðtÞÞððAi�AdÞxðtÞþBiuðtÞÞPl
i ¼ 1 hiðxðtÞÞ

þϵf ð4Þ
Fig. 1. The multiple T–S estimation m
Due to the fact that the parameters matrices Ai;Bi are unknown, an
estimation model must be used in order to design the control
signal based on the certainty equivalence approach. The series
parallel model (SPM) [35] can be expressed as follows:

_̂x ðtÞ ¼ Adx̂ðtÞþ
Pl

i ¼ 1 hiðxðtÞÞððÂi�AdÞxðtÞþ B̂iuðtÞÞPl
i ¼ 1 hiðxðtÞÞ

ð5Þ

where x̂; Âi; B̂i denote the estimations of xðtÞ;Ai and Bi respectively.
Based on the above modeling, a control architecture that uses

multiple T–S identification models is described in the following
section.
3. Controller architecture: adaptive T–S multiple models and
switching mechanism

In this section, the main parts of the controller architecture are
described and depicted schematically. Moreover, the performance
index and the employed switching rule are described. The proper
combinations of these three tools ensure the stability and satis-
factory performance of the closed-loop system.

3.1. T–S multiple identification models

The main part of the control scheme which is depicted in Fig. 1
consists of a bank of T–S identification models. The role of these
models is to approximate the behavior of the real plant which is
unknown. The models bank contains N T–S identification adaptive
models Mk

� �N
k ¼ 1 of the plant, which are operating in parallel.

Every identification model is connected with its own adaptive
controller and the certainty equivalence approach is used for the
adaptation of the controllers' parameters. The objective of the
control scheme is to drive the reference model tracking error,
em ¼ x�xm, very close to zero. The SPM formulation (5) is used to
describe all the identification models Mk

� �N
k ¼ 1 whose initial

parameters estimations are different. The uncertain parameters of
Ai;Bi are denoted as EABAΞ � Rs, where Ξ is a compact space
indicating the region of all the possible parameters values com-
binations and s is equal to the number of the unknown para-
meters. The critical point here is that the initial estimations are not
picked randomly but they are distributed uniformly over a lattice
inΞ. Although N controllers are used in the proposed scheme, only
one of them defines the control signal u, which is finally applied to
all the T–S models and the real plant too. A state estimate x̂k is
produced for every model. The identification error which defines
how “close” the models are to the real plant is given as ek ¼ x� x̂k.
A feedback linearization controller Ck with an output uk corre-
sponds to identification model Mk. The controller's Ck signal is
odels switching control scheme.
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designed so that when applied to the corresponding T–S plant Mk,
the output is given by a state equation identical to that of the
reference model (3). At every time instant, the appropriate con-
troller is chosen by using a switching rule, which is based on a
specific cost criterion Jk. The switching mechanism is described in
the following subsection.

3.2. Performance index and switching rule

The switching scheme, which is defined by the performance
index and the switching rule, is very important for the stability
and the performance of the system. The performance index that is
used in this paper has the following form:

JkðtÞ ¼ ace2k ðtÞþbc

Z t

0
e�λðt� τÞe2k ðτÞ dτ ð6Þ

where ac; bc are design parameters and λ is a forgetting factor
which determines the memory of the index and ensures bound-
edness of JkðtÞ for bounded ek. It is obvious that this expression
embodies both past and instantaneous values of the state identi-
fication errors. Based on this performance index, the switching
rule selects at every time instant the most appropriate controller.
An additive hysteresis constant h [36], and a Tmin [37] are used
because they are essential for the stability of the system. The
switching rule is given as follows: If JjðtÞ ¼minkAΛ JkðtÞ

� �
,

Λ¼ 1;…;Nf g, and JjðtÞþhr JcrðtÞ is valid at least for the last eva-
luation of the performance index in the time interval ½t; tþTmin�
then the model Mj is chosen to be tuned according to rules that
will be described in the next sections. The corresponding con-
troller Cj of Mj is calculated and being exploited using the cer-
tainty equivalence approach. It is this controller's signal that is
applied on the real plant and all the identification models. Here,
Jcr(t) is the index of the current active T–S model Mcr . It has to be
noted that the algorithm step is not bigger than Tmin and thus
there will be more than one evaluations in the time interval
½t; tþTmin�. For example if Tmin is equal to three algorithm steps
then the inequality JjðtÞþhr JcrðtÞ should be valid at least during
the third step in order to change the controller. If the aforemen-
tioned inequality is not valid, the controller Ccr remains active,
meaning that it is the ideal controller for the time instant tþTmin.
Note that Mj, i.e. the model with the minimum performance
index, may change during the evaluations in the time interval
½t; tþTmin�. The above procedure is repeated at every step. The
notations Cj and Mj will be used for the dominant controller and
the dominant T–S model respectively in the following sections.
4. T–S identification models and fuzzy controller design

The fuzzy controller design is based on the T–S identification
models. The mathematical expressions of the basic elements of the
proposed architecture are given below. Every T–S identification
model Mk is described by the following fuzzy rules:

T–S Identification Model Mk

Rule i:

IF x1ðtÞ is Mki
1 and x2ðtÞ is Mki

2 and…and xnðtÞ is Mki
n

THEN _̂xkðtÞ ¼ Adx̂kðtÞþðÂki�AdÞxðtÞþ B̂kiuðtÞ

where kAΛ¼ 1;…Nf g and i¼ 1;…; l. The final form of every T–S
model is given by the following equation:

_̂xkðtÞ ¼ Adx̂kðtÞþ
Pl

i ¼ 1 hkiðxÞððÂki�AdÞxðtÞþ B̂kiuðtÞÞPl
i ¼ 1 hkiðxÞ

ð7Þ

where hkiðxÞ ¼∏n
p ¼ 1M

ki
p ðxpðtÞÞZ0 and Mki

p ðxpðtÞÞ is the grade of
membership of xp(t) in Mp
ki, kAΛ, i¼ 1;…; l and p¼ 1;…;n. Also,

Mki
p ðxpðtÞÞ ¼Mi

pðxpðtÞÞ and hkiðxÞ ¼ hiðxÞ for all k; i; p. The matrices of
all the T–S models are of the following form:

Âki ¼

0
0 Iðn�1Þ
⋮
âki
n âki

n�1 ⋯ âki
1

2
66664

3
77775; B̂ki ¼

0
0
⋮

b̂
ki

2
66664

3
77775

Using a feedback linearization technique, and supposing that
Mj is the dominant T–S model, the control signal for the plant is
identical to the control signal of the controller Cj and is given by
the following equation:

uðtÞ ¼ ujðtÞ ¼
Pl

i ¼ 1 hjiðxÞðad� â jiÞTxðtÞPl
i ¼ 1 hjiðxÞb̂

ji
ð8Þ

where

ðâ jiÞT ¼ âji
n âji

n�1 ⋯ âji
2â

ji
1

h i
; ðadÞT ¼ adn adn�1 ⋯ ad2 ad1

h i
are the nth rows of the estimated state and reference matrices
respectively.

Applying the control input u(t) to Mj and taking into account
that hjiðxÞ ¼ hkiðxÞ ¼ hi we obtain

_̂x jðtÞ ¼ Adx̂jðtÞþ
1Pl

i ¼ 1 hi

Xl
i ¼ 1

hi ðÂji�AdÞxðtÞþ B̂ji

Pl
i ¼ 1 hiðad� â jiÞTxðtÞPl

i ¼ 1 hib̂
ji

0
@

1
A

0
@

1
A

¼ Adx̂jðtÞþ
1Pl

i ¼ 1 hi

0
0 Iðn�1Þ
⋮Xl

i ¼ 1

hiâ
ji
n

Xl
i ¼ 1

hiâ
ji
n�1 ⋯

Xl
i ¼ 1

hiâ
ji
1

2
66666664

3
77777775

8>>>>>>><
>>>>>>>:

�

0
0 Iðn�1Þ
⋮Xl

i ¼ 1

hiadn
Xl
i ¼ 1

hiadn�1 ⋯
Xl
i ¼ 1

hiad1

2
66666664

3
77777775

þ

0
0
⋮Xl

i ¼ 1

hi

2
66666664

3
77777775

1Pl
i ¼ 1 hi

Xl
i ¼ 1

hiðadn� âji
nÞ
Xl
i ¼ 1

hiðadn�1� âji
n�1Þ ⋯

Xl
i ¼ 1

hiðad1� âji
1Þ

" #
9>>>>=
>>>>;
xðtÞ

¼ Adx̂jðtÞ

þ 1Pl
i ¼ 1 hi

0
0 0ðn�1Þ
⋮Xl

i ¼ 1

hiðâji
n�adnÞ

Xl
i ¼ 1

hiðâji
n�1�adn�1Þ ⋯

Xl
i ¼ 1

hiðâji
1�ad1Þ

2
66666664

3
77777775

8>>>>>>><
>>>>>>>:

þ

0
0
⋮
1

2
6664

3
7775
Xl
i ¼ 1

hiðadn� âji
nÞ
Xl
i ¼ 1

hiðadn�1� âji
n�1Þ ⋯

Xl
i ¼ 1

hiðad1� âji
1Þ

" #9>>=
>>;xðtÞ:

where 0ðn�1Þ is a ðn�1Þ � ðn�1Þ zero matrix.
From the above equations it follows that

_̂x jðtÞ ¼ Adx̂jðtÞ ð9Þ
From (9) it is obvious that when ujðtÞ is applied to Mj, this model
is linearized and has an identical behavior to that of the desired
reference model (3). When the numerator of the control signal (8)
equals zero, then the control signal will not be able to control the
system. In this case, the Next Best Controller Logic (NBCL) [24] is
used ensuring a nonzero control signal.
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In the following section the adaptation rules for the T–S models
are derived based on Lyapunov stability analysis.
5. Adaptation rules and robust stability analysis

In this section, the main objective is to formulate appropriate
adaptation rules for the parameters of the adaptive models that
will lead the system to the desired behavior ensuring at the same
time its stability. The identification error for every T–S model – as
already mentioned in Section 3 – is given by the following equa-
tion:

ek ¼ x� x̂k ð10Þ
The error ek is equal to the difference between the state of the
plant and the state of the T–S model Mk. The time derivative of
the identification error ek is given by the following equation:

ð11Þ

where ~Aki ¼ Âki�Ai, ~Bki ¼ B̂ki�Bi, ~aki
p ¼ âki

p �aip,
~b
ki ¼ b̂

ki�bi, ~aki ¼
~aki
n ~aki

n�1 ⋯ ~aki
1

h iT
is a n� 1 vector, 0n�ðn�1Þ is a zero matrix of

dimension n� ðn�1Þ, p¼ 1;…;n and ϵf is the modeling error.
Here, apirefer to the elements of the last row of Ai and ~aki refer to
the elements of the last row of ~Aki.

Consider the following functions as Lyapunov function candi-
dates:

Vkðek; ~aki; ~b
kiÞ ¼ eTkPekþ

Xl
i ¼ 1

hi
ð ~akiÞT ~akiPl
i ¼ 1 hirk

þ
Xl
i ¼ 1

hi
ð ~bkiÞ2Pl
i ¼ 1 hirk

ð12Þ

where rk40 is a design constant, VkZ0, and P ¼ PT 40 is the
solution of the Lyapunov equation:

AT
dPþPAd ¼ �In ð13Þ

The following inequality can be obtained from (12):

Vkðek; ~aki; ~b
kiÞrλmaxðPÞJek J2þ

Xl
i ¼ 1

hi
J ~aki J2Pl
i ¼ 1 hirk

þ
Xl
i ¼ 1

hi
j ~bki j 2Pl
i ¼ 1 hirk

ð14Þ
The time derivative of Vk is given as follows:

_V k ¼ _eTkPekþeTkP _ekþ2
Xl
i ¼ 1

hi
ð _~a kiÞT ~akiPl
i ¼ 1 hirk

þ2
Xl
i ¼ 1

hi
~b
ki _~b

ki

Pl
i ¼ 1 hirk

¼ eTkA
T
dPekþeTkPAdekþ2

Xl
i ¼ 1

hi
ð _~a kiÞT ~akiPl
i ¼ 1 hirk

þ2
Xl
i ¼ 1

hi
~b
ki _~b

ki

Pl
i ¼ 1 hirk

�
Pl

i ¼ 1 hix
T 0n�ðn�1Þ ~aki
h i

Pl
i ¼ 1 hi

PekþϵTf Pek

�eTkP

Pl
i ¼ 1 hi 0n�ðn�1Þ ~aki

h iT
xPl

i ¼ 1 hi
þeTkPϵf

�

Pl
i ¼ 1 hiu

T 0 0 ⋯ ~b
ki

� �
Pl

i ¼ 1 hi
Pek�eTkP

Pl
i ¼ 1 hi 0 0 ⋯ ~b

ki
� �T

uPl
i ¼ 1 hi

Utilizing known matrix properties and after some mathema-
tical manipulations the time derivative of Vk is given by the fol-
lowing equation:

_V k ¼ �eTkekþϵTf PekþeTkPϵf þ2
Xl
i ¼ 1

hi
ð _~a kiÞT ~akiPl
i ¼ 1 hirk

þ2
Xl
i ¼ 1

hi

~b
ki _~b

ki

Pl
i ¼ 1 hirk

�2
Pl

i ¼ 1 hiP
T
s ekx

T ~akiPl
i ¼ 1 hi

�2
Pl

i ¼ 1 hi
~b
ki
PT
s ekuPl

i ¼ 1 hi
ð15Þ

where PsARn�1 is the nth column of P.
The main objective at this point is to choose the appropriate

values for the parameters vectors updating laws ð _~a kiÞT , _~bki
in order

to make the time derivative of Vk negative. The adaptation rules
are given as follows:

ð _~a kiÞT ¼ ð _̂a kiÞT ¼ rkPT
s ekx

T �rkσðâkiÞT

_~b
ki ¼ _̂

b
ki
¼ rkPT

s eku�rkσb̂
ki ð16Þ

where σ is a small design parameter and the adaptation rules
follow the so-called σ-modification approach of the adaptive
control literature [6]. Applying the values of (16) in (15), _V k takes
the following form:

_V k ¼ �eTkekþϵTf PekþeTkPϵf �2
Xl
i ¼ 1

hi
σðâkiÞT ~akiPl

i ¼ 1 hi
�2

Xl
i ¼ 1

hi
~b
ki
σb̂

ki

Pl
i ¼ 1 hi

¼ �eTkekþϵTf PekþeTkPϵf �2σ
Xl
i ¼ 1

hi
ð ~akiÞT ~akiPl

i ¼ 1 hi
�2σ

Xl
i ¼ 1

hi
ðakiÞT ~akiPl

i ¼ 1 hi

�2σ
Xl
i ¼ 1

hi

~b
ki ~b

ki

Pl
i ¼ 1 hi

�2σ
Xl
i ¼ 1

hi
~b
ki
bkiPl

i ¼ 1 hi

ð17Þ

From (17), it follows that

_V kr� Jek J2þ2dJP J Jek J�2σ
Xl
i ¼ 1

hi
ð ~akiÞT ~akiPl

i ¼ 1 hi
þ2σ

Xl
i ¼ 1

hi
Jaki J J ~aki JPl

i ¼ 1 hi

�2σ
Xl
i ¼ 1

hi
~b
ki ~b

ki

Pl
i ¼ 1 hi

þ2σ
Xl
i ¼ 1

hi
j ~bki j jbki jPl

i ¼ 1 hi

r� Jek J2

2
þ2d2 JP J2

�σ
Xl
i ¼ 1

hi
J ~aki J2Pl
i ¼ 1 hi

þσ
Xl
i ¼ 1

hi
Jaki J2Pl
i ¼ 1 hi

�σ
Xl
i ¼ 1

hi
j ~bki j 2Pl
i ¼ 1 hi

þσ
Xl
i ¼ 1

hi
jbki j 2Pl
i ¼ 1 hi

ð18Þ
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Using the inequality (14) it is obvious that

�σ
Xl
i ¼ 1

hi
J ~aki J2Pl
i ¼ 1 hi

�σ
Xl
i ¼ 1

hi
j ~bki j 2Pl
i ¼ 1 hi

r�σrkVkþσrkλðmaxÞðPÞJek J2

ð19Þ
From (18) and (19) it follows that

_V krðσrkλðmaxÞðPÞ�ð1=2ÞÞJek J2�σrkVkþ2d2 JP J2

þσ
Xl
i ¼ 1

hi
Jaki J2Pl
i ¼ 1 hi

þσ
Xl
i ¼ 1

hi
jbki j 2Pl
i ¼ 1 hi

ð20Þ

The main objective at this point is to ensure that _V kr0 for certain
circumstances. In order to achieve this goal we pick the appro-
priate values for σ; P and rk so that inequalities (21) and (22) hold,

λmaxðPÞr
1

2σrk
ð21Þ

VkZ
1
rk

2d2 JP J2

σ
þ
Xl
i ¼ 1

hi
Jaki J2Pl
i ¼ 1 hi

þ
Xl
i ¼ 1

hi
jbki j 2Pl
i ¼ 1 hi

 !
ð22Þ

AT
dPþPAd ¼ �In ð23Þ
If (21) and (22) are valid and taking into account (23), then Vk is

bounded and thus ek; ~a
ki; ~b

ki
AL1 and âki

; b̂
ki
AL1 too. Another

critical point in the proposed control scheme is the boundedness

of the control signal (8). Although b̂
ki
is bounded, the term 1=b̂

ki

may become unbounded if the adaptation rule generates values

very close to zero or equal to zero for the b̂
ki
parameter. In this case

the adaptation rule has to be modified towards a direction that
prevents the parameter from approximating zero or becoming
zero. In order to accomplish this goal, the following assumptions
are necessary: (i) the sign of bi and a lower bound bi040 for bi

��� ���
are known for all i¼ 1;…; l and (ii) the initialization of the b̂

ki

fulfills the following inequality:

b̂
kið0Þ sgnðbiÞ ¼ b̂

kið0Þ
����

����Zbi0 ð24Þ

The new adaptive law is given in (25) and Theorem 1 ensures that
the plant is stable in a certain region and the plant follows the
state of the reference model (3):
ð25Þ
Remark 1. The region in which the system is stable can be
regulated appropriately due to the fact that the positive quantities
rk; d;σ in (22) are chosen by the designer. For example, the upper
bound of the modeling error could be reduced if the designer uses
more fuzzy rules in the fuzzy model [33]. In this case the stable
region for the system would be larger. The same result would be
possible if the designer increases the leakage term σ or the
learning rate constants rk. It has to be noted here that using the
techniques which are given in [33, Subsection 14.1.3] one could
obtain the upper bound of the modeling error for a specific
dynamical system.

Theorem 1. Consider the real plant (1) and the reference model of
(3) with the control signal (8) and the adaptation laws of (25). The
proposed approach guarantees that in a certain region and for all
i¼ 1;…; l and j; kAΛ, (i) âki, b̂

ki
, 1=b̂

ki
, ek(t), em(t) are bounded, and

(ii) ek(t), _̂a
jiðtÞ, _̂b

ji
ðtÞ, em(t) are ðd2 JP J2þσÞ-small in the mean square

sense.

Proof. As it was mentioned above, the values of b̂
ki
should be kept

away from zero in order to avoid singularities problems. This
means that if (24) is valid then the following inequality should be
valid too:

_̂
b
ki
b̂
ki
Z0 ð26Þ

Analyzing (26) it follows that

_̂
b
ki
b̂
ki ¼ ðrkPT

s eku�rkσb̂
kiÞb̂ki ¼ rkPT

s eku sgnðbiÞb̂
ki
sgnðbiÞ

�rkσ sgnðbiÞb̂
ki
sgnðbiÞb̂

ki ¼ rkPT
s eku sgnðbiÞj b̂

ki j �rkσ j b̂ki j 2

¼ rkðPT
s eku sgnðbiÞ�σ j b̂ki j Þj b̂ki j

From the above equation it is obvious that if PT
s eku sgnðbiÞ�σ j b̂ki

jZ0 then _̂
b
ki
b̂
ki
Z0 and j b̂ki jZbi0 for all i; k. In addition _V kr0

under specific circumstances is given by (22). The case where PT
s

eku sgnðbiÞ�σ j b̂ki jo0 and j b̂ki j ¼ b0 should be examined for the

negativity of _V k. From (25),
_̂
b
ki
¼ 0 and _V k is given as follows:

_V k ¼ �eTkekþϵTf PekþeTkPϵf �2σ
Xl
i ¼ 1

hi
ðâkiÞT ~akiPl

i ¼ 1 hi
�2

Xl
i ¼ 1

hi
~b
ki
PT
s ekuPl

i ¼ 1 hi
ð27Þ

For the sake of proof's calculations the term _V k of (27) will be

denoted as _V kð _̂b
ki
¼ 0Þ and the term _V k of (17) as _V kð _̂b

ki
a0Þ. It was

shown above, that under certain circumstances, _V kð _̂b
ki
a0Þr0. If

_V kð _̂b
ki
¼ 0Þr0 under the same circumstances, then the modified

adaptive law ensures that the time derivative of Vk is negative or
equal to zero in every case. From (17) and (27) and using the fact

that PT
s eku sgnðbiÞ�σ j b̂ki jo0 it follows that,

_V kð _̂b
ki
¼ 0Þ� _V kð _̂b

ki
a0Þ ¼ �2

Xl
i ¼ 1

hi
~b
ki
PT
s ekuPl

i ¼ 1 hi
þ2σ

Xl
i ¼ 1

hi

~b
ki
b̂
ki

Pl
i ¼ 1 hi

¼ �2
Xl
i ¼ 1

hi
~b
ki
sgnðbiÞPT

s eku sgnðbiÞPl
i ¼ 1 hi

þ2σ
Xl
i ¼ 1

hi

~b
ki
b̂
ki

Pl
i ¼ 1 hi
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o�2σ
Xl
i ¼ 1

hi
~b
ki
sgnðbiÞj b̂

ki jPl
i ¼ 1 hi

þ2σ
Xl
i ¼ 1

hi
~b
ki
b̂
ki

Pl
i ¼ 1 hi

¼ �2σ
Xl
i ¼ 1

hi
~b
ki
sgnðbiÞb̂

ki
sgnðbiÞPl

i ¼ 1 hi
þ2σ

Xl
i ¼ 1

hi

~b
ki
b̂
ki

Pl
i ¼ 1 hi

¼ 0

Since _V kð _̂b
ki
¼ 0Þ� _V kð _̂b

ki
a0Þo0 and _V kð _̂b

ki
a0Þr0, it is obvious

that _V kð _̂b
ki
¼ 0Þo0. This result means that _V kr0, for all k and

tZ0. Consequently, the function Vk is a Lyapunov function for the
error system (11) when the parameters are updated according to

(25). This implies that ek; ~aki; ~b
ki
; âki

; b̂
ki
AL1 thus x; x̂k; u; emA

L1 too. Also, Vk is bounded from below and non-increasing with
time and the following equation stands:

lim
t-1

VkðekðtÞ; ~akiðtÞ; ~b
kiðtÞÞ ¼ Vð1Þo1 ð28Þ
Fig. 2. The membership functions of the fuzzy model.

Fig. 3. (a) and (b) State response; (c) control signal; (d) controllers switching sequence; (
on the time interval [0, 3], using ten adaptive identification models, σ ¼ 0:05 and rk¼1.
The inequality (20) implies that

_V kr ðσrkλðmaxÞðPÞ�ð1=2ÞÞJek J2þ2d2 JP J2þσ
Xl
i ¼ 1

hi
Jaki J2Pl
i ¼ 1 hi

þσ
Xl
i ¼ 1

hi
jbki j 2Pl
i ¼ 1 hi

ð29Þ

Integrating both sides we obtainZ t

0
Jek J2 dτr

Vkð0Þ�VkðtÞ
c

þc1
c

Z t

0
ðd2 JP J2þσÞ dτ ð30Þ

where Vkð0Þ ¼ Vkðekð0Þ, ~akið0Þ, ~bkið0ÞÞ and

c¼ �σrkλmaxðPÞþ1
2 40

and

ci ¼
Xl
i ¼ 1

hi
Jaki J2þjbki j 2Pl

i ¼ 1 hi

and

c1 ¼maxf2; cig

Inequality (30) implies that ekASðd2 JP J2þσÞ where

SðkÞ ¼ ½x : ½0;1Þ-Rn j R tþT
t xT ðτÞxðτÞ dτrg1þg2kT ; T ; g1; g2Z0�.

Applying the control signal uðtÞ ¼ ujðtÞ in the model Mj we obtain
_̂x jðtÞ ¼ Adx̂jðtÞ, and taking into account Eq. (4), the time derivative
e) and (f) zoom out of control signal and controllers switching sequence respectively
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of the identification error for Mj is given as follows:

_ejðtÞ ¼ _xðtÞ� _̂x jðtÞ ¼ AdejðtÞþ
Pl

i ¼ 1 hiðxðtÞÞððAi�AdÞxðtÞþBiuðtÞÞPl
i ¼ 1 hiðxðtÞÞ

þϵf

ð31Þ

The time derivative of the reference model error, em ¼ x�xm, is
given as follows:

_emðtÞ ¼ _xðtÞ� _xmðtÞ ¼ AdemðtÞþ
Pl

i ¼ 1 hiðxðtÞÞððAi�AdÞxðtÞþBiuðtÞÞPl
i ¼ 1 hiðxðtÞÞ

þϵf

ð32Þ

From (31) and (32) one obtains

_ejðtÞ� _emðtÞ ¼ AdðejðtÞ�emðtÞÞ ð33Þ

Eq. (11) implies that _ekAL1. Using (33) and the fact that

ekASðd2 JP J2þσÞ, it follows that emASðd2 JP J2þσÞ too. This

means that ek; em are ðd2 JP J2þσÞ-small in the mean square
sense. □

Remark 2. From (30) it is obvious that when using the σ-mod-
ification method, the L2 property, which is a requirement in order
to achieve em-0, cannot be guaranteed even if the modeling error
is equal to zero. Consequently, the steady state errors may not be
zero for the sake of robustness. This problem can be solved by
Fig. 4. (a) and (b) State response; (c) control signal; (d) controllers switching sequence; (
on the time interval [0, 3], using ten adaptive identification models, σ ¼ 0:08 and rk¼2.
using a switching σ-modification method [6] which requires the
knowledge of an upper bound of the unknown parameters.

Remark 3. The matrices A, B of the linear plants that are used in
the consequent part of the fuzzy rules derive from the nonlinear
plant to be controlled. There are two main approaches for con-
structing fuzzy models [33]: (i) to identify the nonlinear system by
using input-output data and (ii) to use the nonlinear system
dynamic equations, in case these are known, even uncertainly. In
this paper, the second approach is utilized. This approach is mainly
based on the “sector nonlinearity” method. The aim of this method
is to find a global or a local sector such that _xðtÞ ¼ f ðxðtÞÞA ½a1; a2�
xðtÞ where f ðxðtÞÞ is a nonlinear function and a1; a2AR. This sector
is used for the construction of the linear models in fuzzy rules.
When the reduction of the number of fuzzy rules that describe a
system is necessary the “local approximation in fuzzy partition
spaces” method is used. The objective of this method is to
approximate the nonlinear terms by judiciously chosen linear
terms. When T–S multiple models are engaged in the control
scheme this method offers a reduction in the complexity of the
whole control procedure.
6. Simulation studies

In this section, the proposed robust control algorithm is applied
on a nonlinear plant with unknown parameters. Its efficiency is
demonstrated and the results are discussed in detail.
e) and (f) zoom out of control signal and controllers switching sequence respectively
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Consider the following inverted pendulum system (34) which
is a highly nonlinear system and is widely used as a benchmark
control problem [38,17]:

_x1 ¼ x2

_x2 ¼
g sin ðx1Þ�amlx22 sin ð2x1Þ=2�a cos ðx1Þu

4l=3�aml cos 2ðx1Þ
ð34Þ

where x1 denotes the angle (in radians) of the pendulum from the
vertical, x2 is the angular velocity, g ¼ 9:8 m=s2 is the gravity
constant, m is the mass of the pendulum, M is the mass of the cart,
2l is the length of the pole, u is the control signal applied to the
cart and a¼ 1=ðmþMÞ. The nonlinear system (34) can be
approximated using the following two fuzzy rules:

Rule 1: IF x1ðtÞ is about 0 THEN _xðtÞ ¼ A1xðtÞþB1uðtÞ
Rule 2: IF x1ðtÞ is about7π=2 THEN _xðtÞ ¼ A2xðtÞþB2uðtÞ

where

A1 ¼
0 1
a12 a11

" #
¼

0 1
g

4l=3�aml 0

" #

B1 ¼
0
b1

� �
¼

0
� a

4l=3�aml

" #

A2 ¼
0 1
a22 a21

" #
¼

0 1
2g

πð4l=3�amlβ2Þ 0

2
4

3
5

B2 ¼
0
b2

� �
¼

0
� aβ

4l=3�amlβ2

2
4

3
5

and β¼ cos ð88oÞ. Here, x1A ð�π=2; π=2Þ and the membership
functions used are depicted in Fig. 2.

The unknown parameters EAB lie in the three dimensional
compact space Ξ:

Ξ ¼ 0:1r lr1:1; 0:6rmr5; 5rMr15
� �

The objective of the robust controller is to force the system (34)
to follow as closely as possible the reference model (3) with the
following stable state matrix:

Ad ¼
0 1
�5 �5

� �

From the Lyapunov Eq. (13), we obtain

P ¼ 1:10 0:10
0:10 0:12

� �
; Ps ¼ 0:10 0:12½ �T

and λmaxðPÞ ¼ 1:1101. For the purposes of this particular control
problem we used a scheme with ten adaptive fuzzy T–S models
Mk
� �10

k ¼ 1 along with their corresponding controllers Ck
� �10

k ¼ 1. The
initialization of these models is made in such a way that their

parameters âki
; b̂

ki
are uniformly distributed in the three dimen-

sional region Ξ. The values for the real plant are given as follows:
l¼0.8 m, m¼2 Kg and M¼12 Kg.

Two simulations for the same plant but with different design
parameters took place in order to indicate the crucial role of
design parameters values in the controller's performance. More
specifically, the design parameters for the first simulation are
σ ¼ 0:05, rk¼1 and for the second simulation are σ ¼ 0:08, rk¼2. In
both simulations, the values ac ¼ 6; bc ¼ 1; λ¼ 0:01 are used for
the cost criterion (6), Tmin ¼ 0:1 s and h¼0.01. Also the lower
bounds for the bi's are b10 ¼ 0:02 and b20 ¼ 0:001. The initial states
for the real plant, the estimation models and the reference model
are xð0Þ ¼ x̂kð0Þ ¼ xmð0Þ ¼ π=3 0

� �T
; 8k.
The results of the proposed control scheme for both cases are
depicted in Figs. 3 and 4. In Figs. 3(a) and (b) and 4(a and b), the
states of the real plant (34) and the reference model (3) are given.
The dashed line in the above figures depicts the reference model's
state. In Figs. 3(c) and 4(c), the respective control signals are
depicted. In Figs. 3(d) and 4(d), the switching sequence of the
controllers is given and finally Figs. 3(e and f) and 4(e and f) zoom
out crucial parts of the previous figures. We choose the initial
controller randomly, due to the fact that the initial JkðtÞ is equal to
zero for all the systems, and thus C1 is the controller that provides
the control signal to the system in both cases. In the first case
where σ ¼ 0:05 and rk¼1, the controller stabilizes the system and
leads it to the reference model's state after about 10 s, with some
small oscillations around the vertical position where the state x1
¼ 0 and some larger oscillations for x2 as it can be seen in Fig. 3(a
and b). A small burst in the control signal can be noticed at about
1.1 s where there is change in the dominant controller. Five con-
trollers ðC1; C4; C8; C10; C2Þ are used and finally the controller C2
undertakes the control of the system (Fig. 3(c–f)). The Tmin and
hysteresis h tools along with the performance index (6) ensure
smoothness and stability for the signals. In the second case where
σ ¼ 0:08 and rk¼2, i.e. we increase the values of the design para-
meters, the results are better, concerning the performance of the
controller. The states x1, x2 follow the states of the reference model
at about four seconds in a smoothly way. The control signal has a
small burst at about 0.5 s and takes smaller values than that of the
first case. Three controllers ðC1; C4; C9 are used and finally the
controller C4 undertakes the control of the system (Fig. 4(c–f)).
Consequently the simulation results indicate that the values of σ,
rk, d (the last one is reduced only if the precision of the fuzzy
model is increased) play an important role to the performance of
the system. From (22) it is obvious that an increase in σ or rk

implies that the requirements for the negativity of _V k are more
relaxed and thus the stable region becomes larger. This fact offers
a better performance to the controlled system. On the other hand,
very large values for the leakage term σ or the learning rates rk

may lead to instabilities. The role of the designer is to define the
best possible values for these crucial parameters in order to
achieve a satisfactory control result.
7. Conclusions

A new control scheme which incorporates robustness in a
multiple T–S adaptive models based control architecture is pro-
posed in this paper. The necessity of using fuzzy control theory in
order to control nonlinear systems is usually associated with the
appearance of modeling errors caused by the process of fuzzy
models formulation. In addition, when adaptive control techni-
ques, which are used due to the unknown parameters of the
nonlinear systems, coexist with the modeling errors, it is very
possible for the system to encounter instability problems. The
significance of this issue led us to design robust adaptive laws for
the identification T–S models which are based on the σ-mod-
ification method. These adaptive laws which are extracted from a
stability analysis ensure that the system will track the state
of given reference model and that the control signal will stay
away from singularities. Due to the use of the leakage term σ,
the identification and modeling errors are proven to be
ðd2 JP J2þσÞ-small in the mean square sense. Also, the more pre-
cise is the fuzzy modeling procedure the less is the upper bound of
the modeling error. By changing the values of the design constants
rk, σ, one can modify the stability region of the system and thus
the performance of the proposed controller. The theoretical results
are confirmed by simulations which use a well known benchmark
nonlinear plant, whose parameters are assumed to be unknown.
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Future research will focus on (i) a new multiple models archi-
tecture which will be composed of different kinds of identification
models and (ii) imposing new methods for the initialization of the
parameters of the T–S identification models, in order to reduce the
computational burden and improve the control performance.
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