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A B S T R A C T

The aim of this study is to propose a Fuzzy multi-criteria decision-making approach (FMCDM) to

evaluate the alternative options in respect to the user’s preference orders. Two FMCDM methods are

proposed for solving the MCDM problem: Fuzzy Analytic Hierarchy Process (FAHP) is applied to

determine the relative weights of the evaluation criteria and the extension of the Fuzzy Technique for

Order Preference by Similarity to Ideal Solution (FTOPSIS) is applied to rank the alternatives. Empirical

results show that the proposed methods are viable approaches in solving the problem. When the

performance ratings are vague and imprecise, this Fuzzy MCDM is a preferred solution.
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1. Introduction

MCDM refers to finding the best opinion from all of the feasible
alternatives in the presence of multiple, usually conflicting,
decision criteria. Priority-based, outranking, distance-based and
mixed methods could be considered as the primary classes of the
current methods [1]. Multiple objective decision-making (MODM)
consists of a set of conflicting goals that cannot simultaneously be
achieved. It concentrates invariably on the continuous decision
spaces, and can be solved by mathematical programming
techniques. MODM deals generally with (i) preferences relating
to the decision maker’s objectives and (ii) the relationships
between objectives and attributes. An alternative could be
described either in terms of its attributes or in terms of the
attainment of the decision maker’s objectives [11].

MADM deals with the problem of choosing an option from a set
of alternatives, which are characterized in terms of their attributes.
MADM is a qualitative approach due to the existence of the criteria
subjectivity. It requires information on the preferences among the
instances of an attribute, and the preferences across the existing
attributes. The decision maker may express or define a ranking for
the attributes in terms of importance/weights. The aim of the
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MADM is to obtain the optimum alternative that has the highest
degree of satisfaction for all of the relevant attributes [11].

One of the most outstanding MCDM approaches is the
Analytic Hierarchy Process (AHP) [2,39], which has its roots in
obtaining the relative weights among the factors and the total
values of each alternative based on these weights. In comparison
with other MCDM methods, the AHP method has widely been
used in multi-criteria decision-making and has been applied
successfully in many practical decision-making problems [40]. In
spite of AHP method popularity, this method is often criticized
because of its inability in handling the uncertain and imprecise
decision-making problems [3]. TOPSIS, another MCDM method,
is based on choosing the best alternative, which has the shortest
distance from the positive-ideal alternative and the longest
distance from the negative-ideal alternative. More detailed
information about the TOPSIS method can be found in Hwang
and Yoon [4].

In the primitive forms of the AHP and TOPSIS methods, experts’
comparisons about the criteria, sub-criteria, and alternatives are
represented in the form of exact numbers. However, in many
practical cases, the experts’ preferences are uncertain and they are
reluctant or unable to make numerical comparisons. Fuzzy
decision-making is a powerful tool for decision-making in fuzzy
environment. Classical decision-making methods work only with
exact and ordinary data, so there is no place for fuzzy and vague
data. Human has a good ability for qualitative data processing,
which helps him/her to make decisions in fuzzy environments.

mailto:farahan@aut.ac.ir
mailto:cmszfr@nus.edu.eg
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2009.08.021


Fig. 1. The evaluation procedure.
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The main objective of this paper is to propose new AHP and
TOPSIS methods’ frameworks for dealing with the evaluations’
uncertainty and imprecision in which the expert’s comparisons are
represented as fuzzy numbers. In this paper, we will use Fuzzy
Analytic Hierarchy Process (FAHP) method for determining the
final weights of alternatives, also by using a group of experts’
comparisons. However, for evaluating the alternatives of multi-
criteria problems, different attribute weights have an important
role in the decision-making process.

Stam and Silva [41] use multiplicative priority rating methods
for the AHP. Saaty [2] showed that eigenvector of one pairwise
comparison matrix represents the local priority weights of the
compared elements (criteria, sub-criteria, and alternatives). Abo-
sinna and Amer [42] extend TOPSIS approach to solve multi-
objective large-scale nonlinear programming (MOLSNLP) pro-
blems. Aguaron et al. [5] focused on evaluating the consistency of
the experts’ judgments in AHP decision support system (DSS).
Holloway and White [43], with uncertainty, used the question–
response process as a sequential decision-making method and
developed a dynamic programming for it. One of the most diffused
approaches in MCDM is the simple additive weight method (SAW),
in which all the criteria is weighted by a suitable real number,
representing the importance of them. In spite of its simplicity, the
SAW method has some problems: no interaction among the
attributes is admitted, so the preferential independence axiom is
required. Moreover, some difficulties exist about the weights
assignment. So later, some new methods such as AHP are
suggested [2], and other tools such as Fuzzy logic, and the theory
of aggregation operators [6] have been used to improve multi-
objective decision-making methods.

For evaluating airlines’ service quality, Tsaur et al. [7] use AHP
method to calculate the criteria weights and use TOPSIS method to
determine the alternatives’ ranking. Feng and Wang [19] uses
TOPSIS method for evaluating the performance of different airlines.
TOPSIS and Fuzzy TOPSIS methods have been applied in different
applications, and are commonly used in solving multiple attribute
decision problems (MADM) [8,9].

Isiklar and Buyukozkan [10] use a multi-criteria decision-
making approach to evaluate mobile phone alternatives. In this
paper, we try to solve their problem but in a fuzzy environment.
Yang and Hung [11] focuses on the evaluation of alternative layout
designs. We use their problem but we solve it with FAHP and
FTOPSIS procedures. Our proposed methodology consists of two
steps: in the first step, Fuzzy Analytic Hierarchy Process (FAHP) is
applied to determine the relative weights of the evaluation criteria.
In the second step, fuzzy TOPSIS method (FTOPSIS) is applied to
rank the alternatives.

The rest of this paper is organized as follows: The evaluation
framework is presented in Section 2. The next section illustrates
the methods used to compute the criteria weights and to select the
best alternative. Section 4 illustrates these methods in detail for
the special defined problem of this paper. Computational results
are represented in Section 5 and Section 6 includes the conclusions
and future researches.

2. Evaluation framework

MCDM is a powerful tool used widely for solving the problems
with multiple, and usually conflicting, criteria [1]. The MCDM
techniques generally are enabled to structure the problem clearly
and systematically. With this characteristic, decision makers have
the possibility to easily examine and scale the problem in
accordance with their requirements [10]. The main objective of
this paper as mentioned above is to select the best alternative from
among a number of mobile phone options in respect to the user’s
preference orders. For this purpose, we use FAHP to determine the
priorities of different criteria, and then choose the best mobile
phone alternative by TOPSIS method. Yang and Hung [11] used
TOPSIS and fuzzy TOPSIS methods for selecting the best plant
layout with respect to several different criteria. The evaluation
procedure in this paper consists of three main steps as summarized
in Fig. 1.

Step 1. Identifying the selection (evaluation) criteria that are
considered as the most important criteria for the users.

Step 2. After constructing the evaluation criteria hierarchy, calcu-
lating the weights of criteria through applying FAHP
method.

Step 3. Conducting FTOPSIS method to achieve the final ranking
results.

The detailed descriptions of each step are illustrated in the
following sections.

3. The FAHP and FTOPSIS methodology

3.1. Fuzzy AHP model

AHP is a powerful decision-making methodology for determin-
ing the priorities among different criteria. The AHP encompasses
six basic steps [10]. First, we briefly review the rationale for the
Fuzzy Theory before the development of fuzzy AHP and fuzzy
TOPSIS as follows:

Definition 3.1. A Fuzzy set ã in a universe of discourse X is
characterized by a membership function mãðxÞ which associates
with each element x in X, a real number in the interval [0,1]. The
function value mãðxÞ is termed the grade of membership of x in ã

[12]. The present study uses triangular Fuzzy numbers. A trian-
gular Fuzzy number, ã, can be defined by a triplet (a1, a2, a3). Its
conceptual schema and mathematical form are shown by Eq. (1)
[13].

mãðxÞ ¼

0 x � a1
x� a1

a2 � a1
a1� x � a2

a3 � x

a3 � a2
a2� x � a3

1 x� a3

8>>>>><
>>>>>:

(1)

Definition 3.2. Let ã ¼ ða1; a2; a3Þ and b̃ ¼ ðb1; b2; b3Þ be two trian-
gular Fuzzy numbers, then the vertex method is defined to calcu-
late the distance between them, as Eq. (2):

dðã; b̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ða1 � b1Þ2 þ ða2 � b2Þ2 þ ða3 � b3Þ2
h ir

(2)
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Definition 3.3. Let a triangular Fuzzy number ã, then a-cut defined
as Eq. (3):

ãa ¼ ½ða2 � a1Þaþ a1; a3 � ða3 � a2Þa� (3)

Definition 3.4. Let ã ¼ ða1; a2; a3Þ, b̃ ¼ ðb1; b2; b3Þ be two triangular
Fuzzy numbers and ãa, b̃a be a-cut, ã and b̃, then the method is
defined to calculate the divided between ã and b̃, as Eqs. (4)–(7) [14]:

ãa

b̃a

¼ ða2 � a1Þaþ a1

�ðb3 � b2Þaþ b3
;
�ða3 � a2Þaþ a3

ðb2 � b1Þaþ b1

� �
(4)

When a = 0,

ã0

b̃0

¼ a1

b3
;
a3

b1

� �
(5)

When a = 1,

ã1

b̃1

¼ ða2 � a1Þ þ a1

�ðb3 � b2Þ þ b3
;
�ða3 � a2Þ þ a3

ðb2 � b1Þ þ b1

� �

ã1

b̃1

¼ a2

b2
;
a2

b2

� � (6)

So the approximated value of ã=b̃ will be

ã

b̃
¼ a1

b3
;
a2

b2
;
a3

b1

� �
(7)

Property 3.1. Assuming that both ã ¼ ða1; a2; a3Þ and b̃ ¼
ðb1; b2; b3Þ are real numbers, the distance measurement dðã; b̃Þ is
identical to the Euclidean distance [15].

The basic operations on Fuzzy triangular numbers are as follows
[11]:

For approximation of multiplication : ã� b̃

¼ ða1 � b1; a2 � b2; a3 � b3Þ (8)

For addition : ãþ b̃ ¼ ða1 þ b1; a2 þ b2; a3 þ b3Þ (9)

Given the above-mentioned Fuzzy theory, the proposed Fuzzy AHP
procedure is then defined as follows:

Step 1. AHP uses several small sub-problems to present a complex
decision problem. Thus, the first act is to decompose the
decision problem into a hierarchy with a goal at the top,
criteria and sub-criteria at levels and sub-levels and
decision alternatives at the bottom of the hierarchy (Fig. 3).

Step 2. The comparison matrix involves the comparison in pairs of
the elements of the constructed hierarchy. The aim is to set
their relative priorities with respect to each of the elements
at the next higher level.

C1 C2 C3 � � � Cn

D ¼

C1

C2

C3

..

.

Cn

x11 x12 x13 � � � x1n

x21 x22 x23 x2n

x31 x32 x33 x3n

..

.

xn1 xn2 xn3 xnn

2
666664

3
777775

(10)

The elements {xij} can be interpreted as the degree
preference of ith criterion over jth criterion. It appears that
the weight determination of criteria is more reliable when
using pairwise comparisons than obtaining them directly,
because it is easier to make a comparison between two
attributes than make an overall weight assignment. Before
all the calculations of vector of priorities, the comparison
matrix has to be normalized into the range of [0,1] by
Eq. (11):

ri j ¼
xi jPn
i¼1 xi j

(11)

C1 C2 C3 � � � Cn

R ¼

C1

C2

C3

..

.

Cn

r11 r12 r13 � � � r1n

r21 r22 r23 r2n

r31 r32 r33 r3n

..

.

rn1 rn2 rn3 rnn

2
666664

3
777775

(12)

Step 3. AHP also calculates an inconsistency index (or consistency
ratio) to reflect the consistency of the decision maker’s
judgments during the evaluation phase. The inconsistency
index in both the decision matrix and in pairwise
comparison matrices could be calculated with Eq. (13) [5]:

CI ¼ lmax � N

N � 1
(13)

where lmax is the principal eigenvalue of the judgement

matrix and n is the order of the judgement matrix. The closer

the inconsistency index to zero, the greater the consistency.

The consistency of the assessments is ensured if the equality

(aijajk = aik, 8i, j, k) holds for all criteria. The relevant index

should be lower than 0.10 to accept the AHP results as

consistent. If this is not the case, the decision maker should

go back and redo the assessments and comparisons [10].
Step 4. In the next step, transform the real elements of matrix R

into the fuzzy numbers.
Step 5. Before conducting all the calculation of vector of priorities,

the comparison matrix D has to be normalized by Eq. (11).
Step 6. To find the criteria weights, calculate the average of the

elements of each rows from matrix obtained from step 4, by
Definition 3.4.

3.2. Fuzzy membership function

Experts usually use the linguistic variable to evaluate the
importance of the criteria and to rate the alternatives with respect
to various criteria. The example of the present study has only
precise values for the performance ratings and for the criteria
weights. In order to illustrate the idea of Fuzzy MACD, we
deliberately transform the existing precise values to five levels,
Fuzzy linguistic variables very low (VL), low (L), medium (M), high
(H), and very high (VH). The purpose of the transformation process
is two-folded: (i) to illustrate the proposed Fuzzy MACD method
and (ii) to benchmark the empirical results using other precise
value methods in the later analysis.

Among the commonly used Fuzzy numbers, triangular and
trapezoidal fuzzy numbers are likely to be the adoptive ones due to
their simplicity in modeling easy interpretations. Both triangular
and trapezoidal fuzzy numbers are applicable to the present study.
We assume that a triangular fuzzy number can adequately
represent the five-level Fuzzy linguistic variables, thus, is used
for the analysis hereafter.

As a rule of thumb, each rank is assigned an evenly spread
membership function that has an interval of 0.30 or 0.25. Based on
these assumptions, a transformation table can be found as shown
in Table 1. For example, the Fuzzy variable, very low has its
associated triangular Fuzzy number with the minimum of 0.00
mode of 0.10 and maximum of 0.25. The same definition is then
applied to another Fuzzy variable Low, Medium, High, and Very
High. Fig. 2 illustrates the Fuzzy membership function [11].



Fig. 2. Fuzzy triangular memebership functions.

Table 1
Transformation for Fuzzy membership functions.

Rank Sub-criteria grade Membership function

Very low (VL) 1 (0.00,0.10,0.25)

Low (L) 2 (0.15,0.30,0.45)

Medium (M) 3 (0.35,0.50,0.65)

High (H) 4 (0.55,0.70,0.85)

Very high (VH) 5 (0.75,0.90,1.00)
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3.3. Principles of TOPSIS

TOPSIS method is based on choosing the best alternative, which
has the shortest distance from the positive-ideal solution and the
longest distance from the negative-ideal solution, more detailed
information can be found in Hwang and Yoon [4].

3.4. Fuzzy TOPSIS model

It is often difficult for a decision maker to assign a precise
performance rating to an alternative for the criteria under
consideration. The merit of using a Fuzzy approach is to assign
the relative importance of the criteria using Fuzzy numbers instead
of precise numbers. This section extends the TOPSIS to the Fuzzy
environment. The Fuzzy MCDM can be concisely expressed in
matrix format as Eqs. (14) and (15).

C1 C2 C3 � � � Cn

A1

A2

A3

..

.

Am

x̃11 x̃12 x̃13 � � � x̃1n

x̃21 x̃22 x̃23 x̃2n

x̃31 x̃32 x̃33 x̃3n

..

.

x̃m1 x̃m2 x̃m3 x̃mn

2
666664

3
777775

(14)

W̃ ¼ ½ w̃1; w̃2; . . . ; w̃n � (15)

where x̃i j; i ¼ 1;2; . . . ;m; j = 1, 2, . . ., n and w̃ j, j = 1, 2, . . ., n are
linguistic triangular Fuzzy numbers, x̃i j ¼ ðai j;bi j; ci jÞ and
w̃ j ¼ ða j1; b j2; c j3Þ. Note that x̃i j is the performance rating of the
ith alternative, Ai, with respect to the jth criterion, Cj and w̃ j

represents the weight of the jth criterion, Cj. The normalized Fuzzy
decision matrix denoted by R̃ is shown as Eq. (16):

R̃ ¼ ½r̃i j�m�n
(16)

The weighted Fuzzy normalized decision matrix is shown in Eq. (17):

V ¼

ṽ11 ṽ12 . . . ṽ1n

ṽ21 ṽ22 ṽm1 ṽ2n

..

. ..
. ..

. ..
.

ṽm1 ṽn2 ṽm1 ṽmn

2
6664

3
7775

¼

w̃1r̃11 w̃2r̃12 . . . w̃nr̃1n

w̃1r̃21 w̃2r̃22 . . . w̃nr̃2n

..

. ..
. ..

. ..
.

w̃1r̃m1 w̃2 r̃m2 . . . w̃nr̃mn

2
6664

3
7775: (17)
The merit of using a Fuzzy approach is to assign the relative
importance of the criteria using Fuzzy numbers instead of precise
numbers. This section extends the TOPSIS to the Fuzzy environ-
ment. This method is particularly suitable for solving the group
decision maker problem under Fuzzy environment. Given the
above Fuzzy theory, the proposed Fuzzy TOPSIS procedure is then
defined as follows:

Step 1. Choose the linguistic ratings ðx̃i jÞ i = 1, 2, . . ., m; j = 1,
2, . . ., n for alternatives with respect to criteria and the
appropriate linguistic variables (w̃ j, j = 1, 2, . . ., n) for the
weight of the criteria. The Fuzzy linguistic rating ðx̃i jÞ
preserves the property that the ranges of normalized
triangular Fuzzy numbers belong to [0,1]; thus, there is no
need for a normalization procedure. For this instance, the D̃

defined by Eq. (14) is equivalent to the R̃ defined by Eq. (16).
Step 2. Construct the weighted normalized Fuzzy decision matrix.

The weighted normalized value Ṽ is calculated by Eq. (17).
Step 3. Identify positive ideal (A*) and negative ideal (A�) solutions.

The Fuzzy positive-ideal solution (FPIS, A*) and the Fuzzy
negative-ideal solution (FNIS, A�) are shown in Eqs. (18)
and (19):

A	 ¼ fṽ	1; ṽ
	
2; . . . ; ṽ	ng ¼ fðmaxiṽi jji ¼ 1; . . . ;mÞ; j

¼ 1;2; . . . ;ng: (18)

A� ¼ fṽ�1 ; ṽ
�
2 ; . . . ; ṽ�n g ¼ fðmini ṽi jji ¼ 1; . . . ;mÞ; j

¼ 1;2; . . . ;ng: (19)

Max and min operations does not give triangular fuzzy
number but it is possible to express approximated values of
min and max as triangular fuzzy numbers [14], we know
that the elements ṽi j 8i,j are normalized positive triangular
fuzzy numbers and their ranges belong to the closed
interval [0,1]. Thus, we can define the fuzzy positive-ideal
solution and the negative-ideal as ṽ	j ¼ ð1;1;1Þ and
ṽ�j ¼ ð0;0;0Þ, j = 1, 2, . . ., n [10].

Step 4. Calculate separation measures. The distance of each
alternative from A* and A� can be currently calculated
using Eqs. (20) and (21).

d	i ¼
Xn

j¼1

dðṽi j; ṽ
	
jÞ; i ¼ 1;2; . . . ;m (20)

d�i ¼
Xn

j¼1

dðṽi j; ṽ
�
j Þ; i ¼ 1;2; . . . ;m (21)

Step 5. Calculate the similarities to ideal solution. This step solves
the similarities to an ideal solution by Eq. (22):

CCi ¼
d�i

d	i þ d�i
(22)

Step 6. Rank preference order. Choose an alternative with max-
imum CC	i or rank alternatives according to CC	i in
descending order [11].

4. Empirical illustrations and discussions

4.1. Empirical illustrations for AHP method

The hierarchical structure of the decision model of the paper
with the alternatives and the criteria is portrayed in Fig. 3. The
decision problem consists of three levels: at the highest level, the
objective of the problem is situated while in the second level, the
criteria are listed, and in the third level, the sub-criteria are listed;
the last level belongs to the alternatives.



Fig. 3. The decision-making problem’s hierarchy.

Table 2
The pairwise comparison matrix of the criteria and sub-criteria.

No. C1 C2 SC1 SC2 SC3 SC4 SC5

C1 1 0.5 – – – – –

C2 2 1 – – – – –

SC1 – – 1 1 0.3333 1 1

SC2 – – 1 1 0.3333 1 7

SC3 – – 3 3 1 3 5

SC4 – – 1 1 0.3333 1 3

SC5 – – 1 0.1428 0.2 0.3333 1

Table 3
Priority weights in the AHP decision tree.

Criteria1 0.3333333

Sub-criteria11 0.425 2 0.14166 4

Sub-criteria12 0.575 1 0.19166 2

Criteria2 0.6666666

Sub-criteria21 0.644835 1 0.42989 1

Sub-criteria22 0.244575 2 0.16305 3

Sub-criteria23 0.11059 3 0.07372 5
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As mentioned, the AHP methodology first necessitates the
pairwise comparisons of the criteria and sub-criteria in order to
determine their weighs. These consistent comparison matrices are
shown in Table 2. The normalized priority weights among the two
main criteria and five sub-criteria and their ranking have been
depicted in Table 3.

4.2. Empirical illustrations for Fuzzy AHP method

Step 1. The comparison matrixes 2 have to be normalized into the
range of [0,1] by Eq. (11). Table 2 can be transformed into
Table 4.

The comparison matrices 4 are consistent (CI < 0.1) according
to Isiklar and Buyukozkan [10]. In the next step, we use the Fuzzy
membership function discussed in Section 3.2 to transform Table 4
Table 4
Normalized pairwise comparison matrix of the criteria and sub-criteria for AHP

analysis.

No. C1 C2 SC1 SC2 SC3 SC4 SC5

C1 0.333333 0.333333 – – – – –

C2 0.666666 0.666666 – – – – –

SC1 – – 0.5 0.5 0.5 0.5 0.125

SC2 – – 0.5 0.5 0.5 0.5 0.875

SC3 – – 0.6 0.724138 0.652174 0.692308 0.55555

SC4 – – 0.2 0.241379 0.217391 0.230769 0.33333

SC5 – – 0.2 0.034483 0.130435 0.076923 0.11111
into Table 5 as explained by the following example. If the numeric
rating is 0.45, then its Fuzzy linguistic variable is ‘‘M’’. Therefore,
the new pairwise comparison matrix will be as in Table 5.

The fuzzy linguistic variables of the above matrix are then
transformed into a Fuzzy triangular membership function as
shown in Table 6.

In the third step, we calculate the average of the elements of
each row; the resulting matrixes are shown in Tables 7 and 8.

4.3. Empirical illustrations for TOPSIS method

The decision matrix of Table 9 is used for the TOPSIS analysis.
Based on the first step of the TOPSIS procedure, each element is
normalized by Eq. (11). The resulting normalized decision matrix
for the TOPSIS analysis is shown in Table 10. The second step
required the criteria weight information to calculate the weighted
normalized rating. These criteria weights calculated former with
AHP. The third step finds the weighted normalized decision matrix.
The analysis then proceeds to steps 4 and 5. The results are
summarized in Table 11.

Finally, the fifth step rank the alternative according to Table 11
results as follows:

A8 >A2 >A7 >A6 >A1 >A10 >A9 >A3 ¼ A4 >A5

4.4. Empirical illustrations for Fuzzy TOPSIS method

Table 9, numeric performance ratings are adopted again for
Fuzzy TOPSIS analysis. In order to transform the performance
ratings to Fuzzy linguistic variables, the performance ratings in
Table 9 are normalized into the range of [0 1] by Eqs. (23) and (24):

(i) The larger, the better type [11]:

ri j ¼
½xi j �minfxi jg�

½maxfxi jg �minfxi jg�
: (23)
Table 5
Pairwise comparison matrix of the criteria and sub-criteria using Fuzzy linguistic

variables.

No. C1 C2 SC1 SC2 SC3 SC4 SC5

C1 L L – – – – –

C2 H H – – – – –

SC1 – – M M M M VL

SC2 – – M M M M VH

SC3 – – M H H H M

SC4 – – VL L L L L

SC5 – – VL VL VL VL VL



Table 6
Fuzzy pairwise comparison matrix of the criteria and sub-criteria.

No. C1 C2 SC1 SC2 SC3 SC4 SC5

C1 (0.15,0.30,0.45) (0.15,0.30,0.45) – – – – –

C2 (0.55,0.70,0.85) (0.55,0.70,0.85) – – – – –

SC1 – – (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.00,0.10,0.25)

SC2 – – (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.75,0.90,1.00)

SC3 – – (0.35,0.50,0.65) (0.55,0.70,0.85) (0.55,0.70,0.85) (0.55,0.70,0.85) (0.35,0.50,0.65)

SC4 – – (0.00,0.10,0.25) (0.15,0.30,0.45) (0.15,0.30,0.45) (0.15,0.30,0.45) (0.15,0.30,0.45)

SC5 – – (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.10,0.25)

Table 10
Normalized decision matrix for TOPSIS analysis.

No. C1 C2 C3 C4 C5

A1 0.29013 0.304997 0.062859 0.134672 0.288593

A2 0.174078 0.343122 0.314823 0.281912 0.3203

A3 0.348156 0.304997 0.377153 0.276885 0.328184

A4 0.464208 0.304997 0.188577 0.502774 0.353854

A5 0.29013 0.304997 0.251435 0.224453 0.288437

A6 0.29013 0.343122 0.314294 0.281912 0.284294

A7 0.348156 0.190623 0.377153 0.071825 0.349601

A8 0.464208 0.381246 0.502871 0.477635 0.314775

A9 0.174078 0.304997 0.251435 0.276885 0.33582

A10 0.116052 0.343122 0.314294 0.36487 0.288282

W 0.141667 0.191666 0.42989 0.16305 0.075727

Table 7
Fuzzy pairwise comparison matrix of the sub-criteria and Fuzzy criteria weights.

No. SC1 SC2 SC3 SC4 SC5 W Rank

SC1 (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.05,0.15,0.29) 4

SC2 (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65) (0.08,0.21,0.38) 2

SC3 (0.55,0.70,0.85) (0.35,0.50,0.65) (0.55,0.70,0.85) (0.55,0.70,0.85) (0.55,0.70,0.85) (0.41,0.63,0.85) 1

SC4 (0.15,0.30,0.45) (0.00,0.10,0.25) (0.15,0.30,0.45) (0.15,0.30,0.45) (0.15,0.30,0.45) (0.08,0.21,0.38) 3

SC5 (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.10,0.25) (0.00,0.70,0.21) 5

Table 8
Fuzzy pairwise comparison matrix of the criteria and Fuzzy criteria weights.

No. C2 C1 W Rank

C1 (0.15,0.30,0.45) (0.15,0.30,0.45) (0.15,0.30,0.45) 1

C2 (0.55,0.70,0.85) (0.55,0.70,0.85) (0.55,0.70,0.85) 2

Table 9
Decision matrix.

No. C1 C2 C3 C4 C5

A1 185.9500 3.7500 0.0119 8.0000 0.0575

A2 206.3800 7.8500 0.0596 9.0000 0.0345

A3 211.4600 7.7100 0.0714 8.0000 0.0690

A4 228.0000 14.0000 0.0357 8.0000 0.0920

A5 185.8500 6.2500 0.0476 8.0000 0.0575

A6 183.1800 7.8500 0.0595 9.0000 0.0575

A7 225.2600 2.0000 0.0714 5.0000 0.0690

A8 202.8200 13.3000 0.0952 10.0000 0.0920

A9 216.3800 7.7100 0.0476 8.0000 0.0345

A10 185.7500 10.1600 0.0595 9.0000 0.0230
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(ii) The smaller, the better type:

ri j ¼
½maxfxi jg � xi j�

½maxfxi jg �minfxi jg�
(24)

For the present study, C4 and C5 are the smaller-the-better type;
the others belong to the larger-the-better type. Then, this table can
be transformed into Table 12. The next step uses the Fuzzy
membership function discussed in Section 3.2 to transform
Table 12 into Table 13.
Table 11
TOPSIS analysis results.

No. vi1 vi2 vi3 vi4

A1 0.041102 0.058458 0.027022 0.021958

A2 0.024661 0.065765 0.135339 0.045966

A3 0.049322 0.058458 0.162134 0.045146

A4 0.065763 0.058458 0.081067 0.081977

A5 0.041102 0.058458 0.10809 0.036597

A6 0.041102 0.065765 0.135112 0.045966

A7 0.049322 0.036536 0.162134 0.011711

A8 0.065763 0.073072 0.216179 0.077878

A9 0.024661 0.058458 0.10809 0.045146

A10 0.016441 0.065765 0.135112 0.059492

v	j 0.065763 0.073072 0.216179 0.011711

v�j 0.016441 0.036536 0.027022 0.081977

W 0.141667 0.191666 0.42989 0.16305
The Fuzzy linguistic variable is then transformed into a Fuzzy
triangular membership function as shown in Table 14. This is the
first step of the Fuzzy TOPSIS analysis. The Fuzzy criteria weight is
also collected in Table 14. The second step in the analysis is to find
the weighted Fuzzy decision matrix. Using Eq. (8), the Fuzzy
multiplication equation, the resulting Fuzzy weighted decision
matrix is shown in Table 15. According to Table 15, we can define
the Fuzzy positive-ideal solution and the Fuzzy negative-ideal
solution as: ṽ	j ¼ ð1;1;1Þ and ṽ	j ¼ ð0;0;0Þ, j = 1, 2, . . ., n. This is the
third step of the Fuzzy TOPSIS analysis. For the fourth step, the
distance of each alternative from A* and A� can be calculated using
Eqs. (19) and (21). The fifth step solves the similarities to an ideal
solution by Eq. (22). The resulting Fuzzy TOPSIS analyses are
summarized in Table 16.
vi5 S	i S�i C	i

0.021854 0.191591 0.068669 0.522671

0.024255 0.097256 0.118143 0.683672

0.024852 0.067332 0.145524 0.33287

0.026796 0.153081 0.076381 0.33287

0.021843 0.114562 0.098714 0.002525

0.021529 0.091689 0.120293 0.567469

0.026474 0.067457 0.094549 0.583613

0.023837 0.085465 0.198931 0.699485

0.025431 0.121324 0.092078 0.431478

0.021831 0.106495 0.114315 0.517709

0.021529

0.026796

0.075727



Table 12
Normalized decision matrix for Fuzzy TOPSIS analysis.

No. C1 C2 C3 C4 C5

A1 0.5 0.6 0 0.854167 0.938197

A2 0.166667 0.8 0.572629 0.5125 0.482374

A3 0.666667 0.6 0.714286 0.524167 0.369032

A4 1 0.6 0.285714 0 0

A5 0.5 0.6 0.428571 0.645833 0.940428

A6 0.5 0.8 0.571429 0.5125 1

A7 0.666667 0 0.714286 1 0.061133

A8 1 1 1 0.058333 0.561803

A9 0.166667 0.6 0.428571 0.524167 0.259259

A10 0 0.8 0.571429 0.32 0.94266

W 0.141667 0.191666 0.42989 0.16305 0.075727

Table 13
Decision matrix using Fuzzy linguistic variables.

No. C1 C2 C3 C4 C5

A1 M H VL VH VH

A2 VL VH M M M

A3 H H H M M

A4 VH H L VL VL

A5 M H M H VH

A6 M VH M M VH

A7 H VL H VH VL

A8 VH VH VH VL H

A9 VL H M M L

A10 VL VH M L VH

W L H VH M VL
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The last step found the preference for the 10 alternatives as
follows:

A8 >A3 >A6 >A5 >A2 >A7 >A10 >A1 >A9 >A4

The Fuzzy TOPSIS analysis of the alternatives is summarized in
Fig. 4.
Table 14
Fuzzy decision matrix and Fuzzy criteria weights.

No. C1 C2

A1 (0.35,0.50,0.65) (0.55,0.70,0.85)

A2 (0.00,0.10,0.25) (0.75,0.90,1.00)

A3 (0.55,0.70,0.85) (0.55,0.70,0.85)

A4 (0.75,0.90,1.00) (0.55,0.70,0.85)

A5 (0.35,0.50,0.65) (0.55,0.70,0.85)

A6 (0.35,0.50,0.65) (0.75,0.90,1.00)

A7 (0.55,0.70,0.85) (0.00,0.10,0.25)

A8 (0.75,0.90,1.00) (0.75,0.90,1.00)

A9 (0.00,0.10,0.25) (0.55,0.70,0.85)

A10 (0.00,0.10,0.25) (0.75,0.90,1.00)

W (0.15,0.30,0.45) (0.55,0.70,0.85)

Table 15
Fuzzy weighted decision matrix.

No. C1 C2

A1 (0.05,0.15,0.29) (0.30,0.49,0.72)

A2 (0.00,0.03,0.11) (0.41,0.63,0.85)

A3 (0.08,0.50,0.65) (0.30,0.49,0.72)

A4 (0.11,0.27,045) (0.30,0.49,0.72)

A5 (0.05,0.15,0.29) (0.30,0.49,0.72)

A6 (0.05,0.15,0.29) (0.41,0.63,0.85)

A7 (0.08,0.50,0.65) (0.00,0.07,0.21)

A8 (0.11,0.27,045) (0.41,0.63,0.85)

A9 (0.00,0.03,0.11) (0.30,0.49,0.72)

A10 (0.00,0.03,0.11) (0.41,0.63,0.85)

Table 16
Fuzzy TOPSIS analysis.

No. ṽi1 ṽi2 ṽi3 ṽ

A1 (0.05,0.15,0.29) (0.30,0.49,0.72) (0.00,0.09,0.25) (0

A2 (0.00,0.03,0.11) (0.41,0.63,0.85) (0.26,0.45,0.65) (0

A3 (0.08,0.50,0.65) (0.30,0.49,0.72) (0.41,0.63,0.85) (0

A4 (0.11,0.27,045) (0.30,0.49,0.72) (0.11,0.27,045) (0

A5 (0.05,0.15,0.29) (0.30,0.49,0.72) (0.26,0.45,0.65) (0

A6 (0.05,0.15,0.29) (0.41,0.63,0.85) (0.26,0.45,0.65) (0

A7 (0.08,0.50,0.65) (0.00,0.07,0.21) (0.41,0.63,0.85) (0

A8 (0.11,0.27,045) (0.41,0.63,0.85) (0.56,0.81,1.00) (0

A9 (0.00,0.03,0.11) (0.30,0.49,0.72) (0.26,0.45,0.65) (0

A10 (0.00,0.03,0.11) (0.41,0.63,0.85) (0.26,0.45,0.65) (0

A+ (0,0,0) (0,0,0) (1,1,1) (1

A� (1,1,1) (1,1,1) (0,0,0) (0

W (0.15,0.30,0.45) (0.55,0.70,0.85) (0.75,0.90,1.00) (0
5. Computational results

The top three alternatives, according to the two proposed
methods, as well as the results by data envelopment analysis (DEA)
[16] are summarized in Table 17. All methods lead to choice of A8.
The Fuzzy TOPSIS concludes with the same top three alternatives
C3 C3 C4

(0.00,0.10,0.25) (0.75,0.90,1.00) (0.75,0.90,1.00)

(0.35,0.50,0.65) (0.35,0.50,0.65) (0.35,0.50,0.65)

(0.55,0.70,0.85) (0.35,0.50,0.65) (0.35,0.50,0.65)

(0.15,0.30,0.45) (0.00,0.10,0.25) (0.00,0.10,0.25)

(0.35,0.50,0.65) (0.55,0.70,0.85) (0.75,0.90,1.00)

(0.35,0.50,0.65) (0.35,0.50,0.65) (0.75,0.90,1.00)

(0.55,0.70,0.85) (0.75,0.90,1.00) (0.00,0.10,0.25)

(0.75,0.90,1.00) (0.00,0.10,0.25) (0.55,0.70,0.85)

(0.35,0.50,0.65) (0.35,0.50,0.65) (0.15,0.30,0.45)

(0.35,0.50,0.65) (0.15,0.30,0.45) (0.75,0.90,1.00)

(0.75,0.90,1.00) (0.35,0.50,0.65) (0.00,0.10,0.25)

C3 C4 C5

(0.00,0.09,0.25) (0.26,0.45,0.65) (0.00,0.90,0.25)

(0.26,0.45,0.65) (0.12,0.25,0.42) (0.00,0.05,0.16)

(0.41,0.63,0.85) (0.12,0.25,0.42) (0.00,0.05,0.16)

(0.11,0.27,045) (0.00,0.05,0.16) (0.00,0.01,0.06)

(0.26,0.45,0.65) (0.19,0.35,0.55) (0.00,0.90,0.25)

(0.26,0.45,0.65) (0.12,0.25,0.42) (0.00,0.90,0.25)

(0.41,0.63,0.85) (0.26,0.45,0.65) (0.00,0.01,0.06)

(0.56,0.81,1.00) (0.00,0.05,0.16) (0.00,0.07,0.21)

(0.26,0.45,0.65) (0.12,0.25,0.42) (0.00,0.03,0.11)

(0.26,0.45,0.65) (0.05,0.15,0.29) (0.00,0.09,0.25)

i4 ṽi5 dþi d�i CCi

.26,0.45,0.65) (0.00,0.90,0.25) 3.71 1.5 0.28790

.12,0.25,0.42) (0.00,0.05,0.16) 3.61 1.57 0.30308

.12,0.25,0.42) (0.00,0.05,0.16) 3.38 1.81 0.34874

.00,0.05,0.16) (0.00,0.01,0.06) 3.9 1.25 0.24271

.19,0.35,0.55) (0.00,0.90,0.25) 3.47 1.74 0.33397

.12,0.25,0.42) (0.00,0.90,0.25) 3.46 1.79 0.34095

.26,0.45,0.65) (0.00,0.01,0.06) 3.63 1.53 0.29651

.00,0.05,0.16) (0.00,0.07,0.21) 3.27 1.97 0.37595

.12,0.25,0.42) (0.00,0.03,0.11) 3.74 1.42 0.27519

.05,0.15,0.29) (0.00,0.09,0.25) 3.66 1.53 0.29479

,1,1) (1,1,1)

,0,0) (0,0,0)

.35,0.50,0.65) (0.00,0.10,0.25)



Table 17
Top three alternatives from different methods.

Preference order Fuzzy AHP and Fuzzy TOPSIS AHP and TOPSIS DEA

1 A8 A8 A8

2 A3 A2 A3

3 A6 A7 A6

Table 18
Comparison proposed method with several paper.

Ref. Isiklar and

Buyukozkan [10]

Yang and

Hung [11]

Chiou et al. [37] Wang et al. [38] Tsvetinov and

Mikhailov [34]

Febriamansyah

[18]

Proposed method

Problem type MCDM MADM MCDM MCDM MCDM MCDM MCDM

Application area

(proposed method

without some aspects)

Mobile phone

selection (without

Fuzzification)

Plant layout

design problem

(without FAHP)

Construct the

roadmap of

R&D consortia

(without TOPSIS

and FTOPSIS)

Evaluating the 64-bits

dual core Notebook

(without FAHP

and FTOPSIS)

Reasoning under

uncertainty during

pre-negotiations

(without TOPSIS

and FTOPSIS)

Irrigation water

allocation

(without

TOPSIS and

FTOPSIS)

Fully Fuzzy

decision

problem

Level 4 3 4 3 4 3 4

Criteria 2 6 5 7 3 6 2

Sub-criteria 6 – 20 30 6 – 5

Alternative 3 18 10 8 3 6 5

Solution method AHP and TOPSIS AHP and TOPSIS

and FTOPSIS

FAHP TOPSIS FAHP AHP and Fuzzy

dominance

method

FAHP and

FTOPSIS

Top three alternatives A2>A1>A3 A11>A15>A18 A6>A9>A10 A4>A5>A7 A1>A3>A2 A3>A6>A4

Solution through

proposed method

A2>A1>A3 A11>A15>A18 A6>A9>A10 A4>A5>A7 A1>A3>A2 A3>A6>A4

Fuzzification ability % 0 50 50 0 50 50 100

Fig. 5. Comparison proposed method with several paper from Fuzzification

ability %.

Fig. 4. Ranking of alternatives.
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as those DEA, but, the TOPSIS method concludes with the same top
one alternatives as the ones from DEA and Fuzzy TOPSIS. Therefore,
the proposed method by fuzzy systematic evaluation of the MCDM
problem can reduce the risk of a poor decision in management.

When precise performance ratings are available, the TOPSIS
method is considered a viable approach in solving a decision
problem. The DEA method is a viable approach. However, it has the
constraints in the number of decision-making units and in the
limitation to the discrepancy between performance frontiers. For
the instance of imprecise or vague performance rating, the fuzzy
TOPSIS is a preferred choice [11].

Comparison proposed method with several papers from a fuzzy
input data have been shown in Table 18 and Fig. 5.

6. Conclusions

The present study explored the use of AHP, Fuzzy AHP, TOPSIS
and Fuzzy TOPSIS in solving a MCDM problem. This study aimed at
searching an improved solution to MCDM problems. When the
criteria weights and performance ratings are vague and inaccurate,
then the Fuzzy AHP and Fuzzy TOPSIS are the preferred techniques.
In addition, there exists other worth investigating MADM methods
for a MADM problem. This becomes one of the future research
opportunities in this classical, yet important, research area.
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