
KnowNet: Towards a Knowledge Plane for Enterprise Network Management

Ren Quinn, Josh Kunz, Aisha Syed, Joe Breen, Sneha Kasera, Rob Ricci, Jacobus Van der Merwe
renquinn@cs.utah.edu, josh.kunz@utah.edu, aisha.syed@utah.edu,

joe.breen@utah.edu, kasera@cs.utah.edu, ricci@cs.utah.edu, kobus@cs.utah.edu

University of Utah

Abstract—Network management tasks remain tedious and
error-prone, and often require complex reasoning on the part of
the network administrator. With KnowNet we address the chal-
lenge of reasoning about network management by approaching it
as a set of cooperating applications executing over a knowledge
graph which captures data and information about the network
and the applications that manage and reason over it. We apply
our approach to enterprise network management by developing
a suite of cooperating applications that deals with security and
application performance management in an enterprise network.

I. INTRODUCTION

Despite longstanding recognition by the networking re-

search community of the importance of an improved approach

to network management and the need for automated solu-

tions [1], the state of the art continues to resist these efforts.

In practice network management remains manual, tedious and

error-prone, and often requires complex reasoning on the part

of the network administrator. Automating the reasoning done

by domain experts is the key challenge in realizing a more

systematic approach to network management. This is difficult,

largely in part because this reasoning must take into account

large and diverse quantities of data. This data is collected from

a number of different sources, and in order to be meaningfully

interpreted, it must be correlated with the operational state of

the network at the time it was collected. Complex relationships

between hardware, protocols, services, and their operational

state must be untangled in order to fully understand faults and

effect change in the network.

We argue that a network management system that can

support such functionality requires the means to capture

network data and knowledge of the network in a holistic

manner, allows for network management applications to easily

interact with and reason about this knowledge, and to effect

change in the network itself. In our work we take a pragmatic

approach towards realizing such a system. Our key insight

is that network administrators already deploy a multitude

of systems to monitor and manage their networks, and that

they (the administrators) are the reasoning and logic that tie

these systems together. Rather than imposing a new network

management system on network administrators that might

require them to replace the tools and systems they already use,

we propose to provide them with a framework that can turn

the systems they are already using into a cooperative whole

and allow them to add to that whole by easily automating the

reasoning tasks they are currently performing manually.

Towards this end, we present KnowNet, a knowledge-centric

network management system that facilitates knowledge shar-

ing and discovery, thus enabling operators to more effectively

reason about network state, determine appropriate actions, and

‘write’ to the network to effect needed change. Applications

use the knowledge graph at the core of KnowNet to represent

data collected about the network and knowledge derived from

that data. Knowledge graphs have gained popularity in a

number of domains [2], [3], [4], [5], due to their ability to ex-

press and discover interesting relationships over large datasets,

enabling complex reasoning about interrelated data [2], [6],

[7]. In our work on KnowNet, we explore the use of a

knowledge graph to capture information and knowledge in a

network management setting. As such, our work is a modest

step towards a practical (single domain) knowledge plane [1].

The knowledge graph in KnowNet is used to capture

more than just data about the network—specifically, network

management applications in KnowNet interact with each other

and the network itself via the knowledge graph. This allows

network management actions to also be captured as part of

the holistic network view in KnowNet. To realize such a

collaborative network management system, we have developed

a knowledge graph, called Kilo1, in order to explore features

that are particularly useful in the context of network manage-

ment, and may not exist in such a combination in available

knowledge graph implementations. Specifically, Kilo includes

the typical set of knowledge graph primitives: insert,

query, and delete. In addition to these, Kilo also supports

a subscribe primitive to learn about network related events

and deals with time natively because of the importance of

capturing network state over time.

To explore the practical utility of our architecture, we devel-

oped a suite of network management applications specifically

aimed at enterprise network management. We envision an

enterprise network where both basic network functionality as

well as sophisticated enterprise specific network management

functions are governed by KnowNet-enabled applications.

Motivated by a recent report on the topmost enterprise net-

work challenges [8], we developed applications to deal with

performance and security management. We show that existing

tools can be incorporated into KnowNet, allowing them to

interact with new network management functions to realize

our objective of holistic network management.

While borrowing from earlier network management ef-

1The term Knowledge Graph shares an abbreviation, KG, with Kilogram.
Thus, Kilo.978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

forts [9], [10], [1], [11], [12], [13], [14], our work on KnowNet

is unique along several dimensions. First, we believe our

work is among the first to explore the use of a knowledge

graph abstraction to capture all of the data, knowledge and

actions associated with network management. Second, our

approach of attacking the network management problem with a

collection of cooperating applications affords a unique tradeoff

between flexibility and simplicity. In KnowNet we do not

impose structure in our knowledge graph allowing applications

to define structure according to the data and management

functions they deal with. On the flip side, this requires more

sophistication from applications wanting to cooperate. Finally,

in KnowNet we take a pragmatic approach to network man-

agement (and indeed illustrate the aforementioned flexibility

of our approach) by incorporating both existing as well as new

network management applications in a holistic framework.

This paper makes the following contributions:

• We present the design and implementation of KnowNet, a

network management framework that divides the responsibility

of reasoning about the network among cooperating applica-

tions (§ III).

• We present the design and implementation of Kilo, a

knowledge graph that is specialized to the domain of network

management (§ III-A).

• To illustrate the utility of KnowNet, we develop a suite of

cooperating security- and performance-related network man-

agement applications for enterprise networks (§ IV). Some

applications in this suite exhibit complex reasoning, while

other applications incorporate existing network management

tools (sFlow-RT and Snort)—we show how KnowNet enables

these existing applications to be brought into a holistic network

management system.

• We perform an extensive evaluation of our approach in an

emulated enterprise network environment (§ V). This evalua-

tion demonstrates the ability of a KnowNet-enabled network

to maintain network health under challenging conditions, and

to scale to enterprise-sized networks.

II. BACKGROUND AND MOTIVATION

Beyond the knowledge plane vision [1], our work is specif-

ically influenced by NetSearch [15], a search and information

retrieval tool inspired by web search engines, but designed for

networks. The NetSearch goal is to organize network data in

order to expose relationships that would otherwise be difficult

to infer. In KnowNet we go beyond information retrieval to

a more sophisticated knowledge store, providing operators

with a systematic reasoning platform, and in so doing, also

allowing the platform to serve as the basis for automating

closed-loop network management actions. Our key insight is

that relationship mining can be improved using a knowledge

graph whose core representation is built on such relationships,

and that capturing these relationships is critical to enabling

automated network management functions.

A knowledge graph (KG) [5] is a data structure used

to represent a collection of facts, which collectively form

knowledge. Facts are composed of node entities and the rela-

tions (edges) between them. These are represented as triples:

for example, switchA has-interface if0. A query

against this graph may take the form of a subgraph to match

(for example, “all subgraphs such that A has-type switch

and A has-interface B and C uses-interface B”

for searching for paths between two nodes). The query is then

fulfilled by returning all subgraphs with entities that can satisfy

the query and returning them in place of the variables (denoted

by a string where the first character is a capital letter. e.g., A,

B and C in the above examples).

Using a knowledge graph abstraction has become a popular

model [2] for analyzing data. By expressing data as a network

of relationships, it is possible to explore connections and infer

new facts from the connection [3]. Knowledge graphs have

been shown to scale to large datasets and complex queries [2],

[6]. As such, our current efforts focus on developing the

correct primitives and abstractions for a network management

knowledge graph, and using it in a modest sized network

setting. Therefore, scalability is not a focus of our current

work.

The following sections justify our decision to use a knowl-

edge graph as the core of the KnowNet approach.

A. Network Data Representation

We have analyzed a number of approaches to network

data representation [16], [9], [17], [18], [10] and combined

them with our own experience to identify a number of key

requirements that we feel must be met in any new approach

to network data representation in order to enable the complete

range of network management and operations tasks. We argue

that these requirements are best met with a knowledge-graph

based approach.

Enable knowledge composition. Most of network man-

agement data is key-value oriented. Sflow data, MIB tables,

IDS alerts, interface configuration, OpenFlow rules, and even

packets themselves are all simply collections of key-value

pairs. While this data representation is clean and concise, there

is no way to systematically glean meaning or understanding

directly from the raw pairs; this function usually occurs in the

minds of the network operators. Therefore, as we represent

this data, we need an additional feature associated with the

keys and the values to give them semantics. The KnowNet

knowledge-graph based approach allows these relationships

and connections between the basic key-value data represen-

tation to be captured.

Data source agnostic. Data representation should be de-

signed independent from the tools that provide the data. Many

proposed data constructs reflect the source of the data (e.g.,

events from Lithium [17], packets from NetSight [18]). Expos-

ing the semantics of the data source in the data representation

limits the application of the data to devices and tools that are

already constructed using it. By converting lower level data

representations into a knowledge-graph, KnowNet allows us

to integrate with any data sources and to combine them into

a holistic network data representation.

B. Network Management with Knowledge Graphs

Beyond data representation, a knowledge-graph based ap-

proach has properties that make its use particularly attractive

in the network management domain.

Flexible Structure With Hierarchy: The data model im-

posed by a knowledge graph is simple, and makes it easy

to build flexible, complex structures on top. These properties

mean that KnowNet does not need to impose any particular

schema on the applications written for it; this makes it simple

to extend it and to add new types of network management

applications. Of course, there are natural classes of objects,

as well as layering hierarchies, in a network, and the set of

base applications in KnowNet builds a basic set of facts using

a basic hierarchical model. Other applications can interact

with the model at whichever level (service, forwarding path,

physical topology) is appropriate for the application. It is also

possible to draw inferences between layers of abstractions.

Data in a knowledge graph is organized by all of its

relationships, whether that be the kind of data (e.g., perfor-

mance measurements, security alerts) or the network elements

they are explaining (e.g., nodeA, switchB). (In contrast to a

traditional database setting where such data will be in separate

tables.) This means instead of querying for all performance

measurements and all security alerts and then filtering by

whichever element we are interested in, we can now simply

query for the node we are interested in and get all knowledge

associated with it. This not only simplifies large queries, it

also more easily enables knowledge discovery by allowing

applications to query for relations previously unknown to them

as they were inserted by other applications.

While the flexibility of a dynamic schema is useful, it

also implies a number of challenges. Particularly difficult is

understanding the semantics of different entity and relation

names, especially when facts are inserted by different sources.

We save this problem for future work. At this point, loose

semantics allow us to better explore relationships between

network data. Our current goal is primarily to explore the use

of a knowledge graph with embedded network primitives.

Network-like Structure: The clearest natural fit between

a knowledge graph and a network is that the topology of

a network itself is naturally represented as a graph. Many

common network algorithms, such as the minimum spanning

tree algorithm and various routing algorithms, already work on

graph structures. The KnowNet apps that provide basic net-

work functionality, e.g., routing, make use of these properties.

Dependency Chains: A less obvious, but even more

important, fit between knowledge graphs and the network

management domain is their strength in representing depen-

dencies [13]. For example, a service (such as a webserver,

fileserver, or public IP connectivity) relies upon paths through

the network to deliver that service’s packets. These paths are,

in turn, dependent on the protocols that establish them and the

hardware that implements them. These dependencies, are not,

however, strictly hierarchical: for example, the performance of

a given path (and therefore the service that uses it) can depend

on the other services using the path or hops along the path,

and their dynamic state, such as the current offered load, level

of congestion, or failures (both hard and soft). Representing

the network using a knowledge graph enables us to explore

the causes and effects of network behavior.

III. KNOWNET ARCHITECTURE

The KnowNet architecture is shown in Figure 1. It is divided

into two parts: a centralized knowledge store, realized as the

Kilo knowledge graph, and a set of cooperating applications

that use the data, information and knowledge in the knowledge

store to perform their network management functions.
The KnowNet cooperating applications can be divided into

a set of network abstraction apps that interface with the

network proper, as well as a set of network management apps

that realize the various network management functions. The

KnowNet architecture presents a generic network management

framework that can be applied to any network management

environment. The functionality of the applications, however,

is specific to the particular network environment in which

the system is deployed. For example, in Section IV we

describe the suite of applications we have developed targeted

to enterprise network management.

Fig. 1: KnowNet architecture

We note that in an abstract sense, the KnowNet architecture

“simply” mimics the network management actions taking

place today: Network administrators deploy various disjoint

“read” or “write” systems in their networks, and interpret and

reason about the output from some “read” system to decide

what actions to induce in another “write” system. Our goal

with KnowNet is to create a holistic network management

system that allows these disparate systems to cooperate and

to further facilitate network operators in complex, timely

reasoning over the network state.

A. A Network Management Knowledge Graph

Conventional knowledge graph systems, such as Free-

base [2], Naga/Yago [3], [6], and DeepDive [4], are pri-

marily designed for harnessing relatively static knowledge.

The knowledge associated with network management, on the

contrary, is much more dynamic. We identify three specific

network management related requirements that existing knowl-

edge graph systems are not supporting, or are supporting

poorly.

Reactive Queries. Network management functions are of-

ten executed in a reactive manner, e.g., if event A happens,

execute action B. This suggests the need for a knowledge

graph primitive that would inform applications should certain

knowledge be added to the graph, i.e., a subscription primitive.

Time-Varying Data. In a network management scenario,

knowledge changes over time, and tracking knowledge as a

function of time becomes important. This implies the need for

a knowledge graph time tracking primitive to support network

management.

Data Curation. Because knowledge changes over time in

a network management scenario, the utility of facts become

dependent on the time they were inserted. Facts might become

irrelevant or even misleading as time progresses. Further,

network management functions tend to generate significant

volumes of data. This implies the need for data curation

primitives in support of network management.

B. KnowNet’s Knowledge Graph: Kilo

To experiment with features necessary or useful for

network-management, we implemented Kilo, KnowNet’s

knowledge graph, from scratch. This approach allows us to

more flexibly explore knowledge graph primitives that facil-

itate network management. Kilo is inspired by Naga [3], a

knowledge graph built for harnessing large amounts of text-

based knowledge. Kilo borrows Naga’s core algorithms and

functionality, namely, inserts and queries. We also imple-

mented an HTTP interface enabling multiple apps to asyn-

chronously work with the knowledge graph.

Kilo provides typical knowledge graph primitives such as

insert, query and delete. In addition we realized network

management specific primitives in Kilo, namely subscriptions

and dealing explicitly with time. We consider relevant imple-

mentation details of the Kilo primitives below.

Subscriptions. A key part of network management is

reacting to specific events. Kilo enables this dynamic by

allowing applications to receive new results for a query as the

knowledge graph is updated through the subscription primitive.

One motivation for including this primitive in the graph is to

ensure applications can react as quickly as possible to network

state changes. External mechanisms require techniques such as

polling which might miss transient states.

Delete. Every knowledge store needs the ability to forget a

piece of knowledge. Knowledge can become stale, irrelevant,

or cumbersome to manage. In Kilo, we take a reference-

counting approach to fact deletion. Each participating applica-

tion is required to increment, and later decrement, a counter

which signifies whether or not an application still needs access

to that data. When the counter reaches zero, Kilo understands

that the data is no longer necessary and is eligible for removal

from the active knowledge graph. We have implemented an

archiving app which uses the properties implemented by

the delete primitive to perform data curation based on the

policies and needs of an enterprise network.

Time. We natively support time as a primitive by attaching

a timestamp to every fact. This allows for queries that can

include optional minimum and maximum timestamps. As the

query executes, the facts are filtered based on these time

parameters, effectively pruning the graph and allowing us to

see a snapshot of the graph as it existed at any point in time.

IV. ENTERPRISE MANAGEMENT APPS

Applications written for KnowNet are straightforward. The

common workflow involves: (1) Querying for or subscribing

to certain facts: for example, an application working to route

around outages might look for facts indicating that interfaces

are down, or an application that performs active measure-

ments might look for facts stating that another application

has requested a measurement of a certain path. Note that

this means more than simple data queries. The ecosystem of

multiple apps running on top of the knowledge graph provides

for the composition of higher-level knowledge as a result

of understanding lower-level data points. (2) Interpreting the

facts: this is where the bulk of the “work” of the application is

done: computing routes, performing measurements, etc. This is

where the use of a knowledge graph is most desirable. It allows

applications to understand network behavior as an operator

would, by examining the network at a low level in order to

produce insights at a higher level. The knowledge graph en-

ables applications to systematically capture the results of this

human-like reasoning in a relationship-based manner. This step

is essentially the application of domain knowledge to the state

of the network, the result of which will later be inserted into

the graph for other applications to learn from. (3) Inserting any

resulting facts into the knowledge graph: these facts may be

simple inferences from existing data, may represent the results

of measurements or probes of the network, may comprise

requests for other applications to take actions, etc. This new

knowledge (whether inferred or observed) exists by way of the

domain knowledge encoded in the individual apps. Because of

the open nature of our knowledge graph, most apps can focus

on a single, relatively simple task, relying on the cooperation

of other simple apps to enable rich knowledge composition.

We believe this streamlined approach greatly simplifies the

process of capturing and applying domain knowledge to the

network.

To explore KnowNet’s ability to enable network manage-

ment, we have developed a suite of simple, yet sophisticated,

example applications to enable knowledge-driven network

management in an enterprise network. While these appli-

cations are simple, they focus on continuing challenges in

enterprise network management [8], namely, basic network

functionality and bootstrapping, performance monitoring and

management, and security management. We believe these tasks

remain difficult (if not impossible) to perform in existing

frameworks (e.g., taking active measurements on paths that

are currently not in use).

A. Basic Network Functionality

Our first set of applications provides a base level of network

functionality: establishing the IP connectivity that is expected

of any enterprise network.

Bootstrapping: Two applications in KnowNet work to-

gether to bootstrap basic connectivity: the topology app,

which configures all participating nodes and switches, in-

ventories switches, and maintains basic local properties such

as interface state; and the openflow app, which wraps an

OpenFlow controller and provides an interface for configuring

the controller and its flow rules. Both of these apps are heavily

used by other apps in the ecosystem, and as such provide a

de facto set of abstractions.

IP connectivity: Once basic connectivity has been enabled,

the routing app begins handling global routing. It uses

information from the topology app to calculate routes, and

sends commands to the openflow app to update routing

tables. If QoS was enabled on the network, the routing

app also takes that into account in its path installation.

Basic service management: Our services app essen-

tially serves as a QoS manager for services by dynamically

configuring rate limiters and priority queues as informed by

operator-defined SLAs. It builds on the basic topology infor-

mation and flow rule commands exported by the bootstrapping

apps.

Conflict resolution: We implemented a proof-of-concept

resolver that detects and resolves conflicting knowledge

by using an extensible network dependency model to detect

conflicts between commands that may be acting at the same or

different levels. For example, it is capable of determining, by

traversing the knowledge graph, that a change at the interface

level might conflict with another higher-level change at the

path level. Note that our architecture does not depend on

performing conflict resolution in this manner, and can work

with other conflict resolution approaches [14], [19].

B. Performance Monitoring and Management

Our next set of applications look at more than just main-

taining connectivity, they maintain the performance of the

network by: monitoring network activity, re-routing flows to

meet performance goals, and re-configuring the network if

necessary to solve problems, all by combining knowledge

about the network from different sources within the knowledge

graph.

Measurement: We provide wrapper apps for commonly-

used sources of network performance data such as sFlow-RT

and ping. These apps insert one-time or periodic measure-

ments of the network and insert them into the knowledge

graph. The sflow app is passive—it collects flow statistics

from switches, and is capable of providing analysis of specific

flows on-demand when triggered by commands from other

apps. The ping app takes active measurements of path latency

when requested. The ping app is capable of measuring

arbitrary paths: it interacts with the routing app to arrange

for its packets to be sent on specific paths to enable it to

measure paths that are not currently in use by any service.

Network status: The iface and link apps are responsi-

ble for tracking the state of interfaces and links, respectively.

They watch for both interfaces that have failed completely

(hard errors) and those that have started to see errors such

as bad CRCs (soft errors). In both cases, the apps use their

ability to explore the knowledge graph to discover paths and

services using the affected interfaces or links, and to insert

facts indicating that affected services need to be re-routed;

actual re-routing is left to the apps monitoring those services.

Performance management: The Performance Tracker (PT)

app is responsible for keeping track of the performance of all

service flows in the network, checking to see if any SLAs are

violated, then making any necessary changes, such as rerout-

ing affected flows to correct any violations. Fulfilling these

responsibilities requires various types of dynamic information.

First, the app needs to constantly receive fresh connectivity

and latency measurements for all network paths on which any

service flows are running. In addition, it also needs periodic

measurement information for the non-service paths so that it

knows if better performing paths are available. Second, PT

needs information about current forwarding tables so that if

any paths currently in use appear to be falling below the

acceptable performance threshold, the app can discover which

service flows are using the affected path. Finally, PT needs to

know what SLAs it is trying to meet.

All of this information needed by PT, is performance

app which is simply stored as facts “connected” with the

appropriate nodes in the knowledge graph.

The flow app is responsible for rate-limiting individ-

ual flows that are exceeding configured traffic thresholds as

defined by the SLA. The app works in concert with the

sflow app, from which it receives per-flow statistics, and the

openflow app—when flow detects excessive bandwidth in

the sflow data, it issues a command to the openflow app

to install rate-limiting rules.

C. Security Management

Our final set of apps manage the security of the network;

they leverage standard components such as Intrusion Detection

Systems (IDS). However, because they are able to examine

the entire state of the network—including looking at past

behavior—they are able to go much farther in terms of dealing

with the practical concerns faced by enterprise networks.

Intrusion detection and prevention: We wrote a snort

app for KnowNet that runs as an output module for the

Snort IDS, inserting the alerts that it produces as facts in the

KnowNet knowledge base.

With Snort alerts in KnowNet, other applications are now

capable of taking this information and combining it with

knowledge about current alerts, topology, services, and past

behavior. For instance, a security reasoning or correlation app

can combine knowledge from other apps to more effectively

determine how to handle the alert, or decide to ignore the

alert if it can be determined that the alert poses no real

threat. We built such an app to interpret the Snort alerts and

combine them with knowledge of the topology as well as

have a few snort alert insertions throughout this period at D.

Finally, at E, we disable the sflow app and turn up the ping

measurement frequency. We see that the system stabilizes and

returns to similar behavior as was exhibited at C. This shows

the system reacts well to fluctuating network behaviors.

B. Functional Evaluation

We now consider case studies showing how applications in

KnowNet are able to preserve the healthy functioning of the

network under various conditions.

Link Tracking and Selective Rerouting: We evaluate the

ability of our apps to selectively reroute traffic flows based

on network policy in the face of soft errors. In this case, we

consider elevated bit error rates on a link, an indication of pos-

sible impending failure. This is a particularly challenging case,

because at the service level, the dropped packets can easily

be mistaken for congestion: the correlation of information at

multiple levels is required to understand the root cause. Here,

our link app notices (emulated) bit errors on a link that it

is monitoring, and connects that with the set of services using

that link. One of the services is high priority, so the link app

proactively requests a re-route of the service around the failing

link. The graph in Figure 3a shows this selective re-routing

in action—the high priority link is re-routed to preserve its

performance and to avoid unavailability if the physical link

does fail.

Historical Analysis for Handling a New Vulnerability:

Figure 3b shows the evaluation for our vulnerability

app. We insert a fact in the knowledge graph at the time

marked by the dotted line, indicating a vulnerability in a

particular service. There are two flows connected at this time,

and we immediately block both. The vulnerability app

then looks at historical sflow data in the knowledge graph

for a common access pattern for the protected node—the

assumption is that access patterns that have been common in

the past are not likely to be attacks. The vulnerability

app creates a query describing the pattern and subscribes to

it, so that whenever traffic attempting to access the protected

service meets this pattern, the vulnerability app can

selectively un-block just these flows. In this case, only flow 1

matches historical access patterns, so it becomes unblocked

once the analysis completes.

DOS Protection: In this example, we consider an ICMP

flood originating inside the enterprise network due to a com-

promised host. snort is able to detect such attacks, and

we can block the traffic based on its alert. However, two

problems still exist: (1) the traffic still travels through the local

network to get to the firewall, causing internal performance

degradation, and (2) simply seeing the snort alert does not

provide a high-level explanation for the attack. Using the

combination of security-oriented apps we have written for

KnowNet, we can overcome these problems, identifying a ping

flood attack with more accuracy. These apps not only stop

the attack at the source, but also stop the attack with fine

granularity (only blocking ping traffic, allowing normal user

traffic to continue) and explain the attack at a high level (a

thousand snort alert facts will become a small handful of

attack facts).

Fine-grained Flow Tracking: We run the flow tracking

app in our network to monitor per-flow statistics and rate-limit

rogue flows that are exceeding configured traffic thresholds.

The flow app makes use of sflow analysis results period-

ically inserted in the knowledge graph to identify any heavy

hitting flows belonging to unknown services. These flows are

then put into appropriate QoS classes so that known service

flows are protected. Figure 3c shows the apps coordinating to

protect two flows of a high priority service. The flow starting in

the middle of the graph immediately starts starving the other

flows—it is given a few seconds to quiet down before the

flow tracking app marks it for rate-limiting and requests the

openflow app to install rate-limiters.

Intrusion Detection Event Discovery: To demonstrate the

usefulness of our event discovery app, we designed a

scenario in which a network administrator is concerned about

a yet-to-be-discovered bug in server software running in the

network which might enable an intruder to gain undetected

access to hosts on the network. While it might be easy to

detect a remote connection from an unrecognized source,

confirming whether it was an intruder or not is difficult

since authorized users are becoming increasingly mobile. It

would therefore be useful to combine other suspicious activity

dealing with the vulnerable host to a degree where it is clear

that an authorized user is actually not the initiator of this

suspicious session but rather a malicious one. The intruder

in this case, already knowing about the vulnerability and how

to exploit it, might use tools such as nmap to determine if

any hosts in our network would be vulnerable to such an

attack. We evaluated our event discovery app assuming

such a scenario, i.e., an nmap scan followed by access from

the same address signifies potential malicious activity. Our

generic event discovery app was able to discover this

relationship in our testbed by simply monitoring for facts

inserted on all IP addresses in the network, recognizing a

collection of facts describing the associated malicious activity

as an event.
VI. RELATED WORK

To our knowledge, the first use of a knowledge graph

for network management was to store relationships between

events, and tie those in with the network topology [21].

However the knowledge graph itself was only used to store

relationships after they had been inferred; it was not used in

the actual inference process.

Our work also relates to recent efforts in data center network

management [14] and network policy [19]. Statesman [14] ex-

poses a particular set of variables to its configuration apps; this

makes it possible to maintain strong invariants as part of the

framework itself, and supports loosely-coupled apps that may

not have even been aware of each others’ presence. In contrast,

KnowNet offers a more flexible, extensible representation in

its knowledge graph. This enables us to easily incorporate

existing network management tools in KnowNet. PGA [19]

uses a graph representation of network policies to allow

