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River networks in the landscape can be described as topologic rooted trees embedded in a three-dimensional
surface. We examine the problem of embedding topologic binary rooted trees (BRTs) by investigating two
space-filling embedding procedures: Top-Down, previously developed in the context of random self-
similar networks (RSNs), and Bottom-Up, a new procedure developed here. We extend the concept of gener-
alized Horton laws to interior sub catchments and create a new set of scaling laws that are used to test the
embedding algorithms. We compare the two embedding strategies with respect to the scaling properties
of the distribution of accumulated areas Aω and network magnitude Mω for complete order streams ω. The
Bottom-Up procedure preserves the equality of distributions Aω=E Aω½ � ¼d Mω=E Mω½ �; a feature observed in
real basins. The Top-Down embedded networks fail to preserve this equality because of strong correlations
of tile areas in the final tessellation. We conclude that the presence or absence of this equality is a useful
test to diagnose river network models that describe the topology/geometry of natural drainage systems.
We present some examples of applying the embedding algorithms to self similar trees (SSTs) and to RSNs.
Finally, a technique is presented to map the resulting tiled region into a three-dimensional surface that cor-
responds to a landscape drained by the chosen network. Our results are a significant first step toward the goal
of creating realistic embedded topologic trees, which are also required for the study of peak flow scaling in
river networks in the presence of spatially variable rainfall and flood-generating processes.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The study of river network topology is an active area of research in
geomorphology (Meakin et al., 1991; Maritan et al., 1996; Dodds and
Rothman, 2000; Molnar, 2005). Several mathematical models have
been introduced in the literature to describe, using simple principles,
the complex network topology of river networks (Tokunaga, 1966;
Scheidegger, 1967; Shreve, 1967; Veitzer and Gupta, 2000). These
topologic models have helped put their mathematical foundations
on a firm footing, and many of them have been successful in explain-
ing major geomorphic features observed in natural river networks.

Topologic river network models, by definition, only describe how
nodes of the network are connected with each other. These models
do not provide a description of the spatial embedding of the topology
in the three-dimensional landscape of a river basin. As a result, they
are unsuitable to study the interaction between spatially correlated
rainfall and runoff generation processes and its impact on the trans-
port of flows through a river network. Some network models, such
tilla).

l rights reserved.
as optimal channel networks (Rigon et al., 1993; Maritan et al.,
1996; Rinaldo et al., 2006), Gibbsian networks (Troutman and
Karlinger, 1994, 1998), and networks generated by random walks
(Leopold and Langbein, 1962; Meakin et al., 1991) include explicitly
the spatial geometry of networks by embedding them on a two-
dimensional lattice. However, two disadvantages of lattice models
relative to topologic models are, first, that generation of lattice
models is typically more computationally demanding and, second,
that it is more difficult to obtain analytic results for lattice models.

Self-similar river network models play a fundamental role in un-
derstanding observed scaling in the magnitudes of peak flows
(Gupta et al., 2010). For example, Gupta et al. (1996), Menabde and
Sivapalan (2001), and Troutman and Over (2001) considered ideal-
ized self-similar networks embedded in a two-dimensional space to
understand how the interaction between multifractal rainfall and
self-similar river networks determines the magnitude and scaling
characteristics of peak flows. Gupta et al. (1996) assumed that rainfall
follows spatially correlated beta random cascade that is deposited on
a Peano channel network. Likewise, Menabde and Sivapalan (2001)
assumed that rainfall follows a log-normal cascade on a Mandel-
brot–Viscek network. Troutman and Over (2001) made more general
assumptions regarding spatial variability of rainfall and self-similar
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network structure to study scaling in peak flows. In all these studies,
however, the spatial cascade structure of rainfall was assumed to be
aligned with the topology of the network. Mantilla (2007) conducted
simulation of scaling in peak flows on RSNs. In order to generalize this
approach to spatially correlated rainfall embedding realistic1 topolog-
ical networks in a three-dimensional space is necessary.

The embedding process is schematically illustrated in Fig. 1 for a
very simple network topology. We begin with, first, a network for
which it is assumed that only the connectivity structure (a topologic
tree) is known (Fig. 1a) and, second, a two-dimensional region with
a fixed shape (Fig. 1b) into which the network will be embedded.
The goal is to develop an algorithm, which yields the embedded net-
work, as shown in Fig. 1c. The embedding process, as defined in this
paper, must therefore fulfill two minimal requirements: (i) it must
be space filling, which means that every point in the given region
has to be assigned to, or drain into, a unique link of the binary rooted
tree (BRT); the process is known as tiling, and (ii) the topologic struc-
ture of the network needs to be preserved.

These twominimal requirements of the embedding process do not
uniquely define an algorithm for obtaining the embedded network, so
clearly any proposed procedure needs to be further tailored so as to
preserve, to the extent possible, important geometrical properties of
real drainage basins. Examination of Fig. 1c makes clear that the dis-
tribution of the size of areas assigned to the individual links, and
the resulting size of accumulated areas of sub basins is a fundamental
characteristic of embedded networks. It is the focus here. A key con-
tribution of this paper is to apply generalized Horton's laws
(Peckham and Gupta, 1999; Veitzer and Gupta, 2000; Troutman,
2005) to obtain a sensitive measure of how well the area distribution
of embedded networks conforms with behavior observed in real
networks.

Generalized Horton's laws are based on the idea of statistical self-
similarity (SSS) of the distribution of basin variables defined for
streams of different Strahler orders (Strahler, 1957). Strahler ordering
of streams is determined by the following rules: first-order streams
are those with no upstream inflows and the stream immediately
downstream from the junction of two streams of order ω1 and ω2 is
ω1+1 if ω1=ω2 and the maximum between ω1 and ω2 if ω1≠ω2.
The two basin variables of interest here are drainage area, A, and net-
work magnitude, M, defined as the number of first-order streams in
the network. A comparison of the statistical distribution of these
two variables provides a test of embedding algorithms.

In Section 2 we provide some background on the problem of
embedding BRTs and also present data from real networks. In
Section 3, the concept of basin decomposition into hillslopes is
used to introduce an extension of Horton's laws (Horton, 1945;
Strahler, 1957). It is used to test the properties of the tessellations
generated by our embedding strategies. In Section 4 we present
two embedding strategies. First, in Section 4.1 we present the em-
bedding procedure that Veitzer (1999) developed that we call the
top-down embedding (TDE) algorithm. We explain the deficien-
cies of this algorithm with respect to the generalized Horton's
laws. In Section 4.2 the bottom-up embedding (BUE) algorithm
is described, and advantages of using this approach are explained.
Some examples of the BUE are presented using self similar trees
(SSTs) and RSNs. In Section 5 we develop a method to generate
three-dimensional landscapes using the tiled region obtained by
the BUE. Finally, in Section 6 our conclusions are presented and
areas of future research are highlighted.
1 The term realistic refers to topological networks that emulate scaling features ob-
served in natural river networks, such as Horton laws, Hack's law, the tail of cumulative
areas, properties of the width function, etc. (see Rodríguez-Iturbe and Rinaldo, 1997,
Chapter 1)
2. The RSN river network model and the embedding problem

Topologic network models have a long history in hydrology. The
earliest topologic model was introduced by Shreve (1966), and it is
known as the random topology model. The model postulates that all
topologies of a given magnitude M are equally likely to be observed.
After years of intense research, Shreve's model has been proven un-
successful in predicting many features observed in real river net-
works such as Hack's law (Mesa and Gupta, 1987) and deviations of
Horton ratios from the predicted values. Peckham (1995) studied
mean self-similar topologic rooted trees known as Tokunaga trees
(Tokunaga, 1966). This deterministic topologic model predicts sever-
al topologic features in river basins, including observed Horton ratios
that the random model does not (Dodds and Rothman, 2000).
McConnell and Gupta (2008) put the results of Tokunaga trees on a
firm mathematical footing. However, Tokunaga's model is mean
self-similar by definition, and it does not address random variability
in the topology and geometry of river networks that is widely ob-
served in nature.

Veitzer and Gupta (2000) introduced a new class of infinite trees
known as random self-similar networks (RSNs). This model is of par-
ticular relevance to the embedding problem addressed in this paper
for three reasons. First, the model produces topologic networks that
have been shown to be realistic in many of their features (Veitzer
et al., 2003; Troutman, 2005; Mantilla et al., 2010). This is important
because if one expects an embedded network to be realistic, the topo-
logic network with which one begins must itself be realistic, so initi-
ating the embedding process with an RSN-generated network is one
reasonable way to proceed. Second, the model is based on an iterative
replacement process, which readily lends itself to development of
embedding algorithms using “generators,” which are the building
blocks of the iterative process. We shall use generators as the basis
of our embedding algorithm, as was done in the work by Veitzer
(1999). Third, it is easy to show that the model provides a method
to decompose any binary tree into a unique sequence of elementary
generators, which leads to the original network through the iterative
replacement process. This fact makes possible to embed any binary
tree using the algorithm, including those obtained by topologic
models other than the RSN model.

Random self-similar networks are constructed by replacing, in an
iterative fashion, all the links of a network by randomly sampled gen-
erators (Veitzer and Gupta, 2000). A generator is defined as the sim-
plest branching pattern (or patterns) selected to generate a more
complex branching network using a recursive replacement algorithm.
The process of generating a complex branching network, i.e., river
network connecting topology, is initiated with a network that con-
sists of a single link that is replaced with a randomly sampled gener-
ator. Then the links in the resulting network are all replaced with
randomly sampled generators, and so on. Consequently, each step of
the iteration process makes the branching structure of the network
become more complex. Each link replacement in the iterative process
is done in a manner that depends on whether the link to be replaced
is “interior” or “exterior,” where exterior links are defined as those
with no upstream connecting links. Interior links are replaced by gen-
erators from one population, known as interior generators, and exte-
rior links are likewise replaced by exterior generators constituting a
different population. Construction of RSNs thus requires specification
of two probability distributions governing the random sampling of
the different generator types, and all sampled generators are assumed
to be mutually independent. Fig. 2a illustrates the two populations of
generators to be used in this paper, and Fig. 2b illustrates two itera-
tions of the replacement process. Note that interior and exterior gen-
erators in this figure are indexed by the number of interior nodes.

The process of reversing this iterative replacement procedure and
thereby recovering the unique set of generators from any complex bi-
nary network is discussed in detail by Troutman (2005) and Mantilla



Fig. 1. (a) Topologic tree to be embedded. (b) Finite two-dimensional region. (c) Tiled region.
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et al. (2010). In the latter work, this decomposition process was
applied to 30 actual drainage basins across the continental United
States. They demonstrated that the number of interior nodes for
generators in actual networks is well modeled by a geometric proba-
bility distribution with parameters that are different for interior and
exterior generators. The property of scale invariance was also found
to hold for the generators in 26 of the 30 basins in the study. We
shall see in the following section that scale invariance forms the
basis of our test for embedding algorithms.

3. Extending Horton laws

In this section we will establish a new set of scaling laws for river
basins that will allow us to test, in a precise manner, the features of
tessellations created by embedding algorithms. The new scaling
laws are an extension of the generalized Horton laws based on statis-
tical self-similarity by Peckham and Gupta (1999) involving two
fundamental variables: drainage area and network magnitude. Mag-
nitude, a topologic property of networks, is defined as the number
of source streams; but drainage area depends on how the network
is embedded in space. We shall demonstrate in this section that
studying the connection between these two variables via scale invari-
ance allows us to test embedding algorithms.

The extension of Horton laws proposed here is inspired by recent
theoretical results by Tokunaga (2003) regarding scaling properties
of internal sub basins of Tokunaga trees (Tokunaga, 1966) and
other deterministic networks such as the Peano network or the
Mandelbrot–Viscek tree. In addition, Troutman (2005) has
demonstrated the existence of similar scaling properties for RSN
topologies. These results motivate further investigation on natural
river networks and the establishment of corresponding scaling laws.
Fig. 2. (a) Path-based generators. (b) Iterati
Mantilla and Gupta (2005) developed an algorithm to decompose
a basin into hillslopes. This algorithm has enabled us to study the geo-
metric properties of landscape tessellation imposed by the existence
of river network. Fig. 3 shows the result of decomposing the 2.13-
km2 order-3 Quartz Hill basin in central New Mexico into hillslopes
(Fig. 3a). This decomposition identifies the link–hillslope pairs, as
they exist on the landscape. The river network (Fig. 3b) and the set
of hillslopes (Fig. 3c) have been superimposed on aerial photography
of the area provided via Google Earth ™. The decomposition has also
been overlaid on a three dimensional view of the terrain (Fig. 3d) to
highlight the meaning of a level-0 decomposition of the landscape.
We distinguish exterior hillslope areas from interior hillslope
areas and use the notation a(E) and a(I), respectively, to denote
these areas. They are random variables with distinct probability
distributions.

The new scaling laws that we will establish are most easily under-
stood when expressed in terms of the pruned network. Pruning the
network is the process of removing all the order-1 streams from the
original network. We will refer to the pruned network as a pseudo-
network, composed of pseudo-links. This pseudo-network can be
used to decompose a basin into pseudo-hillslopes. The pruning pro-
cess can be applied iteratively to the pseudo-network to obtain the
tessellation corresponding to different pruning levels. Fig. 4 shows
the sequence of tessellations obtained by iteratively pruning the net-
work of the order-3 Quartz Hill basin.

We identify an important connection between pruning and Strah-
ler ordering of the network (Strahler, 1957). We see that pruning the
network once removes all order-1 streams, pruning the network
twice removes all order-2 and lower streams, and in general pruning
the network i times removes all order-i and lower streams. Thus, the
index i for a given decomposition level corresponds to the order ω= i
ve replacement process to create RSNs.

image of Fig.�2


Fig. 3. (a) The 2.13-km2 order-3 Quartz Hill basin in central New Mexico decomposed into hillslopes using the algorithm developed by Mantilla and Gupta (2005). (b) River net-
work superimposed on aerial photography of the area provided via Google Earth™, (c) transparency of the hillslope units shown on panel (a) superimposed over the same aerial
image, and (d) a three-dimensional view showing the curvature of the landscape adjacent to river network links illustrating convex terrain on hillslopes and concave terrain in
channelized terrain.
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and lower order streams are pruned away. In other words, a level-
0 decomposition corresponds to no pruning, a level-1 decomposition
corresponds to removing order-1 streams, a level-2 decomposition
corresponds to removing order-2 and order-1 streams, and so on.
Therefore, the area of pseudo-hillslopes associated with exterior
pseudo-links for a level-i decomposition corresponds exactly to the
upstream area of complete order ω= i+1 streams in the original
network.

We now proceed to extend the generalized Horton law of drainage
areas (Peckham and Gupta, 1999) to obtain a sensitive test for em-
bedding algorithms. If Aω denotes drainage area of an order ω basin,
the classical form of the Horton Law of drainage areas states that
the ratio E[Aω+1]/E[Aω]=RA, where E[] denotes expectation, is inde-
pendent of ω and RA is the Horton ratio of upstream areas (Schumm,
1956). Peckham and Gupta (1999) showed that the upstream areas of
complete order streams exhibit statistical simple scaling (SSS). This
property was used to generalize Horton law for areas by asserting
that

Aωþ1 ¼d RAAω ð1Þ
Fig. 4. Decomposition of the basin into pseudo-hillslopes using the pse
where ¼d means equality of distributions. We see that the generalized
Horton's Law for areas describes statistical scaling of exterior pseudo-
hillslopes for different pruning levels. Our multi level tessellation
technique allows us to extend the concept of generalized
Horton laws by investigating the statistical scaling features of interior
pseudo-hillslopes. We call this analysis extended generalized Horton
laws of network composition that apply to Aω

(E) and Aω
(I) representing

the area of exterior and interior pseudo-hillslopes, respectively, for
the pruning level ω−1. The extended generalized Horton laws are
expressed by the relations

A Eð Þ
ωþ1 ¼

d RAA
Eð Þ
ω and A Ið Þ

ωþ1 ¼
d RAA

Ið Þ
ω ð2Þ

where RA=E[Aω+1
(E) ]/E[Aω

(E)]=E[Aω+1
(I) ]/E[Aω

(I)] is a constant indepen-
dent of ω and the pseudo-hillslope type and A Eð Þ

ω ≠d A Ið Þ
ω .

In order to illustrate the extended Horton laws we perform the
statistical analysis defined above on two order 8 basins in the US:
(i) the 5177-km2 Walnut Creek River basin in southeastern Kansas
and (ii) the 4908-km2 North Fork Kentucky River basin in northern
udo-network obtained by consecutive pruning levels of network.

image of Fig.�3
image of Fig.�4


Fig. 5. Extended Generalized Horton laws analysis of areas for the Walnut Creek River basin in southeastern Kansas. Plots (c) and (d) show mean pseudo-hillsope area (on a log-
arithmic scale) as a function of Strahler order; RA is computed by exponentiating the slope of the linear relation. Figs. (a) and (b) show scaled by the mean pseudo-hillslope area
distributions for different orders; collapse of the distributions onto a single curve illustrates the SSS property.
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Kentucky. Note that by definition Aω
(E)≡Aω. Figs. 5 and 6 show the

results of this analysis for these two basins.
We see in Figs. 5 and 6 that the scaling observed in previous works

for exterior pseudo-hillslopes also holds for interior pseudo-
hillslopes. First, plots of mean pseudo-hillslope area on a
Fig. 6. Extended Generalized Horton laws analysis of area
logarithmically transformed scale versus order are linear for both
types, interior and exterior. Also, the slopes are the same for both lin-
ear relations. It means that the Horton ratio RA is the same for both
types. The estimated values of RA are 4.78 and 4.74 for the Walnut
River network and the Kentucky River network, respectively. Finally,
s for the Kentucky River basin in northern Kentucky.

image of Fig.�5
image of Fig.�6


Fig. 7. Extended Generalized Horton laws analysis of pseudo-magnitudes for the Walnut Creek River basin in southeastern Kansas.

2 This term indicates the type of convergence of the probability distribution of the
random variable. For a technical definition of the term see Ross (2010).
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pseudo-hillslope areas scaled by their respective means have a distri-
bution independent of order, and the distributions are different for
interior and exterior pseudo-hillslope areas.

In a similar fashion to areas, the concept of network magnitude
introduced by Shreve (1967) can be extended. Define pseudo-
magnitude as the total number of exterior links on the unpruned net-
work contained inside a pseudo-hillslope. As with pseudo-hillslope
areas, the pseudo-magnitude of exterior pseudo-hillslopes corre-
sponds exactly to the original concept of magnitude (Shreve, 1967).
We denoteMω

(E) andMω
(I) the pseudo-magnitudes of exterior and inte-

rior pseudo-hillslopes for the pruning level ω−1. Figs. 7 and 8 show
the results of this analysis for the two basins under consideration.
Here the estimated values of RM are 4.67 and 4.62 for the Walnut
River network and the Kentucky River network, respectively.

Our analysis shows that

M Eð Þ
ωþ1 ¼

d RMM
Eð Þ
ω and M Ið Þ

ωþ1 ¼
d RMM

Ið Þ
ω ð3Þ

where RM=E[Mω+1
(E) ]/E[Mω

(E)]=E[Mω+1
(I) ]/E[Mω

(I)] is a constant inde-
pendent of ω and the pseudo-hillslope type. We also found that
M Eð Þ

ω ≠d M Ið Þ
ω . Tokunaga (2003) investigated the scale independence of

the ratio RM for interior tiles in his analysis of a physical basis of
tiling properties of drainage basins.

The distribution for pseudo-hillslope areas and pseudo-
magnitudes can be connected by recognizing that the total area for
exterior and interior pseudo-hillslopes with magnitude Mω

(E) and
Mω

(I), respectively, can be written as

A Eð Þ
ω ¼

XM Eð Þ
ω

j¼1

a Eð Þ
j þ

XM Eð Þ
ω −1

j¼1

a Ið Þ
j ð4Þ

A Ið Þ
ω ¼

XM Ið Þ
ω

j¼1

a Eð Þ
j þ

XM Ið Þ
ω þ1

j¼1

a Ið Þ
j ð5Þ
where aj
(I) and aj

(E) are interior and exterior hillslope areas, respec-
tively. We can multiply and divide the sums by the total number of
terms in each one of them to obtain

A Eð Þ
ω ¼

PM Eð Þ
ω

j¼1
a Eð Þ
j

M Eð Þ
ω

M Eð Þ
ω þ

PM Eð Þ
ω −1

j¼1
a Ið Þ
j

M Eð Þ
ω −1

M Eð Þ
ω −1

� �
ð6Þ

A Ið Þ
ω ¼

PM Ið Þ
ω

j¼1
a Eð Þ
j

M Ið Þ
ω

M Ið Þ
ω þ

PM Ið Þ
ω þ1

j¼1
a Ið Þ
j

M Ið Þ
ω þ 1

M Ið Þ
ω þ 1

� �
ð7Þ

The asymptotic behavior of these sums as ω becomes large can be
derived from well-established results in the literature. First, Veitzer
and Gupta (2000) investigated the asymptotic behavior of Mω

(E) for
RSNs as ω→∞ and demonstrated that

M Eð Þ
ω

Rω−1
M

→W Eð Þ
M ð8Þ

with probability one.2 Here,WM
(E) is a random variable independent of

ω. Troutman (2005) showed that the convergence with probability
one also holds for Mω

(I). Next, the law of large number guarantees,
under very general conditions for the random variable aj

(E) and aj
(I),

that as Mω
(E) and Mω

(I) become large that

lim
ω→∞

PM Eð Þ
ω

j¼1
a Eð Þ
j

M Eð Þ
ω

¼ μ Eð Þ
a and lim

ω→∞

PM Eð Þ
ω −1

j¼1
a Ið Þ
j

M Eð Þ
ω −1

¼ μ Ið Þ
a ð9Þ

image of Fig.�7


Fig. 8. Extended Generalized Horton laws analysis of pseudo-magnitudes for the Kentucky River basin in northern Kentucky.
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lim
ω→∞

PM Ið Þ
ω

j¼1
a Eð Þ
j

M Ið Þ
ω

¼ μ Eð Þ
a and lim

ω→∞

PM Ið Þ
ω þ1

j¼1
a Ið Þ
j

M Ið Þ
ω þ 1

¼ μ Ið Þ
a ð10Þ

with probability one. Combining these results, it follows that

A Eð Þ
ω

μ Eð Þ
a þ μ Ið Þ

a

� �
Rω−1
M

→W Eð Þ
M and

A Ið Þ
ω

μ Eð Þ
a þ μ Ið Þ

a

� �
Rω−1
M

→W Ið Þ
M ð11Þ

with probability one.
These results lead to the equalities

A Eð Þ
ω

μ Eð Þ
a þ μ Ið Þ

a

� �
Rω−1
M

¼d M Eð Þ
ω

Rω−1
M

and
A Ið Þ
ω

μ Eð Þ
a þ μ Ið Þ

a

� �
Rω−1
M

¼d M Ið Þ
ω

Rω−1
M

ð12Þ

when ω is large. If the hillslope areas are statistically indepen-
dent of network branching, from Eqs. (4) and (5) we can show
that E[Aω

(E)]∼(μa(E)+μa(I))E[Mω
(E)] and E[Aω

(I)]∼(μa(E)+μa(I))E[Mω
(I)],

where ∼ indicates asymptotic equivalence for large ω. Thus, we have

A Eð Þ
ω

E A Eð Þ
ω

h i¼d M Eð Þ
ω

E M Eð Þ
ω

h i and
A Ið Þ
ω

E A Ið Þ
ω

h i¼d M Ið Þ
ω

E M Ið Þ
ω

h i ð13Þ

for large ω.
We test this conclusion for our two basins using the tessellations

corresponding to orders ω=3,4,and 5. We performed Kolmogorov–
Smirnov tests to confirm the hypothesis of distributional equality in
each case, and we plotted quantile–quantile (QQ) plots (NIST/
SEMATECH, 2006) in Figs. 9 and 10.

The scaling laws presented here are a direct consequence of the
self-similar structure of the river network captured by the RSN model
(Troutman, 2005). Mantilla et al. (2010) tested the self-similarity as-
sumption for 30 basins and found that the hypotheses of self-
similarity hold for 26 of them. It implies that that set of basins obey
scaling of interior pseudo-hillslopes. Therefore, the results presented
here are not limited to the two test basins that we have selected. Data-
set for the 30 basins used by (Mantilla et al., 2010) along with open
source software to calculate these properties is provided at http://
www.iihr.uiowa.edu/~ricardo/cuencas/cuencas-download.htm.

In the following section we describe two embedding algorithms
and use the extended Horton scaling laws to test their ability to rep-
licate these geomorphic features observed in real landscapes.

4. Embedding algorithms

The main goal of this section is to present two algorithms that en-
code two possible embedding strategies. The first one is the top-down
strategy, in which the landscape is partitioned simultaneously with
the river network generation process. This method was first illustrat-
ed by Veitzer (1999) and it is presented in this paper mainly for com-
pleteness. Second, the bottom-up strategy is described. We present
the latter methodology in three subsections, in which we provide
(1) a motivation for the development of the algorithm, (2) the tech-
nical description of the algorithm and (3) some applications of the
algorithm.

4.1. The top-down embedding (TDE) algorithm

Veitzer (1999) proposed an algorithm to embed RSNs in two-
dimensional regions based on the iterative fracturing of the region.
His tiling algorithm begins with an initial region bounded by a four-
sided polygon and then follows the recursive replacement process
used to construct RSNs to subdivide this initial region. For the first
step, if the generator defining the iteration-1 replacement has k
links (k=2m+1), where m is the number of interior nodes (see
Fig. 2a), then the initial region is divided into k subregions, each itself
bounded by a four-sided polygon. Given the shape of the initial poly-
gon and number of subregions k, the fracturing is done using the de-
terministic rule described by Veitzer (1999). This process is then
repeated in an iterative fashion using randomly sampled generators,

http://www.iihr.uiowa.edu/~ricardo/cuencas/cuencas-download.htm
http://www.iihr.uiowa.edu/~ricardo/cuencas/cuencas-download.htm
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Fig. 9. Quntile–quantile plots comparing pseudo-magnitudes and pseudo-hillslope areas distributions for pruning levels 2, 3 and 4 (ω=3, 4, and 5) in the Walnut Creek Basin in
Kansas.
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with the subdivision at each step depending on the number of nodes
in the generator being embedded and with the fraction of area asso-
ciated with each link of the generator prescribed by the deterministic
rule. We refer to this algorithm as a top-down embedding (TDE) algo-
rithm because areas at large scales are determined first without re-
gard to the subsequent branching that takes place at smaller scales.

To better understand the algorithm, consider the instance of RSN
in Fig. 11, where exterior links are replaced by E1 generators and in-
terior links are replaced by I3 generators with probability one3 (see
Fig. 2 for definitions of generators). In Fig. 11 the replacement process
starts with one link; the link is replaced by an E1 generator. In the
next step, exterior links are replaced by E1 generators, while interior
links are replaced by I3 generators. After one more iteration, the total
number of links in the tree is 63. Following the same rule for sampled
generators, we apply the TDE algorithm to the region in Fig. 12a. The
initial four-sided region is divided into 3 four-sided subregions
(Veitzer, 1999). Then exterior subregions are divided into 3 subsubre-
gions and interior subregions are divided into 7 subsubregions. After
two more iterations, the initial region is partitioned into 63 tiles
(Fig. 12d).

Veitzer (1999) discusses properties of the resulting statistical dis-
tribution of tile areas in the final tessellation using this algorithm. He
reports that, in most of the cases examined, the tessellation exhibits a
‘divergence’ between the largest and the smallest value of tile area
that is not empirically observed in hillslope areas in natural river ba-
sins (see Mantilla and Gupta (2005) for definition of hillslope). This
feature can be interpreted by relating the tiling procedure to a multi-
fractal cascade formalism (Holley and Waymire, 1992; Gupta and
Waymire, 1993) under which mass accumulation shows such
divergence.

Note that the way in which subregion areas are allocated at each
step of a TDE algorithm is the fundamental ingredient of the algo-
rithm. This process is governed in the algorithm of Veitzer (1999)
by the deterministic rule used to fracture four-sided polygons. The
areas of subregions produced by such fracturing are not in general
equal; in fact, with this algorithm it is not possible to explicitly con-
trol sub region areas at each step. To examine this issue more careful-
ly, we performed an experiment with the RSN model in which
descendants of a link following a replacement were assigned exactly
the same proportion of ‘area’. The networks were not embedded spa-
tially, but we could still examine the resulting pseudo-hillslope area
3 Notice that assigning replacement generators with probability one gives rise to
SSTs.
distribution at each level of the iteration. The number of interior
nodes (see Fig. 2) for all generators was taken to have a geometric
distribution given by P(Ki=ki)=pi(1−pi)ki, ki≥0 for interior gener-
ators and P(Ke=ke)=pe(1−pe)ke−1, ke≥1 for exterior generators,
with parameter pI=0.42 and pE=0.49. We define a random variable
Ki as the number of interior nodes in interior generators and the ran-
dom variable Ke as the number of interior nodes in exterior genera-
tors (see Fig. 2 for node types). Note that for exterior generators,
the condition ke≥1 follows from the type of generators that we are
using. Thus the random variables Ki and Ke−1 are taken to have a
geometric probability distribution with parameters pi and pe respec-
tively. The geometric distribution was found in the study by
Mantilla et al. (2010) to be appropriate for modeling actual river net-
works. The distributions of Aω

(E)/E[Aω
(E)] and Aω

(I)/E[Aω
(I)] stabilized after

10 iterations, and in Fig. 13 we compare these stable distributions to
those of the scaled pseudo-magnitudes Mω

(E)/E[Mω
(E)] and Mω

(I)/E[Mω
(I)]

for the RSN model. The distributions differ for both exterior and inte-
rior pseudo-hillslopes, indicating that assignment of exactly the same
proportion of area to subregions at each step of the RSN construction
does not yield pseudo-hillslope area distributions that agree with the
corresponding pseudo-magnitude distributions. Such agreement
holds in real basins, as previously shown.

4.2. The bottom-up embedding algorithm (BUE)

4.2.1. Motivation for the development of BUE algorithm
In this section we introduce a new approach to embedding trees

called bottom-up embedding (BUE) algorithms. The ‘bottom-up’
label refers to the fact that such algorithms factor in the branching
that takes place at small scales to define areas at larger scales. To
see why this is important, we first consider a result presented by
Troutman (2005). He showed that in the RSN model the asymptotic
number of descendants of interior links is, on average, different
from the number of descendants of exterior links, and the ratio be-
tween these average numbers can be computed exactly given the dis-
tributions of number of nodes in generators. For example, in the
experiment in the previous paragraph, we see that exterior links
will on average give rise to 2.29 times more descendants than interior
generators. This suggests that, in any spatial embedding of RSNs
obtained with pI=0.42 and pE=0.49, exterior tiles should be given
2.29 times more area than interior tiles in order to try to maintain
nearly constant drainage density, in contrast to the equal area assign-
ments made in TDE. The experiment illustrated in the previous sec-
tion was repeated with this correction (results not shown here), but
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Fig. 10. Quntile–quantile plots comparing pseudo-magnitudes and pseudo-hillslope areas distributions for pruning levels 2, 3 and 4 (ω=3, 4, and 5) in the Kentucky River Basin in
Kentucky.
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again we observed a discrepancy between the pseudo-magnitude and
pseudo-hillslope area distributions (see details in Mantilla (2007)).
The problem is that allocation of area based solely on average number
of descendants is not sufficient to ensure correct area scaling.

We now carry the idea of unequal subregion area allocation one
step further to incorporate even more information on small-scale
branching at large scales. Suppose a network of given order generated
by the RSNmodel is to be embedded. If the entire topological network
is generated first (down to a predetermined level) and hillslope areas
are assigned to each link in the resulting network, then pseudo-
hillslope areas for each level i can be calculated exactly by simply ag-
gregating the appropriate elementary hillslope areas. Embedding can
still be done in the same iterative fashion as before, but at each step
the precise area that should be allocated to each generator link at
each scale is known beforehand. The process is thereby guaranteed
to produce a tree with pseudo-magnitudes proportional to pseudo-
hillslope areas at all scales, so upstream areas will inherit scaling
properties of magnitudes. This conditioning at each iteration on the
entire tree and known elementary hillslope areas is the essence of
the BUE algorithm we propose in this paper.

The two key inputs to the BUE algorithm are the river network to-
pology and the hillslope areas. If the RSN model generates the river
network, exterior pseudo-magnitudes will exhibit the scaling shown
in Eq. (8), and interior pseudo-magnitudes will scale similarly. A suf-
ficient condition for pseudo-hillslope areas to show the same scaling
as magnitudes is that Eqs. (9) and (10) (law of large numbers) hold
for the hillslope areas, and whether these equations hold depends
on assumptions made on hillslope areas. The simplest case for
which they hold is when the hillslope areas aj(I) and aj

(E) are constant.
A more realistic case is that for which each is a set of independent and
Fig. 11. Sample RSN using E1 generators for exterior links with probability one and I3
generators for interior links with probability one.
identically distributed (i.i.d.) random variables (which are also inde-
pendent of the network). We know further that the law of large num-
bers will also hold in some cases when correlation is present in the
summands, as long as the correlation is weak.

One obvious source of correlation among hillslope areas that may
be introduced in embedding networks with the BUE algorithm is a
consequence of the finite space in which the network is being embed-
ded. Assume that it is desired to embed the network in a given finite
region, and that hillslope areas are simulated using an i.i.d. model. Be-
cause the sum of all hillslope areas must equal the total network em-
bedding area, each hillslope area must be scaled by the sum of
hillslope areas in such a way that this equality holds. Doing this in-
duces correlation among the hillslope areas, however it has been
demonstrated that the degree of correlation in such cases is small
(see Pyke, 1965).

We performed computer simulations for which the network was
obtained by the RSN model and hillslope areas are taken to be
(1) constant, (2) i.i.d. exponentially distributed random variables,
and (3) correlated (i.i.d. exponential hillslope areas scaled by the
sum). Fig. 14 shows the scaled pseudo-hillslope area distributions
for the first five iteration steps of scenario (2). We see that there
is a rapid convergence to a scale-independent distribution, as it
was also the case for scenarios (1) and (3). We also confirmed
that the scaled pseudo-hillslope area distribution is in all three
cases, after eight iterations, identical to the scaled pseudo-
magnitude distribution. We conclude that in these three cases the
effect of hillslope area variation or correlation is overwhelmed by
the effect of the aggregation and that the randomness in the system
is dominated by the network branching structure.

Finally, we compare the distribution of areas found in data with
the stable distribution under BUE. In Fig. 15 we plotted the Q–Q dia-
gram for the distribution of Aω

(E)/E[Aω
(E)] and Aω

(I)/E[Aω
(I)] derived from

data and from the stable BUE for orders ω=3,4,and 5. The remark-
able fit found indicates that the branching structure of the network
determines the statistical nature of the pseudo-hillslope areas.

4.2.2. Description of the BUE algorithm
The essence of the BUE algorithm is a recursive strategy for divid-

ing the region using the information from the recovered generators
that make up the network (Troutman, 2005; Mantilla, 2007).

To simplify the description of the recursive algorithm, we shall
give it in two parts. The first portion is the embedding of a simple
generator in a polygon, and the second describes the embedding of
a complex tree (decomposed into generators).

image of Fig.�11
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Fig. 12. Tiling of a two-dimensional region according to the TDE algorithm.
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The steps for embedding a simple generator are easy to follow and
they are schematically described in Fig. 16 using the case of an E2
generator. Let this algorithm be called the simple tree embedding
(STE) algorithm. The steps of the process are:

1. Assign a value of area to every link in the generator (here the total
area of the links has to equal the area of the polygon).

2. Determine the bottom region by scanning upwards from the low-
est polygon vertex until the area equals that of the bottom link. We
define the line that is used in the scanning process as the scanning
line.

3. Assign the location of the river by connecting the polygon vertex to
the middle of the final scanning line. We call the latter location a
connecting node.

4. Find an intermediate region for the two upstream links with area
equal to the sum of these branches (the two branches are one in-
terior and one exterior, or two exterior links). The scanning line
moves upward from the last location determined in the previous
step.

5. Divide the sub region into two tiles, with areas assigned to each
branch. The scanning process is done with a breaking line that con-
nects the location of the previously determined river and the inter-
mediate region border.

6. Assign the locations of the two rivers. One is connected to the bor-
der of the intermediate region and the other one is not. The new
location of the intersection establishes a new connecting node.
Fig. 13. Stable distribution of tile areas and magnitudes divided by their means.
7. Finally repeat steps (4), (5) and (6) until the top of the polygon is
reached. At this point the location of the two final exterior links is
determined.

Here, emphasis needs to be made on the importance of determin-
ing the location of the upper link node on the scanning line. Notice
that this point determines the initial node of the breaking line, used
in the algorithm. Also notice that the final step in the embedding of
a simple generator ended with two exterior links. For generality, con-
sider that if one of the two final links were treated as interior it would
be a matter of connecting such link to a point in the polygon border
generating a new connecting node location. This consideration is es-
sential to understand the recursive algorithm that follows.

Now that the embedding of the simple tree has been explained we
can move on to the description of the recursive embedding process.
The steps of the process are the following:

1. Determine (i) the sequence of generators required to construct the
topology to be embedded and (ii) the number of iterationsΩ need-
ed to construct the tree. The decomposition method has been care-
fully explained in Mantilla (2007) in the context of RSNs.

2. Assign a value of area to every link in the tree.
3. Proceed to break the region enclosed by a convex polygon into as

many pieces as the iteration-1 generator dictates. Notice that the
iteration-1 generator corresponds to one of the basic exterior
Fig. 14. Cumulative distribution functions of Aω
(E)/E[Aω

(E)] and Aω
(I)/E[Aω

(I)] in five consec-
utive steps of the aggregation process.
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Fig. 15. Quantile–quantile plots of Aω
(E)/E[Aω

(E)] and Aω
(I)/E[Aω

(I)] derived from data in the Walnut Creek basin in Kansas, and the North Fork Kentucky River vs. the BUE stable distri-
bution for orders ω=3, 4 and 5.
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generator types in Fig. 2a; thus, we can apply the STE algorithm to
this region. Here attention should be given to the fact that the
total area of the ‘generator links’ is determined by the sum of
the area of their progeny. We define the progeny of link e as all
the links that spawn from the replacement process that starts
with link e.

4. As indicated by the algorithm for simple generators, the first step is
to determine the bottom region.
Fig. 16. Steps for embedding the
(a) Determine the iteration-2 generator that spawns from the link
being embedded. In a recursive fashion apply steps (4) and
(5) to the current polygon until the iteration-Ω generator
has been reached. At this point apply the algorithm for simple
generators described previously.

(b) Now step outward in a recursive fashion until the bottom re-
gion has been fully distributed amongst the links of the
spawning link.
topology of an E2 generator.
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5. As indicated by the STE algorithm, the second step is to determine
the intermediate region.

(a) Determine the iteration-2 generator that spawns from the link
being embedded. In a recursive fashion apply steps (4) and
(5) to the current polygon until the iteration-Ω generator
has been reached. At this point apply the STE algorithm.

(b) Now step outward in a recursive fashion until the intermedi-
ate region has been fully distributed amongst the links of the
spawning tree.

6. Finally determine the top region and apply steps (3) and (4) in a
recursive fashion.

The recursive nature of the algorithm is necessary because, al-
though the total area of each subregion is known, the location
through which the river will flow out of the tile is unknown. The pro-
cess can be better illustrated by applying the algorithm to topologies
with increasing complexity. Examples are presented in the following
section.

4.2.3. Applications of the BUE algorithm
In this section we present some applications of the algorithm to

SSTs and to RSNs. The topologies and initial shape were selected for
simplicity and to illustrate how different topologies embed into the
same shape. Some produce realistic tile shapes and others do not.
The issue of the relation between shape and topology is an area of fur-
ther research that is not addressed in this paper.

Self similar trees can be generated by sampling a single interior
generator type to replace interior links and a single exterior generator
type to replace exterior links during the RSN generation process. The
tree in Fig. 11, generated by replacing exterior links with E1 genera-
tors and interior links with I3 generators, is an example of one such
tree. We introduce the notation Ek1Ik2 to characterize these SSTs.
Here, k1 and k2 are integers representing the generator type that is
used to replace exterior and interior links, respectively. Thus, the
tree in Fig. 11 is denoted E1I3. Fig. 17 shows the tiled region for
SSTs E1I1, E1I3, E2I1, and E2I2. In these four cases we have chosen
to assign tile area aj

(E)=aj
(I)=AΩ/(2MΩ+1), where AΩ is the total re-

gion area and MΩ is the BRT magnitude.
To illustrate the generality of the algorithm, we have created RSNs,

with random generators following a geometric distribution. We se-
lected parameters pE=0.49 for exterior generators and pE=0.42 for
interior generators. Fig. 18 shows the resulting tiling for these trees
after four generations. Once again we assign tile area aj

(E)=aj
(I)=

AΩ/(2MΩ+1).

5. Artificial three-dimensional landscapes

In addition to creating two-dimensional tiled regions, the BUE can
be extended to create three-dimensional surfaces with drainage
properties that fully correspond to the intended network. Fig. 19
shows the landscape generated for the embedded E1I1 network. Pro-
jecting points of the embedded network, and the corresponding tes-
sellation, into a two-dimensional matrix, generates these artificial
Fig. 17. Bottom up embedding algorithm
landscapes. The points to project correspond to the location of the
network edges and the tile borders.

We ensure that the channel network will flow in the correct direc-
tion by assigning an elevation value to the network edges proportion-
al to the topologic distance to the outlet. Next, we assign the value of
two times the maximum distance to the outlet along the network to
the locations in the matrix that correspond to the tile borders. Finally,
we use these reference points to create a triangulation (Lee and
Schachter, 1980) that is used to linearly interpolate values for the
rest of the positions in the matrix. This step is necessary because
the flow direction is only known for those pixels along the streams.
The linear interpolation provides elevations at hillslope pixels in
such a way that the maximum gradient is in the direction of the
intended link. A similar algorithm was developed by Sun et al.
(1994) in the context of optimal channel networks, but their algo-
rithm relied on a direction matrix prescribing a drainage direction
to every cell of the lattice.

Note that the algorithm can be easily modified to includemore real-
istic elevation changes along the network in order to obtain more real-
istic slopes throughout the watershed. Landscapes obtained in this
manner would make ideal initial conditions for landscape evolution
models (e.g. Birnir et al., 2001; Birnir et al., 2007), as theywould provide
a more predictable outcome for the drainage network topology.

6. Conclusions

We presented an extension of generalized Horton laws of land-
scape composition that reveals new and interesting scaling features
of real river basins. We called this framework ‘extended generalized
Horton laws’. The extension of Horton laws is inspired by recent the-
oretical results by Tokunaga (2003) regarding scaling properties of
internal sub basins of Tokunaga trees and other deterministic net-
works such as the Peano network or the Mandelbrot–Viscek tree,
and by results in Troutman (2005) that demonstrated similar scaling
properties for RSN topologies. The link between the empirical results
presented in this paper and theoretical results on RSNs and self-
similar topologies provide a context for these new Horton laws, in
which the single principle of statistical self-similarity of the structure
of the network explains several scaling laws instead of viewing them
as independent of each other. Understanding the connection between
the empirical laws of network composition in the context of self-
similarity provides new techniques for the estimation of the parame-
ter values (i.e. RA, RM, RL, etc.) that can address estimation issues
highlighted by other authors (e.g. Puente and Castillo (1996);
Moussa (2009)).

The extended generalized Horton laws are used to evaluate two
embedding algorithms that we call Top-Down and Bottom-Up em-
bedding, TDE and BUE, respectively. We demonstrated that the TDE
approach is inappropriate to create tessellations of a region that cor-
respond to those found in real landscapes because the areas of the
tiles in TDE are highly correlated. It leads to a violation of equality
in distribution of rescaled areas and network magnitudes across
scales, a property which is found to hold in data.
applied to four self similar trees.

image of Fig.�17


Fig. 18. Bottom up embedding algorithm applied to four order-4 RSNs.
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BUE is a new embedding method presented and tested here. The
algorithm design allows branching that takes place at small scales to
constrain areas at larger scales so that all hillslope areas are assigned
in advance of the embedding process. If the topologic tree to be em-
bedded obeys the Extended Generalized Horton Laws for magnitude,
then the BUE will always produce an embedded network obeying dis-
tributional equality of rescaled magnitude and area.

We used the tiled region to create three-dimensional landscapes
with drainage properties established a priori. We argued that these
landscapes could be used as the initial condition for landscape evolu-
tion models. The landscapes can also be treated as real DEMs to be
used in rainfall–runoff simulations.

7. Future work

It is important to note that the extension of Horton laws to Areas
and Magnitudes presented in this paper points to the need to test fur-
ther properties such as river length, topological diameter, slopes, and
other geometric and topologic quantities. Testing these scaling laws
and developing algorithms that capture their correct scaling features
is an important area of future research. In particular we have been
experimenting with embedding algorithms that preserve Hack's law
(Hack, 1957), however these algorithms have proven far more com-
plex than those introduced in here.

The process of embedding BRTs in two-dimensional regions estab-
lishes the bridge between topologic network structure and spatial
variability of runoff generation processes. In an upcoming paper, we
investigate the interaction between space–time rainfall variability
and network topology using the DEMs generated by the BUE. Addi-
tional lines of research involve improving the algorithm to obtain hill-
slope shapes that are more realistic and that impose the additional
constraint of preserving Hack's law. The results of this paper are
opening the door to an exciting research area rather than the solution
to this complex and interesting problem.

Another important area of research is the study of relations be-
tween basin shape and network topology. The initial results obtained
with the BUE algorithm indicate that when arbitrary network topolo-
gies are embedded in arbitrary basin shapes the resulting tiling
Fig. 19. An example of a three-dimensional landscape obtaine
produces unrealistic shapes because natural river basin shapes influ-
ence their network topologies. The results obtained by Mantilla et
al. (2010) have shown that RSN generators can be estimated for nat-
ural river network. This procedure can be used to understand how
basin shapes affect network topologies.
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