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Sparse Low-rank Component Based
Representation for Face Recognition with Low

Quality Images
Shicheng Yang, Le Zhang, Lianghua He*, and Ying Wen*

Abstract—Sparse-representation based classification (SRC) has been showing a good performance for face recognition in recent
years. But SRC is not good at face recognition with low quality images (e.g., disguised, corrupted, occluded, and so on) which often
appear in practical applications. To solve the problem, in this paper, we propose a novel SRC based method for face recognition with
low quality images named sparse low-rank component based representation (SLCR). In SLCR, we utilize low-rank matrix recovery on
the training dataset to obtain low-rank components and non-low-rank components, which are used to construct the dictionary. The new
dictionary is capable of describing facial feature better, especially for low quality face samples. Furthermore, the minimum class-wise
reconstruction residual is used as the recognition rule, leading to a substantial improvement on the proposed SLCR’s performance.
Extensive experiments on benchmark face databases demonstrate that the proposed method is consistently superior to other
sparse-representation based approaches for face recognition with low quality images.

Index Terms—Face recognition, sparse-representation based classification, low-rank component, low quality images.

F

1 INTRODUCTION

FACE recognition has been the most popular biometric
method due to its huge application potential in the

past decades [1], [2], [3], [4], [5], [6], [7], [8]. Sufficient and
favourable training samples guarantee a good feature repre-
sentation for describing the characteristics of an individual’s
face. However, in the real world, the image of each person
is often disguised, corrupted or occluded. Therefore, face
recognition with low quality images is more challenging
than the one with sufficient and favourable images. This
paper focuses on the task of face recognition with low
quality images.

The effectiveness of feature extraction is important for
face recognition. Principal component analysis (PCA) [9]
is a common technique for dimensionality reduction. In
addition, there are other methods such as linear discrim-
inant analysis (LDA) [10], probabilistic subspace learning
[11] and locality preservation (Laplacianface) [12] and so
on. However, it is a difficult task for these methods to solve
outliers or sparse noise [13]. To alleviate this problem, some
methods on robust PCA have been proposed [14], [15], [16].
Among them, low-rank matrix recovery (LR) [14] is a key
technique, which can separate corrupted information from
the training face images better than PCA. Accordingly, low-
rank components obtained by LR would better serve the
classification purpose.

The performance of classifier is important for face recog-
nition. Nearest neighbor (NN) classifier is widely applied
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for its simplicity. Extensions of NN classifier, nearest feature
line (NFL) [17], nearest feature plane (NFP) [18], nearest fea-
ture space (NFS) [19] and linear regression classifier (LRC)
[20], consider the relation between the testing image and
the training images of each class separately [21]. Different
from the above-mentioned classifiers, sparse-representation
based classification (SRC) which considers the testing image
as a linear combination of the training dataset has been
proposed for face recognition and achieved satisfying re-
sults [22]. However, SRC is incapable of performing well
when the training dataset is undersampled or corrupted. To
overcome this shortcoming, some extended SRC methods
have been proposed [25], [26]. Zhou et al. applied SRC
with Markov random fields to address the disguise face
recognition problem with large contiguous occlusion [23].
Wagner et al. used SRC to handle the misalignement, pose
and illumination invariant recognition problem [24]. Yang et
al. borrowed the idea of robust regression [27] and proposed
a regularized robust coding (RSC) [28], [29]. He et al. made
use of the correntropy induced robust error metric and
presented the correntropy based sparse-representation algo-
rithm (CESR) [30], [31]. Lai et al. applied a method of class-
wise sparse-representation (CSR) to tackle the problems
of the conventional sample-wise sparse-representation [33].
The above methods combining SRC with other techniques
improve the classifier’s performance, but they still do not re-
solve low-quality face recognition. Some recent work, on the
other hand, began to investigate the dictionary construction
in SRC based methods. Deng et al. proposed a superposed
sparse-representation-based classifier (SSRC) for undersam-
pled face recognition [32], [34], in which the dictionary sim-
ply uses centroid images to capture the face feature. Chen
et al. adopted a low-rank matrix approximation algorithm
with structural incoherence (LRSI) integrated into SRC for
robust face recognition [35]. Jiang et al. proposed a sparse-



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2849883, IEEE
Transactions on Information Forensics and Security

2 3

0 500 1000 1500 2000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

= 

= 

Dictionary A Dictionary B 

Dictionary A Dictionary B 

Coefficients of the training image

Coefficients of the training image

Dictionary D 

Coefficient of the training image 

500 1000

0.1
0.08
0.06

0.04

0.02
0

-0.02
-0.04
-0.06

(a)

0 500 1000 1500 2000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000

0

0.05

0.1

0.15

0.2

= 

= 

Dictionary A Dictionary B 

Dictionary A Dictionary B 

Coefficient of the training image

Coefficient of the training image 

-0.05

-0.1

-0.15

(b)

500 1000 1500 2000
-0.1

0

0.1

0.2

0.3

0.4

0.5
0.6

0 500 1000 1500 2000
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

= 

Dictionary Dictionary 

Dictionary A Dictionary B 

Coefficient of the training image

Coefficient of the training image 

(c)

Fig. 1. Recognition with 32×32 training images corrupted by 20% salt-and-pepper noise using SRC (a), SDR-SLR(b) and SLCR (c).

is the same as PCA. By PCA, the training dataset D can be
decomposed into

D = L+N (6)

where L is the principal component (i.e., class-specific infor-
mation in SDR-SLR), N is the non-principal component (i.e.,
non-class-specific information in SDR-SLR). It finds that the
best rank-k estimation of L by minimizing ‖D − L‖2 subject
to rank(L) <= k and it can be solved by SVD. If the image
is corrupted by Gaussian noise, the principal component
obtained by PCA can be optimal [14]. However, PCA is
sensitive to small non-Gaussian noise which often appears
in actual face images. This means that the information
captured by PCA remains potential errors.

In general, the dictionary that only contains class-specific
information should be the low-rank matrix. This is sup-
ported by the fact that face images within a class have
a low-rank structure [36]. SDR-SLR is obviously hard to
get the optima low-rank matrix when the training set is
corrupted by non-Gaussian noise. However, whatever the
noise is Gaussian, we still hope to decompose the training
sample matrix D into the low-rank component L and the
non-low-rank component N. And the low-rank component
L is used to correctly describe the facial feature and the non-
low-rank component N contains the information associated
with sparse error. Fortunately, low-rank matrix recovery can
satisfy this demand.

By low-rank matrix recovery (LR), the training matrix D
can be initialized by

D = L+ N (7)

where L is the low-rank component that from the original
training matrix D and N is the non-low-rank component
that associated with sparse error. This formulation suggests
that LR seeks the lowest rank L that contains almost all
of the class-specific information. The lowest rank L can be
approximately recovered by solving the following convex
surrogate

min
L,N
‖L‖∗ + γ ‖N‖1 , s.t.D = L+ N (8)

where the nuclear norm ‖L‖∗, the sum of the singular
values, approximates the rank of L and γ is a constant for
a compromise between L and N. Then, we use L and N to
construct the dictionary.

Once the dictionary is constructed from the training data,
we perform recognition of the testing image y as

y = Lα+ Nx+ z (9)

where z is the reconstruction error. Eq.(9) is the proposed
sparse low-rank component based representation (SLCR).
The sparsity of α is measured by l0-norm of α. But this
problem is NP-hard, we replace l0-norm of α by l1-norm
of α, i.e. ‖α‖1. In order to make the representation error z
as small as possible, it is not necessary to put the sparse

=

Fig. 1. Recognition with 32×32 training images corrupted by 20% salt-and-pepper noise using (a) SRC, (b) SDR-SLR and (c) SLCR.

and dense-hybrid representation (SDR) [21] by using the
reconstructed images by the singular vectors corresponding
to the largest singular value to initialize the dictionary.
Although the dictionary based SRC methods indeed im-
prove the SRC’s performance, to some extent, they still
show unsatisfactory results for undersampled, disguised,
corrupted and occluded data. This may be because these
methods use original samples to construct the dictionary
without properly selecting or processing these samples.

In this paper, we focus on the dictionary construction of
SRC to solve face recognition with low quality images and
propose a sparse low-rank component based representation
(SLCR) which is effective for undersampled, disguised,
corrupted and occluded face recognition. In the proposed
method, the main contribution is the application of the low-
rank component decomposition to construct the dictionar-
ies. Low-rank component and non low-rank component ob-
tained by LR from the training samples present the effective
features and the others associated with occlusion, outlier or
sparse noise, respectively, which would contribute to accu-
rate recognition. Then the Augmented Lagrange Multiplier
(ALM) scheme is used to solve the proposed SLCR. Finally,

we minimize class-wise reconstruction residual to recognize
the testing image. Furthermore, we analyze the reason why
the proposed SLCR can improve face recognition with low
quality images in the last section. The experimental results
on the extended Yale B, CMU Multi-PIE, AR and LFW
databases validate that our method outperforms for face
recognition with low quality images.

The remainder of this paper is organized as follows.
In Section 2, we present the proposed sparse low-rank
component based representation. Experimental results on
face image data are reported in Section 3. Finally, Section 4
discusses and concludes this paper.

2 METHOD

This work studies a new sparse low-rank component based
representation (SLCR) and its dictionary construction for
face recognition with low quality images. Since the pro-
posed method stems from SRC, SSRC and SDR, we intro-
duce these methods briefly.
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Fig. 2. Dictionary construction. (a) Samples; (b) Class-specific infor-
mation; (c) non-class-specific information; (d) Low-rank component; (e)
non-low-rank component. Note: SRC uses (a); SDR-SLR uses (b+c);
SLCR uses (d+e).

2.1 Related Works
Sparse-representation based classification (SRC) algorithm
for face recognition considers each testing image as a sparse
linear combination of the training images by solving an l1-
minimization problem. Assume that there are N training
images from C object classes. Then, define a training dataset
D = [D1, D2, ..., DC ] ∈ Rd×N , where Di consists of the
training images of ith class as its columns and d is the
dimension of each sample. Given a testing image y ∈ Rd×1,
the linear representation of y can be represented in terms of
all training images as:

y = Dα+ z (1)

where α ∈ RN is a sparse coefficient vector whose entries
are zeros except those associated with the ith class and
z ∈ Rd is a reconstruction error term with bounded energy
‖z‖2 < ε. The sparse solution α can be approximately
recovered by solving the following stable l1-minimization
problem [22]:

min
α,z
‖α‖1 + β ‖z‖22 , s.t. y = Dα+ z (2)

where β is a constant for a compromise between sparsity
and reconstruction.

SRC is incapable of performing well when the training
images are corrupted or undersampled. Therefore, Deng et
al. proposed a prototype plus variation (P+V) representation
model to improve the robustness against the undersampled
and corrupted training images. Then, the linear representa-
tion of y can be rewritten in terms of all training images as
[32]:

y = Aα+Bx+ z (3)

where A is the prototype dictionary, B is the variation
dictionary, α and x can be recovered simultaneously by l1-
minimization. Note that the residual is related to α and x,
which is computed as follow:

ri(y) =

∥∥∥∥y − [A,B]

[
δi(α)
x

]∥∥∥∥
2

(4)

where δi(α) is a new vector whose only nonzero entries are
the entries in α that are associated with class i. And then a
superposed SRC (SSRC) based on this model is proposed,
in which the prototype dictionary A presents the geometric
centroid per class and the variation matrix B is composed
of the samples based difference to the centroid.

Based on the P+V model, a sparse- and dense-hybrid
representation (SDR) framework is proposed, in which dic-
tionary A contains feature information of face images per
class namely class-specific component and dictionary B is
non-class-specific component. The representation residual
in SDR is defined as

ri(y) = ‖z − zi‖2 = ‖A(I − Ci)α‖2 (5)

where I is an identity matrix, Ci is a class-label matrix of
the training dataset D for class i, its element Ci(k, k) = 1 if
the kth training image originates from class i and all other
elements of Ci are zero. To solve the proposed SDR, Jiang et
al. proposed a procedure of supervised low-rank dictionary
decomposition (SDR-SLR) [21].

2.2 Sparse Low-rank Component based Representa-
tion (SLCR)
Motivated by individual strengths of SRC and low-rank
matrix recovery, in this paper, we propose a new sparse
low-rank component based representation (SLCR) for low
quality face recognition. We begin with the motivations of
our work.

For the previous dictionary based SRC methods, SSRC
simply applies centroid images to capture the class-specific
information. SDR-SLR applies the reconstructed images by
the singular vectors corresponding to the largest singular
value to initialize dictionary. The experiments report that
SDR-SLR is superior to SSRC for face recognition [21].

SDR-SLR applies singular value decomposition (SVD) to
get class-specific information to initialize the dictionary. For
the matrix decomposition, SVD is the same as PCA. By PCA,
the training dataset D can be decomposed into

D = L+N (6)

where L is the principal component (i.e., class-specific infor-
mation in SDR-SLR), N is the non-principal component (i.e.,
non-class-specific information in SDR-SLR). It finds that the
best rank-k estimation of L by minimizing ‖D − L‖2 subject
to rank(L) <= k and it can be solved by SVD. In real
application, images are often destroyed by various noise,
which may lead to potential error contained in the principal
component. If an image is only corrupted by Gaussian noise,
the principal component obtained by PCA can be optimal
[14]. However, PCA is sensitive to small non-Gaussian noise
often appeared in actual face images, which denotes that the
information captured by PCA reserves potential errors.

The fact is that face images within a class have a low-
rank structure [36]. Thus, the dictionary that only contains
class-specific information should be the low-rank matrix. It
is obviously hard for SDR-SLR to obtain the optimal low-
rank matrix when the training set is corrupted by non-
Gaussian noise. However, for whatever noise, we still hope
to decompose D into low-rank component L and non-low-
rank component N. Fortunately, low-rank matrix recovery
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Fig. 3. The cropped images of one person from the (a) extended Yale B,
(b) CMU Multi-PIE and (c) AR database.

can satisfy this demand such that L can correctly describe
the facial feature while N contains the information associat-
ed with sparse error.

By LR, D can be initialized by

D = L+ N (7)

where L is low-rank component from the original training
matrix D and N is non-low-rank component associated with
sparse error. This formulation suggests that LR seeks the
lowest rank L that contains almost all of the class-specific
information. The lowest rank L can be approximately re-
covered by solving the following convex surrogate

min
L,N
‖L‖∗ + γ ‖N‖1 , s.t. D = L+ N (8)

where the nuclear norm ‖L‖∗, the sum of the singular
values, approximates the rank of L and γ is a constant for
a compromise between L and N. Then, we use L and N to
construct the dictionary.

Then, the testing image y can be rewritten as

y = Lα+ Nx+ z (9)

where z is the reconstruction error. Eq.(9) is the proposed
sparse low-rank component based representation (SLCR).
The sparsity of α is measured by l0-norm of α. But this
problem is NP-hard, we replace l0-norm of α by l1-norm
of α, i.e. ‖α‖1. In order to make the reconstruction error
z as small as possible, it is unnecessary to put the sparse
constraint on x and therefore we use ‖x‖2. The solution of
the proposed SLCR, α, x and z, is obtained by solving the
following optimization problem:

min
α,x,z

‖α‖1 + β ‖x‖22 + γ ‖z‖1 , s.t. y = Lα+ Nx+ z (10)

where β and γ are constants for a compromise. We use
the Augmented Lagrange Multiplier (ALM) scheme [37]
to solve the optimization problem. Finally, our recognition
rule is also based on minimum class-wise reconstruction
residual. The class-wise reconstruction residual is defined
by

ri(y) = ‖z − zi‖2 = ‖L(I − Ci)α‖2 (11)

where L is the low-rank dictionary of SLCR.
Next, we carry out an experiment to show the difference

among SRC, SDR-SLR and SLCR. We randomly select 30
images corrupted by 20% salt-and-pepper noise from the
extended Yale B database [38] as a training set and randomly
select a testing image to get the results of SRC, SDR-SLR and
SLCR. Figs. 1 (a), (b) and (c) present the sparse coefficients

of a testing image using SRC, SDR-SLR and SLCR, respec-
tively. It is noted that sparse coefficients obtained by SLCR
are sparser than those of SRC and SDR-SLR. The training
samples of the correct subject contains the noise, which
results in SRC and SDR-SLR selecting the samples of many
other subjects to represent the testing image. Thus, the most
significant coefficients of SRC and SDR-SLR associated with
wrong subjects lead to misclassification in this example.
Contrary to SRC and SDR-SLR, the top significant coefficient
of SLCR is for the training image of the same identity as the
testing image. This denotes SLCR obtains a correct result
in such a situation. From this example, we can see that the
proposed SLCR method obtains more sparse and accurate
coefficients.

The difference among SRC, SDR-SLR and SLCR mainly
is reflected in the dictionary construction. Fig. 2 shows
an example of the dictionary construction of the proposed
SLCR comparing to SRC and SDR-SLR on the CMU Multi-
PIE database [39]. Fig. 2 (a) shows the dictionary of SRC
constructed by all original images. As we can see, the
dictionary in SRC includes all samples without class-specific
information. Fig. 2 (b) and Fig. 2 (c) are class-specific images
and non-class specific images, both of which are the initial
dictionary of SDR-SLR. Fig. 2 (d) and Fig. 2 (e) are low-
rank component and non-low-rank component, both of
which construct the dictionary of SLCR. Generally, a good
dictionary not only can well describe facial feature, but also
can reduce the impact of sparse error. Thus, we want to
propose a new dictionary which may be more suitable for
the recognition and effectively reduce the error. Because of
low-rank structure existing in face images within a class
[36], low-rank component can describe facial feature well.
Hence, the dictionary constructed by low-rank component
can satisfy our purpose. In the following experiments, we
will testify of the performance of the proposed SLCR.

3 EXPERIMENTS

We propose a sparse low-rank component based representa-
tion (SLCR) which is an extension of sparse-representation
based classification (SRC). Thus, we compare the results be-
tween SLCR and other SRC based methods. In this section,
we first choose three face databases (the extended Yale B
[38], CMU Multi-PIE [39] and AR [40] face databases) to
compare the performance of our method with LR, SRC,
LRSI, SSRC and SDR-SLR in different experimental circum-
stances. Furthermore, we verify the performance of SLCR
and other SRC based methods on LFW database [41] in
natural situations. All images are cropped with size 32× 32
. In addition, all experiments are repeated 10 times and
each time we choose different training set and testing set.
Training set and testing set are from the same database.
Both of them contain different samples of the same person.
Thus, the number of impostor samples in the training set
and testing set is 0 so that the false match rate (FMR) is 0%
in all experiments. We use the false non-match rate (FNMR)
at a 0% FMR to show the results of experiments.

3.1 Experiments on Face Database
The extended Yale B database consists of 2414 frontal-
face images of 38 subjects (around 59-64 images per per-
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TABLE 1
Experimental results on the CMU Multi-PIE database (reported as

%FNMR@FMR=0%).

Train.number 2 3 4 5 6

LR 34.34
±1.13

26.42
±1.52

20.55
±1.64

16.28
±1.63

12.57
±0.81

SRC 66.14
±3.23

32.42
±1.53

18.50
±1.74

11.53
±0.89

8.33
±0.60

LRSI 31.87
±1.08

23.31
±1.06

18.04
±1.13

14.37
±1.52

11.91
±0.88

SSRC 21.54
±1.39

12.32
±0.93

9.19
±0.79

8.11
±0.61

7.28
±0.70

SDR-SLR 22.31
±1.37

13.20
±1.21

9.30
±1.38

6.77
±1.02

5.33
±0.59

SLCR 18.58
±2.34

12.07
±0.76

9.17
±0.81

6.17
±0.66

5.00
±0.43

TABLE 2
Experimental results on the extended Yale B database (reported as

%FNMR@FMR=0%).

Train.number 2 3 4 5 6

LR 60.80
±2.00

48.79
±1.77

42.58
±1.92

37.75
±1.08

33.06
±0.66

SRC 79.49
±1.69

58.63
±1.27

43.12
±1.67

33.59
±1.13

26.63
±0.97

LRSI 59.22
±2.51

47.37
±1.82

40.85
±1.99

36.34
±1.45

31.87
±0.53

SSRC 51.06
±2.96

36.79
±2.02

28.63
±1.62

22.57
±0.58

18.04
±1.21

SDR-SLR 54.79
±3.67

41.50
±2.55

33.70
±2.29

27.79
±1.81

22.58
±1.83

SLCR 52.20
±2.92

40.37
±2.55

33.40
±1.82

26.85
±1.05

21.48
±1.78

son), while each image is taken under various laboratory-
controlled lighting conditions. The CMU Multi-PIE database
contains face images captured in four sessions with varia-
tions in illumination, expression and pose. And we choose a
subset of the dataset set consisting of 1360 frontal images for
68 individuals. The AR database contains over 4000 frontal
images for 126 individuals. We choose a subset of the dataset
set consisting of 702 frontal images for 54 individuals on AR
database and these images include more facial variations,
including illumination change, expressions, and facial dis-
guises. The cropped images of one person from the extended
Yale B, CMU Multi-PIE and AR databases are shown in Fig.
3 (a), (b) and (c), respectively.

We conduct four groups of experiments to validate the
proposed method performance.

• Undersampled training dataset on the Yale B and PIE
databases.

• Real disguised (scarf or glasses disguise) images in
both training and testing data on the AR database.

• Training dataset corrupted by different levels of salt
and pepper noise.

• Training dataset occluded by various sizes of con-
tiguous block image.

The purpose of this paper is to solve face recognition with
low-quality images, thus the last three groups work on the
low-quality images with disguised, corrupted and occluded
subjects. The first group’s purpose is to validate the pro-
posed method for undersampled face recognition, which is
also an issue in the current face recognition.
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Fig. 4. Experimental results on images with sunglasses on the AR
database. Reported is the FNMR at a 0% FMR.
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Fig. 5. Experimental results on images with scarf on the AR database.
Reported is the FNMR at a 0% FMR.

3.1.1 Experiments on Undersampled Training Dataset

This subsection tests the effectiveness of various approaches
on the undersampled training dataset.

Firstly, we carry out this experiment on CMU Multi-
PIE face database. We randomly select 2 - 6 images per
individual as the training set and the rest of the images
as the testing set. The average false non-match rates and
the standard deviations of 10 runs are shown in Table
1. Although undersampled training dataset does not have
sufficient representative samples to describe facial feature,
SLCR is better than the other methods for the undersampled
problem. This is because SLCR uses low-rank component
which contains important facial feature to construct the
dictionary.

Then, we randomly select 2 - 6 images per individual
on the extended Yale B database as the training set and the
rest images as the testing images. The average false non-
match rates and standard deviations of 10 runs are showed
in Table 2. It is generally known that SSRC simply uses
centroid images to capture the feature information. In the
extended Yale B database, face images of one person have
little pose and emotion changes while the greatest change is
illumination, as is shown in Fig. 3 (a). Thus, the feature infor-
mation captured by centroid images is able to adapt to the
extended Yale B database and SSRC presents a good result.
However, other databases such as AR and CMU Multi-PIE
give emphasis to other changes, thus SSRC cannot do better
than other methods. The SLCR method is slightly weaker
than SSRC but superior to SDR-SLR, LR and LRSI on the
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Fig. 6. Experimental results on images with sunglasses or scarf on the
AR database. Reported is the FNMR at a 0% FMR.

extended
Yale B

CMU
Multi-PIE

AR

5% 10% 15% 20% 25% 30%

Fig. 7. Some training images corrupted by salt-and-pepper noise. From
top to bottom, the training images are from the extended Yale B, CMU
Multi-PIE and AR databases, respectively. From left to right, the training
images are corrupted by salt-and-pepper noise from 5% to 30%, respec-
tively.

extended Yale B database. The above experiments show that
SLCR is comparable to other methods for undersampled
face recognition.

3.1.2 Experiments on Real Disguised Images
This subsection tests the effectiveness of various approaches
with real images of disguised subjects in both training
and testing images. We choose AR dataset to testify of the
performance of SLCR.

We randomly choose 2 - 6 images per individual with
sunglasses or scarf and some neutral images as the training
set and the remaining images are as the testing set, in which
the training images have mixed types of variations. Firstly,
we randomly choose some sunglasses and neutral images
as the training set. The average false non-match rates of 10
runs are plotted in Fig. 4. It can be seen that SLCR consis-
tently outperforms SDR-SLR, SSRC, LR and LRSI when the
training images is undersampled and disguised. Secondly,
we randomly choose some scarf and neutral images as the
training set. The results are plotted in Fig. 5. Similar to the
previous experiment, SLCR achieves a good performance
for undersampled and disguised data. Lastly, to further
verify the performance of SLCR, we randomly choose some
sunglasses, scarf and neutral image as the training set. The
average false non-match rates are shown in Fig. 6. With the
increase of the training samples, the superiority of SLCR
is obvious and SLCR presents a good performance for the
sunglasses or scarf disguised images. For face recognition
in the disguised data, the proposed method is optimal. This
is because the dictionary in SLCR composed of low-rank
component and non-low-rank component is able to describe
the facial feature better, especially for real disguised (scarf

or sunglasses disguise) face images, meanwhile the scarf
and sunglasses disguise may adverse effects on the other
methods.

The above experiments show that SLCR method is ro-
bust to illumination, appearance, and make up for face
recognition. In addition, it is also verified that SLCR is
superior to the other methods when the number of the
training images per class is insufficient.

3.1.3 Experiments on Images Corrupted by Noise
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Fig. 8. Experimental results on 20 corrupted training images on the
extended Yale B database. Reported is the FNMR at a 0% FMR.
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Fig. 9. Experimental results on 30 corrupted training images on the
extended Yale B database. Reported is the FNMR at a 0% FMR.
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Fig. 10. Experimental results on 5 corrupted training images on the CMU
Multi-PIE database. Reported is the FNMR at a 0% FMR.

The experiment aims to test the effectiveness of the pro-
posed SLCR on the training dataset corrupted by different
levels of noise.
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Fig. 11. Experimental results on 6 corrupted training images on the CMU
Multi-PIE database. Reported is the FNMR at a 0% FMR.
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Fig. 12. Experimental results on 5 corrupted training images on the AR
database. Reported is the FNMR at a 0% FMR.

We select the extended Yale B, CMU Multi-PIE and AR
databases to test and all training samples are corrupted by
different levels of noise. As shown in Fig. 7, from top to
bottom, the training images are from the extended Yale B,
CMU Multi-PIE and AR databases respectively, and from
left to right, the training images are corrupted by salt-and-
pepper noise from 5% to 30%, respectively. Considering dif-
ferent databases having different sample size, we randomly
choose 20 and 30 images per individual from the extended
Yale B database, 5 and 6 images per individual from PIE
and AR databases as the training set and the rest as the
testing set, respectively. Figs. 8-13 plot the average false non-
match rates of different training set in different databases,
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Fig. 13. Experimental results on 6 corrupted training images on the AR
database. Reported is the FNMR at a 0% FMR.

TABLE 3
Experimental results with 20 occluded training images on the extended

Yale B database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 18.55
±1.15

21.89
±1.41

26.17
±1.37

33.17
±1.16

37.38
±1.59

41.09
±1.96

47.91
±2.41

SRC 9.00
±0.55

10.99
±0.88

13.88
±0.87

16.88
±1.11

19.31
±0.99

21.53
±1.21

28.49
±1.39

LRSI 19.29
±0.77

22.29
±1.19

26.83
±1.38

32.38
±0.80

36.71
±1.77

40.17
±1.50

46.90
±1.55

SSRC 10.67
±0.71

12.13
±0.97

14.16
±0.77

18.63
±0.99

22.56
±1.58

29.89
±1.24

26.86
±2.67

SDR-SLR 8.01
±0.91

9.00
±0.81

10.40
±1.14

11.88
±0.69

12.49
±1.72

13.89
±0.74

16.78
±1.03

SLCR 5.37
±0.59

6.03
±0.81

6.35
±0.47

7.27
±1.15

7.85
±1.03

8.35
±0.96

10.28
±0.95

respectively. From these figures, the performances of the
aforementioned methods decline with increasing level of
noise. SSRC uses the centroid images to construct the dictio-
nary which contain the noise. Thus, the noise in the training
images may impact the performance of SSRC. Similarly,
the dictionary in SDR-SLR also comprises the information
associated noise, thus SDR-SLR cannot achieve good results.
Because of the dictionary constructed by low-rank com-
ponent from the corrupted training images in SLCR, the
dictionary contains more class specific information. Thus,
SLCR has better performance than the others. Furthermore,
the superiority of SLCR is obvious particularly when the
level of noise is more than 10%. It means that SLCR is
accurate, reliable and with good repeatability.

The above experiments show that the performance of
SLCR is superior to LR, LRSI, SRC, SSRC and SDR-SLR, and
also demonstrate that SLCR is more robust than the other
methods for the training dataset corrupted by noise.

3.1.4 Experiments on the Images Occluded by Block Image

extended 
Yale B

CMU 
Multi-PIE

AR

10% 15% 20% 25% 30% 35% 40%

Fig. 14. Some training images occluded by block image. From top to
bottom, the training images are from the extended Yale B, CMU Multi-
PIE and AR databases, respectively. From left to right, the training
images are occluded from 10% to 40%, respectively.

The experiment is to test the effectiveness of different
approaches on the training dataset occluded by various sizes
of contiguous square block image.

Similar to the previous experiments, we also choose
the above databases to test the robustness of the proposed
method. The images in the training set are occluded by re-
placing a randomly located square block image. The design
of the experimental data is shown in Fig. 14, in which from
top to bottom the training images are from the extended
Yale B, CMU Multi-PIE and AR databases respectively, and
from left to right 10, 15, 20, 25, 30, 35 and 40 percent of
images are occluded respectively. 20 and 30 images per
individual from extended Yale B database, 5 and 6 images
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TABLE 4
Experimental results with 30 occluded training images on the extended

Yale B database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 14.21
±0.80

16.73
±1.18

21.78
±1.35

27.06
±1.26

32.31
±1.93

39.96
±0.93

45.02
±2.25

SRC 5.82
±0.73

7.36
±0.69

9.57
±0.78

12.55
±0.69

14.25
±0.72

20.35
±0.83

24.01
±0.82

LRSI 15.31
±0.76

17.14
±1.34

21.81
±1.23

27.05
±0.90

30.35
±1.55

36.15
±1.08

40.93
±2.07

SSRC 19.22
±1.36

21.44
±1.29

24.61
±1.37

30.29
±0.96

38.29
±1.29

78.67
±2.61

94.23
±0.67

SDR-SLR 5.25
±0.79

6.14
±0.69

6.91
±0.63

8.28
±0.70

9.09
±1.45

10.96
±1.08

11.73
±0.90

SLCR 3.06
±0.48

3.19
±0.44

3.56
±0.39

3.81
±0.28

4.39
±0.48

5.42
±0.63

7.06
±0.68

TABLE 5
Experimental results with 5 occluded training images on the CMU

Multi-PIE database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 22.16
±1.24

26.89
±1.26

31.36
±1.51

38.13
±2.78

42.59
±1.91

45.19
±1.78

51.07
±2.63

SRC 21.01
±1.38

24.29
±1.07

27.96
±1.66

33.30
±1.85

35.84
±1.96

39.20
±1.43

44.81
±1.68

LRSI 20.25
±0.79

24.21
±1.18

27.71
±1.35

33.57
±2.83

36.90
±2.43

39.83
±2.33

44.23
±3.03

SSRC 10.15
±0.60

10.46
±1.00

10.60
±0.89

12.87
±1.64

13.99
±1.68

15.66
±1.44

23.55
±2.69

SDR-SLR 8.15
±0.61

8.95
±1.07

9.26
±0.61

10.4
±1.61

11.35
±1.34

11.55
±0.98

13.48
±1.34

SLCR 7.64
±0.44

8.49
±1.00

8.61
±0.84

10.08
±1.73

10.87
±1.53

11.22
±0.72

12.65
±1.22

per individual from PIE and AR databases are chosen as the
training set and all rest images are used as the testing set,
respectively. The average false non-match rates and stan-
dard deviations of 10 runs of three groups of experiments
are shown in Tables 3-8, respectively. From these tables,
we can see that SLCR still has better performance than the
other methods. SSRC is almost the worst method among
these methods. SSRC uses the centroid images to capture
the class-specific information and the centroid images may
contain the block occlusion that impacts recognition perfor-
mance. The dictionary in SDR-SLR also contains the block
occlusion, thus it cannot obtain the best result. Thanks to
its low-rank recovery of the training dataset, the result of
SLCR is more approximate to the practical result than that
of the other methods. For example, in Table 4, we can see
the accuracy of SDR-SLR (10.96%) over the proposed SLCR
(5.42%) reaches about 5.54% at 30 training samples with
35% images occluded. Generally speaking, SLCR achieves
better results than other methods for all levels of block
occlusion.

The above experiments show that the performance of
SLCR is the best and the most robust for the training dataset
occluded by block image.

3.2 Experiments on Labeled Face Images in the Wild

The LFW face database [41] is designed for studying the
problem of unconstrained face recognition which contains
more than 13,000 images of faces collected from the web.
Each face has been labeled with the name of the person
pictured. Here we adopt a subset of LFW deep funneled

TABLE 6
Experimental results with 6 occluded training images on the CMU

Multi-PIE database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 19.57
±1.60

23.21
±2.32

28.21
±1.56

34.25
±1.82

38.64
±1.75

43.91
±2.80

45.95
±2.00

SRC 15.13
±1.76

18.31
±1.85

21.40
±1.50

25.74
±1.25

28.45
±1.29

32.70
±1.58

36.12
±1.32

LRSI 17.79
±1.51

21.58
±1.87

25.39
±1.24

29.65
±2.01

33.78
±1.95

38.81
±1.95

38.85
±1.80

SSRC 9.11
±0.89

8.95
±0.84

10.18
±0.89

11.32
±0.69

12.32
±0.50

17.45
±1.12

23.93
±2.49

SDR-SLR 6.81
±0.77

7.14
±0.86

8.03
±1.09

8.72
±0.65

8.76
±0.93

9.76
±0.96

11.01
±1.22

SLCR 6.26
±0.78

6.76
±0.73

7.52
±1.09

7.98
±0.61

8.08
±0.56

9.22
±1.01

9.75
±0.87

TABLE 7
Experimental results with 5 occluded training images on the AR

database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 40.32
±8.47

43.13
±11.39

46.32
±7.00

48.24
±5.15

52.69
±8.00

52.48
±8.26

54.14
±4.45

SRC 44.81
±7.08

48.01
±10.34

50.88
±7.49

51.94
±4.45

54.68
±7.42

56.74
±7.59

56.35
±4.84

LRSI 37.69
±7.76

42.96
±9.72

44.35
±7.30

49.51
±3.55

50.93
±6.68

52.78
±7.06

53.96
±2.36

SSRC 30.88
±7.83

34.42
±9.96

35.25
±8.12

36.11
±6.70

39.91
±8.62

42.13
±6.98

44.77
±5.83

SDR-SLR 24.98
±7.41

27.73
±10.92

28.38
±8.83

31.78
±5.53

33.91
±9.60

34.44
±9.71

32.94
±6.70

SLCR 23.22
±7.62

25.07
±9.63

27.36
±7.95

29.12
±6.69

32.25
±10.27

32.59
±9.21

31.11
±6.02

images [42] to test the performance of the proposed method.
We simply crop the face image to remove the background.
In our experiment, we choose 8 face images from each
subject and in total 94 subjects are chosen. Some cropped
images from the LFW database are shown in Fig. 15. We
randomly select 3 - 6 images per individual as the training
set and the rest images as the testing set. Table 9 sum-
marizes the false non-match rates on the LFW database.
From this table, SLCR clearly outperforms other SRC based
approaches when different training size is considered. In
the following experiments, we consider more challenging
databases which contain not only face images with realistic
variations, but also the corrupted and occluded ones for
recognition.

As in the previous subsection, we randomly choose 5
and 6 images per individual as the training set and the rest
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Figure 6. Recognition rate on the occlusion images with sunglass
or scarf from the AR dataset

Figure 7. Five images per person from the LFW dataset

images per person are shown in Fig.7.
In the LFW dataset, many people have only one or two

photos, for example, there are 4060 people with only one
photo. However, test of our method needs at least three
photos since the common vector is obtained by at least t-
wo photos and the rest for testing, so we have to preprocess
the dataset. In this experiment, we select all persons hav-
ing more than 2 photos to construct the dataset, in which
there totally contains 7613 images and 900 people. A per-
son with the same number of photos is classified to the same
subset. If there are a few people in a subset, we randomly
select some people having more photos to complement this
subset. We make a subset contain at most 15 photos per
person. Finally, we get 13 subsets which have from 3 to 15
photos per person separately. To this end, we carry out 13
experiments and evaluate the performance of our method by
”leave-one-out” method.

Fig.8 shows the comparisons of the NN, SRC, SSRC
and our method from the LFW dataset. The horizontal axis
shows the number of samples and people at each subset, for
example, the first subset has 290 persons and 3 samples per
person. Due to different persons with different samples in
different subsets, it may present that the recognition rates
in small samples subsets are higher than that of other sub-

Figure 8. Experimental results of four methods from the LFW
dataset

Figure 9. Experimental results of four methods from a subset of
the LFW dataset

sets, such as the higher results in 6 samples subset. The
recognition rates obtained by our methods are the highest
in every subsets. It can be seen that the recognition rates of
our method are stably superior to that of other methods with
the increase of the number of samples.

Furthermore, we randomly select a subset consisting of
96 persons and 14 images per person to validate the perfor-
mance of the proposed method with different training size.
In this experiment, we select 4 ∼ 13 images per individ-
ual for the training set and the rest images for the testing
set. For each given training size, we perform 20 times for
all experiments and calculate the average recognition rates
and the standard deviations. K-fold cross validation is em-
ployed. Fig.9 shows the comparisons of four methods from
a subset of the LFW dataset. Compared with other methods,
our method’s advantage is obvious.

The experimental results in the wild show that the per-
formance of our method is superior to the SRC and SSRC,
and also demonstrate our method can be used for the classi-
fication in real, various and complex conditions.

6

Fig. 15. Some cropped images from LFW database.
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TABLE 8
Experimental results with 6 occluded training images on the AR

database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 28.68
±5.19

29.89
±5.94

35.90
±5.91

41.88
±7.13

44.37
±7.14

49.68
±6.94

51.22
±3.71

SRC 32.70
±4.06

32.86
±6.21

38.17
±3.73

51.14
±6.64

53.63
±6.21

51.14
±8.76

50.74
±5.22

LRSI 28.23
±5.70

28.99
±4.76

37.80
±5.94

41.75
±6.27

43.97
±6.84

48.10
±6.74

50.61
±2.79

SSRC 22.70
±3.86

22.46
±5.20

25.32
±7.47

28.52
±6.88

32.38
±9.03

40.11
±7.41

42.67
±5.64

SDR-SLR 11.75
±3.43

13.39
±7.41

16.48
±6.08

20.50
±8.70

23.36
±8.76

28.41
±8.97

27.65
±6.59

SLCR 10.77
±3.32

11.59
±6.93

15.40
±5.68

18.73
±8.57

20.21
±9.58

26.93
±8.72

27.40
±6.79

TABLE 9
Experimental results on the LFW database (reported as

%FNMR@FMR=0%).

Train.number 3 4 5 6

LR 64.87
±1.37

63.16
±1.75

57.98
±2.11

55.48
±1.83

SRC 78.87
±1.08

71.25
±1.26

65.14
±2.67

59.68
±3.26

LRSI 71.60
±1.49

64.68
±1.08

60.50
±2.03

55.00
±2.41

SSRC 60.19
±2.24

55.37
±2.18

53.83
±2.67

54.04
±3.33

SDR-SLR 40.21
±1.01

34.31
±2.12

27.66
±2.52

22.34
±2.23

SLCR 39.57
±0.93

29.47
±2.54

24.89
±1.05

20.21
±1.78

as the testing set on LFW database. All training samples
are corrupted by different levels of noise. Figs. 16-17 plot
the 10 runs’ average false non-match rates of different
training set in different levels of noise, respectively. It can
be seen that, since SLCR requires a low-rank dictionary
for handling corrupted testing inputs, it is able to achieve
satisfactory performance. SLCR consistently outperforms
other SRC based methods especially when the level of noise
is more than 10%. To some extent, the superiority of SLCR
is obvious gradually with the increase of noise. Next, the
images of training set are occluded by replacing a randomly
located square block image. Tables 10-11 list and compare
the average false non-match rates of 10 runs, respectively.
From these tables, we see that SLCR is able to achieve
comparable results while the performances of other SRC
based methods degrade.

The above experiments show that the performance of
SLCR is robust for realistic low quality face database.

4 DISCUSSION AND CONCLUSION

Our proposed SLCR consistently outperforms other sparse-
representation based methods for face recognition with
low quality images. Hence, we analyze the reason why
the proposed SLCR can fairly well solve the recognition
problem of low quality face images. We choose an example
in noise experiments (i.e., Subsection 3.3) to illustrate the
procedure of the above experiments. The training samples
corrupted by noise and the dictionaries reconstructed by
three methods on the CMU Multi-PIE database are com-
pared in Fig. 18. We randomly select 6 face images of the
same person to reconstruct faces and extract noises. Fig. 18
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Fig. 16. Experimental results on 5 corrupted training images on the LFW
database. Reported is the FNMR at a 0% FMR.
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Fig. 17. Experimental results on 6 corrupted training images on the LFW
database. Reported is the FNMR at a 0% FMR.

(a) shows 6 face images corrupted by 20% salt-and-pepper
noise, which is the dictionary of SRC exactly. Figs. 18 (b) and
(c) make up the reconstructed dictionary which simply uses
centroid images to capture the class specific information in
SSRC. The reconstructed dictionary by the singular vectors
corresponding to the largest singular value in SDR-SLR is

(a) 

(b) (c) 

(d) (e) 

(f) (g) 

Fig. 18. The corrupted faces and the reconstructed dictionaries by three
methods. Note: (a) is the corrupted face; (b) and (c) are from SSRC; (d)
and (e) are from SDR-SLR; (f) and (g) are from SLCR.
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TABLE 10
Experimental results with 5 occluded training images on the LFW

database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 63.26
±2.19

65.60
±1.20

69.72
±1.80

73.90
±1.05

76.91
±2.28

77.87
±2.33

81.35
±0.89

SRC 70.28
±1.74

71.38
±1.53

74.29
±2.65

77.12
±2.69

78.84
±2.12

80.67
±1.65

84.22
±1.49

LRSI 66.03
±2.18

68.01
±2.15

73.55
±1.45

75.39
±1.90

77.87
±1.02

78.80
±1.98

81.91
±1.06

SSRC 63.83
±2.87

66.74
±1.80

71.28
±3.69

73.76
±2.07

74.89
±3.02

75.80
±1.96

79.89
±2.97

SDR-SLR 36.45
±0.68

40.22
±1.39

48.16
±3.15

52.48
±1.97

57.87
±2.77

60.07
±2.28

66.81
±3.39

SLCR 34.68
±1.10

38.73
±0.51

46.24
±3.18

49.35
±2.00

56.10
±2.68

58.52
±1.57

62.81
±3.39

TABLE 11
Experimental results with 6 occluded training images on the LFW

database (reported as %FNMR@FMR=0%).

Percent
corrupted 10% 15% 20% 25% 30% 35% 40%

LR 64.26
±2.21

68.01
±2.15

67.98
±3.09

72.23
±1.12

74.82
±1.71

76.81
±1.34

79.15
±2.11

SRC 65.74
±3.36

68.72
±2.39

70.74
±2.13

72.93
±2.84

77.50
±2.77

78.50
±2.76

80.74
±2.43

LRSI 64.89
±3.94

64.57
±1.58

69.36
±1.98

74.47
±2.49

75.85
±2.78

76.81
±3.18

79.57
±3.07

SSRC 65.32
±3.43

67.34
±3.79

68.09
±2.94

72.23
±3.50

75.96
±3.46

76.60
±2.67

82.98
±2.31

SDR-SLR 35.11
±3.34

37.77
±2.44

43.62
±2.17

49.89
±3.12

54.47
±2.57

56.81
±3.54

63.83
±3.19

SLCR 32.98
±1.71

36.17
±2.69

41.49
±2.08

47.61
±3.12

50.80
±2.55

52.13
±3.69

59.31
±3.41

depicted in Figs. 18(d) and (e). Similarly, Figs. 18 (f) and (g)
are the reconstructed dictionary by SLCR which contains
low-rank and non-low-rank component. We can see that
SRC, SSRC, as well as SDR-SLR, are unable to effectively
remove the noises in faces, i.e., there exists much noise in
the dictionary of the three methods. On the contrary, SLCR
uses low-rank matrix recovery to get low-rank component
and non-low rank component which have less noise in all
face images. In other words, the dictionary in SLCR not
only can describe facial features well, but also can reduce
the impact of noises. The better noise fitting capability of
SLCR thus leads to better face recognition performance.
The process of dictionary construction in SLCR can remove
lots of information caused by noises. At the same time, the
dictionary in SLCR maintains more diversity than the other
methods. Thus, SLCR achieves robust performance in these
experiments. For the other databases and other low quality
images (i.e., disguised and occluded), the situation is similar.

In this paper, we proposed a sparse low-rank component
based representation for face recognition with low quality
images. This work alleviates the impact of low quality train-
ing dataset for face recognition. We use the ALM scheme
to obtain the solution of the proposed SLCR. Then we
recognize a testing image by minimizing class-wise recon-
struction residual. Thus, SLCR achieves better classification
performance. The experiments show that SLCR is superior
to the other SRC based methods for face recognition with
low quality images, especially for disguised, corrupted and
occluded data.
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