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Short Message 

Service text messages 

are indispensable, 

but they face a 

serious problem 

from spamming. This 

service-side solution 

uses graph data 

mining to distinguish 

spammers from 

nonspammers and 

detect spam without 

checking a message’s 

contents.

(see http://en.wikipedia.org/wiki/SMS). At 
the same time, SMS messaging has become 
a perfect target for abuse via spamming—
misusing SMS messages to achieve some 
harmful purpose. Spamming is as serious  
a problem for SMS as it is for email and 
social networking services. In Asia, up to  
30 percent of short text messages are recog-
nized as spam, mainly due to the low cost of 
sending them (http://en.wikipedia.org/wiki/
Mobile_phone_spam).

This massive amount of SMS spam seri-
ously harms users’ confidence in their tele-
com service providers. Thus, spam-filtering  
strategies have been tested around the world. 
In China, three major telecom operators— 
China Mobile, China Telecom, and China 
Unicom—have tried to impose limits on 
text messaging so that a given phone num-
ber can send no more than 200 messages per 
hour and no more than 1,000 messages per 
day on weekdays.1,2 In response, SMS spam-
mers have been adapting their strategies in 
increasingly innovative ways. Consequently, 

more effective approaches are needed to  
detect and filter SMS spam automatically 
and accurately.

Here, we present a service-side solution 
that uses graph data mining to distinguish 
likely spammers from normal senders.

Antispam Approaches
Researchers have developed various com-
putational approaches—in particular, data 
mining methods—to detect email spam, 
and some have achieved a certain degree of 
success. Content-based approaches3 were 
among the first to be applied. In email spam 
filtering, for example, such methods con-
sider content-based features that can be 
used for classification. A spam email often 
contains some indicative keywords, such as 
“free” or “awards,” or unusual distribution 
of punctuation marks and capital letters, 
such as “BUY!!” or “MONEY,”4 such that 
these keywords become important features 
that a machine-learning-based classification 
algorithm can use.

Short text messages sent via the Short Message Service (SMS) are an  

important means of communication between millions of people world-

wide. SMS services are a must-have for telecommunications (telecom) operators, 

and they transmit their messages using standardized communication protocols 
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Because of the similarity between 
text documents in spam emails and 
SMS spam, content-based approaches 
in email spam detection research have 
been widely employed to detect SMS 
spam and spammers. One group of 
researchers considered the problem of 
content-based spam filtering for short 
text messages that arise in three con-
texts: mobile SMS communication, 
blog comments, and email summary 
information.5 Another approach used 
auxiliary information to boost content- 
based approaches,6 including the  
mobile-station information of short 
messages based on the assumption 
that spam senders diffuse SMS spam  
at the same location. Other researchers  
added additional meta-information, 
such as high sending frequency, to 
content characteristics.7

One drawback of all these content-
based spam-filtering approaches is that 
they require knowing SMS messages’ 
contents—which are expensive or in-
feasible to obtain—and can easily sac-
rifice user privacy. Moreover, SMS 
spammers often adapt how they com-
pose content through keywords, as we 
often see in email spam, where they 
might insert special characters to escape 
spam filters. These limitations are a 
major bottleneck for making content-
based approaches more applicable in 
practice. Thus, we aimed to find con-
tentless methods for spam detection.

Here, we investigate ways to de-
tect spam on the basis of features that  
include temporal and graph-topology 
information but exclude content, 
thus addressing user privacy issues. 
We focus on identifying professional 
spammers on the basis of overall  
message-sending patterns. We consider 
professional spammers to be those 
who have purchased a mobile com-
munication ID and whose sole pur-
pose is to send large amounts of spam 
for commercial gain. Furthermore, 
we concentrate only on finding SMS  

spam on the server side, given that 
client-side detection requires mostly 
content- and ID-based solutions.

One related work proposed a  
complex-network-based SMS filter-
ing algorithm that compares an SMS 
network with a phone-calling com-
munication network.8 Although this 
comparison can provide additional fea-
tures, obtaining well-aligned phone-
calling networks and SMS networks 
that can be aligned perfectly is diffi-
cult. Our antispam algorithm considers 
only the SMS communication network.

Feature Extraction
The main dataset we consider is re-
alistic data from a Chinese telecom 
company that’s also one of the largest  
telecom operators in the world. We used 
SMS data collected over seven days (25 
to 31 March 2010) from a province in 
China. This data contains 4,900,468 
SMS senders: we identified 3,589,661 
legitimate senders and 1,310,592  
unknown-type senders. Domain experts 
manually identified 215 senders that  

serve as positive examples of spam-
mers. Although the number of spam-
mers is small, distinguishing them from 
legitimate senders is tedious and time-
consuming for humans. It also reflects 
the reality in industry practice.

We first extracted features that char-
acterize the messages and message 
senders from different perspectives (see 
Table 1). These features let us further 
explore SMS senders’ static, tempo-
ral, and network features in detail. To 
build the full training set, we also ran-
domly selected collections of 215 non-
spammers that serve as negative ex-
amples to pair with spammers for our 
analysis.

Static Features
Various features characterize a send-
ers’ stacit statistics, including the num-
ber of messages and the message size.

Number of messages. We examine the 
number of messages within a time 
period as a property for describing 
a sender. Spammers usually send a  

Table 1. Feature description.

Feature set Specific feature

Static features Total number of messages for seven days

Total size of messages for seven days

Response ratio

Temporal features Number of messages during a day, on each day of the week from 1 to 7

Average number of messages in seven days

Standard deviation of the number of messages for seven days

Size of messages during a day, on each day of the week from 1 to 7

Average size of messages for seven days

Standard deviation of the size of messages for seven days

Number of recipients during a day, on each day of the week from 1 to 7

Average number of recipients for seven days

Standard deviation of the number of recipients for seven days

Average sending time for seven days

Standard deviation of the sending time for seven days

Average sending time gap for seven days

Standard deviation of the sending time gap for seven days

Network features Number of recipients

Cluster coefficient
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large number of short messages  
simultaneously to make up for the cost,  
whereas normal users don’t display 
this pattern, except on some special 
holidays such as Chinese New Year. 
So, we explored whether a sender’s 
number of messages can help dis-
tinguish spammers from legitimate  
users. For both user categories (spam-
mers and nonspammers), Figure 1a 
plots the distribution of the number 
of messages sent. The x-axis indicates 
the percentage of senders, and the  
y-axis gives the total number of mes-
sages sent each day during the seven-
day test period; the plot is in log 
scale. As the figure shows, spammers 
tend to send far more short messages 
than normal senders do.

Message size. Size for SMS mes-
sages (including text and graphics) is  

another static feature that we can 
use. Figure 1b shows the distribution 
of the size of all messages sent during 
the seven-day period for spammers 
versus nonspammers. The x-axis in-
dicates the percentage of senders we 
considered, and the y-axis gives the 
size of the total messages sent dur-
ing the seven days (in log scale). In 
our analysis, we found that the size 
of legitimate messages tends to be 
less than that of spam messages, per-
haps because spammers often include 
plenty of information in a message 
to maximize its impact. However, 
once aware of this feature, spammers 
might start to randomize their mes-
sage sizes to avoid detection.

Temporal Features
Temporal features include time- 
dependent information—that is, when  

and how frequently a user would send 
the messages.

Number of messages sent during one 
day. For each day of the week, we cal-
culated the number of messages sent 
by different users. Figure 1c shows 
this distribution. The x-axis shows 
the days of the week, and the y-axis 
gives the number of messages for 
each category (spam or nonspam). The 
spam messages are clustered in the 25 
to 300 messages range, whereas the 
number of messages for legitimate 
senders is fewer than 25.

Size of messages sent during one day. 
For each day of the week, we exam-
ined the distribution of message sizes 
for each user category. Figure 1d 
confirms our expectation that mes-
sages sent by legitimate senders can 

Figure 1. Data analysis and noncontent-based features of a telecommunications dataset. We plotted the distribution of (a) the 
total number of messages sent and (b) the total size of messages sent across seven days; (c) the number of messages sent and 
(d) the size of the messages sent during one day; (e) the average sending time; (f) the number of recipients across seven days; 
and (g) the clustering coefficient. All these plots look at two sender categories: spammers and nonspammers.
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be biased toward smaller sizes, which 
leads to conclusions similar to those 
for message sizes examined across the 
entire week.

Time of day. The intuition behind de-
termining the time-of-day feature is 
that the pattern of legitimate mes-
sages will likely be more evenly dis-
tributed than that of spam messages, 
particularly during the day. Figure 1e 
illustrates that in daytime, spammers 
tend to send messages at several time 
slots between 8 a.m. and noon and 
between 6 p.m. and 8 p.m., whereas 
legitimate senders tend to send mes-
sages at any time during the day. At 
night, spammers stop sending mes-
sages, while a few legitimate users are 
still active.

Network Features
An SMS user functions in a network 
made up of all users. Network fea-
tures thus describe a sender’s role in 
the SMS network. They can be re-
flected by the out-degree of a node in 
the SMS communication network.

Number of recipients. An individual 
sender’s number of recipients is an 
important feature. Our intuition is 
that spammers tend to send an in-
valid message to a large number of 
receivers simultaneously, where the 
receivers themselves don’t know one 
another well. Normal users, on the 
other hand, usually have a limited 
set of familiar recipients. Figure 1f 
shows the distribution of the num-
ber of recipients for each sender cat-
egory, where the number of senders 
increases along the x-axis, and the 
number of recipients increases along 
the y-axis (which is on a log scale to 
focus the plot on small values). This 
figure confirms that a spammer’s 
number of recipients is clearly larger 
than that of legitimate users, because 
spammers aim at spreading their 

news or advertisements as widely as 
possible.

Clustering coefficient. The clustering 
coefficient measures the connectiv-
ity within a node’s neighborhood. If 
this neighborhood is fully connected, 
the clustering coefficient is 1. A value 
close to 0 means that hardly any con-
nections exist in the neighborhood. In 
an undirected network, we can define  
the clustering coefficient Cn of a node n  
as Cn = 2en/(kn(kn - 1)), where kn is 
the number of neighbors of n, and en 
is the number of connected pairs be-
tween all neighbors of n. The intui-
tive idea behind examining the clus-
tering coefficient is that a legitimate 
sender’s recipients are highly likely to 
also be friends. Spammers, however, 
send messages randomly; thus, their 
receivers don’t connect with each 
other. Figure 1g illustrates the distri-
bution of the clustering coefficient for 
each sender category. The y-axis indi-
cates the values of the clustering coef-
ficient (log scale), and the number of 
senders increases along the x-axis.

Classification Algorithms
Having discussed the various feature 
types associated with the SMS com-
munication network, let’s look at 
how to build classifier systems that 
can distinguish between spammers 
and nonspammers. We consider the 
support vector machine (SVM) and 
k-nearest neighbor (k-NN) algo-
rithms because they represent differ-
ent ways to exploit noncontent fea-
tures. Whereas SVMs pay attention 
to the margins and cases near the 
separating hyperplanes, k-NN fo-
cuses on the “typical” positive and 
negative cases.

Because SVMs are popular classifi-
cation algorithms, we give only a gen-
eral description of them here; techni-
cal details are available elsewhere.9 
An SVM implements the following 

ideas: it maps the input vectors Rx d� ∈  
into a high-dimensional feature space 

Hx�( )Φ ∈  and constructs an optimal
separating hyperplane, which maxi-
mizes the margin—that is, the dis-
tance between the hyperplane and 
each class’s nearest data points in 
the space H. Different mappings give 
rise to different SVMs. A mapping 
Φ(•) can be realized by a kernel func-
tion ( )x xK ,i j� � , which defines an inner
product in the space H. The decision 
function that an SVM implements is
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where the coefficients ai are obtained 
by solving the following convex qua-
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SVMs can reach the global optimal 
when solving QP problems. SVMs 
have been extended to handle large 
feature spaces and effectively avoid 
overfitting by controlling the classi-
fier margins. In Equation 2, C is a 
regularization parameter that con-
trols the trade-off between margins 
and misclassification errors.

The k-NN algorithms are built on 
the concept of distance between in-
stances. For each test data instance, 
k-NN first finds the top k nearest 
neighbors according to the distance 
measure. It then finds a weighted ma-
jority class among the possible class 
labels. Weights can be introduced to 
reflect distances to the test instance. 
When used with the noncontent  
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features, this algorithm is  
easy to implement and 
can naturally incorporate 
network and temporal 
features. The k-NN algo-
rithm is one of the most 
commonly used noncon-
tent feature algorithms in 
prior literature, so we can 
use it as a baseline algo-
rithm for comparison.

Experimental 
Results
We evaluate our approach’s 
effectiveness along two di-
mensions: Which catego-
ries of features would give 
us the best performance in 
spammer detection, and 
which algorithm (SVM or 
k-NN) should we use for 
detection? We ran tests on the telecom 
dataset described previously, as well as 
on a benchmark dataset for spammer 
detection.

Performance Measurement
To measure performance, we use the 
area under the receiver operating 
characteristic (ROC) curve, denoted 
as AUC. The machine learning and 
data mining communities increas-
ingly use ranking-based evaluation 
metrics when dealing with imbal-
anced data.10,11 When data is imbal-
anced, we must consider cost-sensitive  
methods as well.12,13 The ROC mea-
sure plots the true-positive rates 
(TPR, or sensitivity) against the false-
positive rates (FPR = 1 - specificity), 
where

 
 
 

TPR
True positives

True positives Falsenegatives

FPR
False positives

False positives Truenegatives
.

=
+

=
+

In these equations, “positives” and 
“negatives” refer to the predicted  

class labels, whereas “True” and 
“False” denote the correctness of 
the predictions. TPR and FPR de-
pend on the classifier function h and 
the threshold q used to convert h(x) 
to a binary prediction. Varying the 
threshold q from 0 to 1 changes the 
paired values of TPR and FPR, which 
gives us the ROC curve. The area un-
der the curve (AUC) indicates this 
classifier’s performance: the larger 
the area, the better the algorithm 
performs.14

comparison with  
a baseline Method
To verify our method’s effectiveness, 
in the first experiment, we compared 
SVM classifiers with k-NN. To ob-
tain the optimal parameter settings 
for SVM and k-NN, we first tune 
the parameters C and K to achieve 
the optimal accuracy via 10-fold 
cross-validation. For the SVM classi-
fier, we use the liblinear SVM.15 We 
randomly sampled 100 spammers 
as positive examples and 100 legiti-
mate senders as negative examples 

for training. For the test-
ing dataset, we used 100 
spammers as positive ex-
amples and 1,000 legiti-
mate senders as negative 
examples. Note that the 
testing dataset has no 
overlap with the training 
dataset. Figure 2 shows 
the results, and illustrates 
that SVM classifiers can 
achieve better performance 
compared with k-NN clas-
sifiers based on the same 
feature sets.

comparison on 
Different Feature Sets
We randomly sampled 
100 spammers as pos-
itive examples and 10, 
five, two, and one times 

the number of spammers as negative  
examples for training, respectively. For  
the testing dataset, we used 100 spam-
mers as positive examples and 1,000 
legitimate senders as negative exam-
ples. Consequently, we get four re-
sults for various numbers of sampling 
data. Figure 3 shows the experimen-
tal results.

We considered four sets of feature 
representations: only static features; 
only temporal features; only network 
features; or a combination of static, 
temporal, and network features to get 
a set of “all features.” We designed 
these four experiments to examine 
the contribution and importance of 
different sets of features. The exper-
imental results show that if we only 
use the set of static features to train 
the classifier, we can reach a perfor-
mance of AUC at 88.3 percent. How-
ever, if we use temporal and network 
features individually, the AUC can 
get additional 7 and 8 percent im-
provements, respectively. These re-
sults indicate that, compared with 
static features, network properties 

Figure 2. Comparing support vector machine (SVM) and k-nearest 
neighbor (k-NN) algorithms on the Telco dataset. We can see that 
SVM classifiers can achieve better performance compared with 
k-NN-based ones on the same feature sets.
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and temporal informa-
tion in an SMS commu-
nication network can in-
deed help achieve better 
performance.

Furthermore, we find 
that the set of “all fea-
tures” results in almost 
the same improvement as 
using temporal features 
and network features 
alone. This is perhaps be-
cause some features are 
redundant and noisy and 
can sometimes cause per-
formance degradation. 
Thus, we employ principle 
component analysis (PCA) 
to extract informative fea-
tures instead of using all features. We 
can also use a linear SVM to deter-
mine features’ relative importance. 

Owing to space limitations, Table 2 
lists only the top 13 extracted fea-
tures according to the corresponding 

feature weights given by 
the SVM classifier.

These observations 
show that the cluster-
ing coefficient and SMS 
sending time aren’t in-
formative in distinguish-
ing spammers from le-
gitimate senders. This is 
perhaps because the pe-
riod of data collection 
covers only seven days. In 
such a short period, send-
ers’ neighborhoods might 
not connect with one an-
other. Although message 
size is an essential feature 
for classifying spammers 
and nonspammers, to fur-

ther examine various features’ impor-
tance, we distill the top 13 ranked 
features—including static features (1),  

Figure 3. Comparison of different feature categories. We measured the ROC curve with (a) 100 positives and 100 negatives,  
(b) 100 positives and 200 negatives, (c) 100 positives and 500 negatives, (d) 100 positives and 1,000 negatives, and (e) 100 positives 
and 200 negatives.
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Table 2. Ranking based on feature importance.

Rank Feature description

1 Total size of messages for seven days

2 Size of messages during seventh day

3 Standard deviation of message sizes in seven days

4 Size of messages during fifth day

5 Average size of messages for seven days

6 Standard deviation of the sending time for seven days

7 Average sending time gap for seven days

8 Size of messages during fourth day

9 Size of messages during sixth day

10 Size of messages during second day

11 Size of messages during third day

12 Standard deviation of the sending time gap in seven days

13 Number of recipients
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temporal features (2–12), and net-
work features (13)—as an SVM in-
put. We then compare the results 
with PCA and other feature combi-
nations in Figure 3e. PCA-extracted 
features and our top features achieve 
similar results, and several of the 
most important features can lead to 
the best performance in comparison 
with other feature combinations.

Additional Experiments
To further examine our approach’s 
feasibility and robustness, we ran 
experiments on another real-world 
dataset that’s been used to detect 
spammers in online video social net-
works.16 This dataset has eight static 
features, eight network features, and 
two temporal features. We randomly 
sampled 79 spammers as positive ex-
amples and 79 legitimate users as 
negative examples for training, and 
then we sampled 78 spammers as pos-
itive examples and the remaining 562 
normal users as negative examples for 
testing. Similarly, we conducted two 
experiments. The first compared the 
AUC performance of the k-NN and 
SVM algorithms based on the same 
feature set, and the second examined 
the effects of different feature sets on 

AUC performance. Figure 4 shows 
the experimental results.

Figure 4a shows that the SVM clas-
sifier has a stronger ability to detect 
spammers in online video social net-
works compared to the k-NN classi-
fier. Moreover, Figure 4b confirms 
that temporal and network features 
can be incorporated into conven-
tional static features to achieve better 
performance when detecting spam-
mers. However, we find that temporal 
information in this data can’t lead to 
satisfactory performance, mainly be-
cause this dataset provides only two 
temporal features.

As we mentioned previously, exist-
ing spam-filtering methods require 
the contents of SMS messages, which 
can sacrifice user privacy, or must em-
ploy auxiliary information such as a 
calling network,8 which is expensive 
or infeasible to obtain; thus, we can’t 
compare our approach with existing 
methods for SMS spammer detection.

We hope to extend the work
we’ve discussed here in sev-

eral directions. First, we will consider 
network evolutionary features such 
as how the network associated with 

a node changes with time in a certain 
time period. Second, we will consider 
meta-level features such as weekdays 
and weekends, originating sender lo-
cations of various SMS messages, 
and so on. Finally, we plan to con-
duct a wider range of tests by includ-
ing more positive examples that are 
highly representative of spammers as 
their techniques evolve.
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