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Heat-transfer augmentation 
techniques to improve seal life

Industry spends huge sums of money on pump 
repair every year. It is estimated that 80% of the 
repair costs is dedicated to seals and bearings.

The most influential factors identified for 
being responsible for seal failure are:

• high interfacial temperature and associated
thermal distortion between the rotating
and mating seal rings;

• thermo-elastic instability; and
• excessive non-uniform wear.

The process is governed by viscous heating of 
the fluid as it is sheared between ring faces and 
cooling is provided by the flush fluid.

Water can easily reach its boiling point and 
cause damage by flashing across the faces. 
When low-viscosity hydrocarbon liquids, such 
as liquid butane are used, the heat generation 
is also affected by the rubbing friction between 
surfaces.

Furthermore, if the operating speed exceeds a 
certain critical value, then thermo-elastic insta-
bility – leading to the formation of macroscopic 
hot spots on the seal faces – can occur, depend-

ing on the contact pressure, surface finish and 
material properties.

Thus, the reduction of interface temperature 
to prolong the seal’s service life calls for the 
implementation of appropriate heat-transfer 
augmentation techniques. 

This article presents several heat-transfer aug-
mentation technologies that have been developed 
recently at the Center for Rotating Machinery 
(CeRoM), Department of Mechanical and 
Industrial Engineering, Louisiana State 
University (LSU).

Developed to reduce interfacial heat in mechani-
cal seals, they include the design of seal rings with 
an internal heat exchanger, surface texturing tech-
niques to improve heat transfer, and the design of a 
new generation of seals with a heat pipe.

Seal design
The design of mechanical seals is quite intri-
cate, even though they have a seemingly simple 
structural configuration.

The key components of a mechanical seal 
are two rings: one is stationary and the other 

is attached to the shaft, with which it rotates 
(Figure 1).The rotating ring is often called the pri-
mary ring and the stationary one is its mating ring.

The process fluid, which is to be contained, 
provides a thin film of fluid – typically on the 
order of a few micrometres thick – in the gap 
between the two rings. This very small film thick-
ness protects the surface from direct rubbing 
contact by providing lubrication to avoid excessive 
interfacial heat. Nevertheless, a great majority of 
seals fail because of the effect of heat and, in fact, 
many seals fail long before the seal faces wear out.

If the interfacial temperature is too high, the 
lubricating film can flash, vaporise and signifi-
cantly damage the faces.

Another heat-related issue is the non-uni-
formity of temperature across the faces that causes 
thermal distortion, affects the surface finish and 
results in wear with an unacceptable leakage rate 
that constitutes failure. Hydrocarbon pump seals 
are particularly susceptible to this type of failure 
wherein thermally-induced distortion dominates 
the mechanical distortion caused by pressure. 

Still another form of failure caused by the 
effect of heat is so-called thermo-elastic instabil-
ity (TEI). TEI is a phenomenon that manifests 
itself in the form of local hot spots on the sur-
faces that can be seen by the naked eye if the 
operating speed exceeds a certain critical thresh-
old (Jang & Khonsari, 2003, 2004 and 2013; 
and Peng et al., 2003). 

Therefore, it follows that by providing mecha-
nisms to improve heat-transfer augmentation, 
one can improve mechanical performance, reduce 
wear and extend seal service life to a great extent.

The sections that follow provide an overview 
of some of the research and development that 
has been done at the LSU’s CeRoM, which 
focuses on thermal management of mechanical 
face seals. The details of these studies are avail-
able in various publications and patents refer-
enced in the text. 

Heat transfer consideration
The source of the interfacial heat generation is 
the friction between the contacting bodies and 
the relative sliding speed.
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Figure 1. Schematic of a mechanical face seal (Khonsari and Bosser, 2008 and 2017).
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Assuming that the pressure is uniform over 
the face of the mating ring, the heat generation 
is given be Equation 1.

Qg = PmVAff   			 

where Pm is the mean pressure between the 
rings; V is the mean velocity of the rotating 
ring; Af is the seal’s face area; and f is the coef-
ficient of friction in between the rubbing parts.

This heat is then conducted into the pri-
mary and mating rings and carried away by the 
cooling fluid (process fluid or barrier fluid) by 
means of convection. 

Understanding the nature of heat trans-
fer and the fluid–solid interaction requires 
detailed calculation of the flow and energy 
consideration. Progress towards this objec-
tive was made by Luan and Khonsari (2006, 
2007a and 2008) by simultaneous treatment 
of the energy and Navier–Stokes equations, 
taking into account the laminar and turbulent 
nature of the flow field around the rotating 
and stationary rings.

Heat-transfer correlations, in terms of the 
Nusselt number as a function of the Prandtl 
and Reynolds number for both the rotating and 
stationary rings are provided. Using these, one 
can conveniently estimate the convective heat-
transfer coefficient. The interface temperature 
can be then predicted using procedures devel-
oped in studies by Luan & Khonsari (2007b) 
and Khonsari & Booser (2008 & 2017).

This, of course, depends on the properties 
of the seal’s materials, operating conditions 
and the flush plan arrangement. The appro-
priate course of action then must be taken 
if the surface temperature exceeds a certain 
threshold. This may involve consideration of 
an appropriate heat-transfer augmentation 
technique.

A review of innovative developments lead-
ing to patents is given by Xiao & Khonsari 
(2013 & 2015). In what follows, a brief over-
view is provided of some of the recent designs 
developed by CeRoM researchers.

Mating rings with  
internal cooling channel
The first idea to discuss is the design of an 
internal heat exchanging system, within the 
mating, to remove the interfacial heat generated 
between the mating ring and rotating ring.

An effective heat exchanger would require 
having close proximity to the seal surface. This 
was achieved by designing a so-called double-tier 
mating ring made from two half rings (male and 
female) that form an internal flow channel when 
combined (Somanchi & Khonsari, 2005). 

Designed into the female section are a 
groove-channel and a series of radial holes that 
extend from its outer diameter to the inner 
diameter, to form coolant inlet and outlet ports 
(Figure 2).

The male section has a circumferential 
diverter to direct the coolant towards the 
interior surface area of the seal face. Different 
prototypes of this design were made and the 
rings were either shrink fitted or thread fitted 
to form a single mating-ring unit with an inter-
nal structure, hence the name double-tier seal 
(DTS) mating ring. 

This design provides an effective internal 
route for cooling fluid (gas or liquid) into the 
mating ring and diverts it towards the surface 
to provide cooling.

Note that the use of this approach requires 
modifying the gland design to allow the cooling 
fluid to enter and exit, as shown in Figure 3 
(Khonsari and Somanchi, 2005). Laboratory 
test results (using air and water as the cooling 
fluid) presented in this article reveal that this 
design has superior thermal performance com-
pared with conventional seals. 

Another version of the mating ring design is 
shown in Figure 4. In this design, the station-
ary seal ring is a single-piece structure contain-
ing a series of through-channels (Khonsari and 
Somanchi 2007). Relatively large radial slots on 
the stationary ring minimise clogging – in case 
the coolant contains debris.

Laboratory tests revealed that this design 
is also very effective in removing heat. 
Subsequently, a prototype cartridge design of 
this seal was built, installed and field-tested in a 
local refinery in Louisiana with remarkable suc-
cess over a very long period.

Mating rings with 
textured sidewall
Surface texturing, using a laser, has emerged as 
a viable technology for enhancing the perfor-
mance of tribological components.

Textures in the form of “dimples” are pri-
marily implemented directly into the lubri-
cated surfaces to reduce friction and increase 
load-carrying capacity. This concept has 

(1)

Figure 2. The female and 
male sections of a  
double-tier seal (Khonsari  
& Somanchi, 2005).

Figure 3. Design of the modified gland (Khonsari and Somanchi, 2005).
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attracted worldwide attention from different 
points of view.

Within our group at the CeRoM, we have 
concentrated on modelling aspects associated 
with cavitation effects and the examination 
of lubrication regimes (Qiu & Khonsari, 
2009; 2011a, b & c; and 2012) and optimisa-
tion of load-carrying capacity (Fesanghary 
& Khonsari, 2011, 2012; and 2013; Shen & 
Khonsari, 2013). All of these studies concen-
trated on texturing the lubricated seal faces. 

This section examines a different applica-
tion of surface texturing with the primary 
objective of improving heat transfer perfor-
mance. For this purpose, Khonsari and Xiao 
(2012) designed a stationary ring with dimples 
fabricated onto its sidewall, as illustrated in 
Figure 5, along with a prototype.

This design has several rows of micro-dim-
ples – etched by a laser – around the circum-
ference of the mating ring. Six thermocouples 
were installed at different locations to monitor 
the temperature in real time.

A series of laboratory tests were performed 
at the CeRoM with a seal testing apparatus to 
investigate the performance of the textured seal.

Both conventional (plain mating ring) and 
dimpled surface rings were tested under identi-
cal operating conditions for comparison pur-
poses (Xia and Khonsari, 2013).

The tests were run at shaft rotating speeds of 
1800 rpm and 2700 rpm, with diluted propyl-
ene glycol as the working fluid. Temperatures 
were recorded for further analysis.

Comparison of the dimpled versus plain 
mating ring revealed that by appropriately tex-
turing the sidewall, the interface temperature 
can be reduced by approximately 10%. The 
practical implications of this approach are that 
by lowering the interface temperature, one can 
minimise thermally-induced distortion and 
reduce wear. In addition to laboratory experi-
ments, computational fluid dynamics (CFD) 
simulations were performed to visualise the 
flow field and to extend the range of operating 
conditions beyond what could be achieved in a 
laboratory setting.

Good agreement between theory and experi-
ments attests to the usefulness and practical-
ity of this approach. Note that this particular 
design requires no additional changes to flush 
arrangements or gland design, making this  

simple design attractive for implementation  
in an industrial setting. 

Mating rings with a 
built-in heat pipe
The effectiveness of heat removal is directly 
related to the thermal conductivity of the  
mating ring.

Xiao & Khonsari (2015) reported the 
development of a mating ring with a built-in 
heat pipe with very high “effective thermal 
conductivity” to enhance transmission of heat 
away from the interface. The increased thermal 
capacity results from the phase change of a 
working fluid in the heat pipe. 

A heat pipe has an evaporator section within 
which the working fluid vaporises by absorbing 
the heat input coming from the outside source, 
that is, the interfacial heat source. As a result of 
vaporisation, pressure increases and the vapour 
flows from the high-temperature region to the 
low-temperature end. The vapour then con-
denses on the inner surface of a wick inserted 
into the cavity of the mating ring and releases 
heat to the surroundings. The working fluid 
then returns to the high-temperature region by 
virtue of the wick’s capillary action (Figure 6).

Laboratory tests, using a mating ring with 
a built-in heat pipe, revealed remarkable heat 
removal capacity compared with the conven-
tional ring.

Specifically, at 1800 rpm, the measured inter-
face temperature was approximately 47°C in this 
design, compared with 64°C in a conventional 
seal. At 2700 rpm, the heat-pipe ring’s tempera-
ture was only 51°C, compared with 77°C in the 
plain ring without the built-in heat pipe.

Tribological 
measurements
In previous sections, different methodologies 
for improving heat transfer in mechanical seals 
were presented.

This section focuses on laboratory tests used 
to evaluate tribological performance. In par-
ticular, the results of a recent study by Xia & 
Khonsari (2015) are summarised.

The seal rings were made of heat-treated 
stainless steel (17-4 PH) with and without a 
built-in heat pipe rubbing against a rotating 
disk-shaped element made of the same material. 
The rubbing faces of both disks were polished 
to 1–2 helium light bands, which is typical in 
mechanical seals, and tested using a tribometer.

The disks were immersed in SAE engine oil 
for lubrication and the tests involved measur-
ing temperature, the coefficient of friction and 

Figure 4. Schematic of the single-piece perforated mating ring design (left) (Khonsari and 
Somanchi, 2007) and the field-tested cartridge prototype (right).

FEATURE

Figure 5. Schematic of a mating ring with textured side wall and a prototype with thermocouple 
wires for laboratory test (Xia and Khonsari, 2013 and 2014).
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wear. The operating speed was varied from 
500 rpm to 1100 rpm.

Interestingly, the conventional design failed 
at 1100 rpm under the load of 133.5 N. In 
contrast, the ring with the built-in heat pump 
continued to operate at the same speed up to a 
311.5 N load. Overall, the design with the heat 
pipe had a lower temperature and a more uni-
form temperature distribution. 

A more uniform temperature field results in 
less thermal stress and damage, lower wear and 
longer service life. Furthermore, the coefficient 
of friction of the conventional design was 
about 0.15 before boundary contact, but was 
reduced to about 0.1 for the heat-pipe design. 

Simple calculations showed that the film 
thickness of the heat-pipe design had been 
roughly 2.3–2.8 times greater than that of the 
conventional design – improving tribological 
performance by protecting the surfaces from 
rubbing.

Conclusions
This article has provided a brief overview of 
development work, by the research team at the 
LSU’s CeRoM, relevant to improving the per-
formance of mechanical seals.

Particular emphasis was placed on improv-
ing thermal performance. It shows that a vari-
ety of design options are available, which can 
reduce wear and improve seal service life in an 
effective manner, and can be put to use in an 
industrial setting. 
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