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. Related work

.1. Single objective optimization in WMN

Several routing protocols are used in WMN but most of the pro-
ocols consider only one objective either throughput or delay or hop
ount or packet loss or energy. Sun et al. [10] proposed on demand
ode aware routing scheme (OCAR) for WMN. This scheme detects
route with more network coding opportunities along the entire

oute rather than the two-hop regions. By using Coding Aware and
nterference avoid routing metric (RCAIA), OCAR handle both intra
nd inter flow interferences. RCAIA of link l is given by

CAIA = 1
Il

RCAETTnl
, (1)

here RCAETT refers to coding aware expected transmission time.
hen there is no interference Il is considered as 1 and therefore

CAIA becomes equal to RCAETT. The coding-aware and interference
void routing metric of flow fn’s path L is given by

CAIA =
∑
l ∈ L

RCAIAnl
. (2)

aumann et al. [11] proposed the field based anycast routing
rotocol (HEAT). Here, the mesh nodes are represented as the
emperature values and the gateway act as the heat sources of a
emperature field. Based on the HEAT beacon messages, every mesh
ode calculates its temperature using the field calculation func-
ion algorithm. In this algorithm, for every node sort (ascending)
ts neighbor based on their temperature value and store into some
rray. For each node j, the value tj + 1 is calculated as

j + 1 = tj + (aj − tj) ∗ k, (3)

here aj-temperature of currently consider neighbor, tj-
ccumulated temperature, k-conductivity parameter (k = 1

4 ).
The value of tj + 1 is repeated, until the temperature of the next

eighbor is less than the accumulated temperature. After the tem-
erature calculation, the packets are routed from the mesh node
o the gateway on hop-by-hop basis. A packet is always forwarded
o the neighbor with the highest temperature value. An interfer-
nce aware analytical routing metric is proposed by Alotaibi et al.
12]. The integer programming model is used to maximize the suc-
essfully transmitted traffic of all sources to destination pairs. This
odel achieved a performance improvement in throughput by 52%

ompared to other routing metrics.
Hou et al. [13] described the maximum available bandwidth

ath using a proactive hop by hop routing protocol. By using the
eft-isotonic path weight, the source can immediately determine
he infeasible connection requests as well as the consistency and
oop-freeness requirements. Simple opportunistic adaptive routing
rotocol (SOAR) was proposed by Rozner et al. [14]. SOAR effec-
ively realizes opportunistic forwarding by judiciously selecting
orwarding nodes and employing priority-based timers. The Adap-
ive rate control is used to determine an appropriate sending rate,
ccording to current network conditions and recover the lost pack-
ts using local feedback method.

.2. Multiobjective optimization

A complete discussion of MOEAs is presented in [4]. Zhou et al.
15] gave a detailed survey of numerous multiobjective evolution-
ry algorithm and emphasizes the recent developments together
Please cite this article in press as: R. Murugeswari, et al., A multi-obje
networks, Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.aso

ith algorithmic rule frameworks, selection strategies, offspring
eproduction schemes and other related issues.

Abel Garcia-Najera and Bullinaria [16] introduced an improved
ultiobjective evolutionary algorithm (IMOEA) for vehicle routing
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problem. This algorithm simultaneously minimizes three objec-
tives, namely number of routes, travel distance and delivery time.
It is observed that IMOEA performs better than NSGA-II for both
the bi-objective and tri-objective cases. Jiang et al. [17] proposed
NSGA-II for designing a fiber Bragg grating (FBG) sensor network.
The objectives considered are bandwidth and the overlap degree
of spectra. This approach significantly saves the bandwidth and
improves the multiplexing capability for Wavelength Division Mul-
tiplexing (WDM) Fiber Bragg Grating (FBG) sensor network. A
coverage control scheme for WSN based on improved NSGA-II was
proposed by Jia et al. [18,19]. The energy aware routing protocol
by using NSGA-II for the Wireless Multimedia Sensor Network was
developed by EkbataniFard and Monsefi [20]. This protocol outper-
forms the network performance by optimizing the multiple QoS
parameters.

The multiobjective scheduling algorithm using R-NSGA-II was
proposed by Garg and Singh [21]. The objectives considered are
execution time and total cost. R-NSGA-II provides an optimal
scheduling solution and it satisfies the quality of service con-
straints. R-NSGA-II algorithm uses the preferred distance instead
of crowding distance which is used in NSGA-II. The preference dis-
tance represents the closeness of the solution for the user specified
region. This algorithm generates the solution in the region of user
interest rather than finding out which are not of user interest.

2.2.1. Multiobjective optimization in WMN
Camelo et al. [22] designed a multiobjective routing in WMN

using NSGA-II by considering three objectives: minimizing the
packet loss, end-to-end delay and power consumption. NSGA-II
finds the multiple paths which guarantee QoS requirements and
also support the multimedia data transmission. The multiobjective
approach for joint routing and scheduling problem is described by
Gomes and Huiban [23]. To satisfy the multi-access interferences
the authors considered two objectives, balancing the load in the
routers and communication time which corresponds to the time
required to route all the router demands. The authors used col-
umn generation method to improve efficiency for computing the
solutions.

Xhafa et al. [24] presented the placement of mesh router nodes
in WMN using simulated annealing (SA) approach. This optimiza-
tion model uses two maximization objectives, namely network
connectivity and user coverage. A number of client mesh nodes
are priori distributed in a grid area arranged in small cells and a
number of mesh router nodes are to be deployed in the area. The
simulation results confirmed that, SA approach is suitable for the
placement of mesh router nodes in WMNs for different topology.
A particle swarm optimization approach for optimizing dynamic
router node placement of WMN is proposed by Lin [25]. The math-
ematical formulation of the problem is used to identify the dynamic
placement of mesh routers in a geographical area while maximiz-
ing the two objectives: network connectivity and client coverage.
The simulation results show that the quality of the PSO approach
through sensitivity analysis as well as the adaptability to the topol-
ogy changes at different times. Benyamina et al. [26] proposed
a three multiobjective models of WMN planning problem using
a hybrid combination of multiobjective particle swarm optimiza-
tion and genetic algorithm. This model simultaneously optimizes
the network deployment cost and network throughput objectives.
Load-balanced model generates a broader set of non-dominated
solutions and provides better throughput than the other two mod-
els.

Mostly WMN routing problem has been considered as a
ctive evolutionary algorithm based QoS routing in wireless mesh
c.2015.12.007

single objective problem, but it can have more than one objec-
tive. A number of assorted approaches have been proposed for
improving WMN routing, which includes the utilization of heuris-
tics, a single metric, a composite metric, multiple metrics and

dx.doi.org/10.1016/j.asoc.2015.12.007
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ultidimensional metrics [7–9,34]. In a very few papers, it has been
reated as a multiobjective problem. To evaluate the distribution
f the individuals, the crowding distance is used in NSGA-II. More-
ver, the crowding distance does not consider the uniformity of the
ndividual distributions in each non-dominated front and in some
onditions, it may destroy the uniformity. To improve the unifor-
ity of the individual distributions, a DCD approach is proposed in

his paper. The objective of this paper is to solve the multiobjective
outing problem using MNSGA-II algorithm by means of incorpo-
ating the concept of DCD in the original NSGA-II algorithm. We
onsider both expected transmission count and transmission delay
imultaneously to determine the optimal routing for WMN. Ana-
ytic hierarchy process (AHP) is adopted to rank the Pareto-optimal
olutions, to determine the best route between a given source and
estination.

Contributions that are made in this paper can be summarized in
he following way:

. We formulate the problem as multiobjective shortest path rout-
ing for the minimization of transmission delay and expected
transmission count.

. We use modified elitist non-dominated sorting algorithm
(MNSGA-II) to find the Pareto optimal solutions and then employ
a decision making process, i.e. analytic hierarchy process (AHP)
to choose the best compromise solution.

. The performance of the proposed algorithm is analyzed through
the simulation studies.

. Problem formulation

Wireless mesh network can be represented as an undirected
raph G = (V, E) where V is the set of nodes consisting of both mesh
lient and mesh routers and E is the set of edges representing wire-
ess links between the nodes. A path from node Vi to node Vj is the
equence of nodes from V in which no node appears more than
nce. The routing problem is to determine a path between the
ource and destination nodes with minimum transmission delay
nd minimum expected transmission count.

.1. Decision variable

The binary decision variable (Xij) will tell us whether a particular
ink (i, j) ∈ E is considered in a routing path or not. The variable is
efined as follows:

ij =
{

1 if the link (i, j) is included in the path.

0 if the link (i, j) is not included in the path.

.2. Objective functions

.2.1. Transmission delay
This objective function is to minimize the transmission delay

hile transferring the packets from source to destination. The
moothed transmission delay of a node A is given by

TDn, A =
∑

˛(1 − ˛)n−iDi,A, (4)

here n is the number of received probes, ˛ is a smoothing factor
Please cite this article in press as: R. Murugeswari, et al., A multi-obje
networks, Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.aso

nd D is the current measured delay for node.
The minimization function model has been adopted from Wev-

rton et al. [27]. The route with least sum of transmission delays
or all hops is chosen as the best path.
 PRESS
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The objective function for the minimum transmission delay can
be expressed as follows

f1 = min
∑

(i,j) ∈ E

Di,jXi,j. (5)

3.2.2. Expected transmission count (ETX)
This objective is to choose the routes with a minimum expected

number of transmissions. The ETX of a link is the number of data
transmissions required to send a packet over that link, includ-
ing retransmissions [28]. Consequently, the selected routes have
high throughput. The ETX metric for a path p consisting of links
v1, v2, . . ., vn with the forward delivery ratio of fdvi

and reverse
delivery ratio of rdvi

for link vi is computed as

etxvi
= 1

(fdvi
× rdvi

)
. (6)

The probability of a data packet, successfully arrived at the recip-
ient is called the forward delivery ratio and the reverse delivery
ratio is the probability that the ACK packet is successfully received.

ETX of a route is the sum of the ETX of each link in the route and
it is given by

ETX(P) =
n∑

i=1

etxvi
.

The objective function for the minimum expected transmission
count is given by

f2 = min
∑

(i,j) ∈ E

Ti,jXi,j. (7)

3.3. Model constraints

A multiobjective optimization usually considers one or more
constraints. In this model we have considered the flow conservation
constraints.

3.3.1. Flow conservation
To ensure the consistency of the model, we have to model the

flow conservation constraints on the origin, destination and inter-
mediate nodes. The source node is denoted as ‘S’ and destination
node as ‘T’. The following equations are called the flow conservation
constraints.∑
(i,j) ∈ E

Xij = 1, i = S. (8)

∑
(i,j) ∈ E

Xij = −1, i = T. (9)

∑
(i,j) ∈ E

Xij −
∑

(i,j) ∈ E

Xji = 0, i /= S, i /= T. (10)

These restrictions aim to confirm that all data packets gener-
ated by nodes can reach the destination node and guarantee that
the solutions obtained are valid paths from the origin ‘S’ to the
destination ‘T’.

4. Multiobjective evolutionary algorithm for routing
problem

Multiobjective optimization can be solved by several methods,
ctive evolutionary algorithm based QoS routing in wireless mesh
c.2015.12.007

we have chosen MOEA because it has the ability to find multiple
optimal solutions in one single simulation run [4]. NSGA-II is one
of the most efficient and popular multiobjective evolutionary algo-
rithm. In this paper, we propose MNSGA-II, an improved version of

dx.doi.org/10.1016/j.asoc.2015.12.007
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SGA-II for solving the multiobjective routing problem. MNSGA-II
lgorithm uses non-dominated sorting for fitness assignments and
ynamic crowding distance for improving the diversity. The new
ffspring is generated by using the partial mapped crossover (PMX),
nsertion mutation and binary tournament selection.

.1. Chromosome representation

A chromosome corresponds to the possible solution of the opti-
ization problem. A chromosome consists of sequences of positive

ntegers that represent the IDs of nodes through which a routing
ath passes. A gene in a chromosome is characterized by two fac-
ors namely locus and allele. The locus represents the position of a
ene located within the structure of chromosomes and allele repre-
ents the value that the gene takes. The length of the chromosome
ust not exceed the maximum length N, where N is the total num-

er of nodes in the network. Thus, each chromosome represents a
ath which consists of a sequence of nodes and it starts with the
ource node followed by some intermediate nodes and the last node
ndicates the destination. MNSGA-II handles variable chromosome
ength.

.2. Generation of initial population

There are two methods for generating the initial population
euristic initialization and random initialization. Random initial-

zation is followed in this paper. The priority based encoding is used
or generating the initial population and it was developed by Gold-
erg et al. [29]. In this encoding, the position of a gene is used to
epresent the node ID and its value represent the priority of the
ode for constructing a path among the candidates. A path can be
etermined uniquely by using this encoding. Every node is assigned
priority with a random mechanism and adds one with the highest
riority into the path.

.3. Crossover

Several crossover operators have been proposed for GA with
ermutation representation such as partial-mapped crossover
PMX), order crossover (OX), position-based crossover (PX), heuris-
ic crossover, and so on [30]. We have adopted partial mapped
rossover strategy proposed by Gen et al. [31] in this work. PMX can
e viewed as an extension of two point crossover for binary string to
ermutation representation. It uses a simple repairing procedure to
esolve the illegitimacy caused by the simple two point crossover.
n PMX crossover, the repetition of nodes can be avoided by using a

apping function. Therefore, PMX finds many new paths without
ncreasing computational complexity.

.4. Mutation

Some mutation operators are easy to adopt the permutation
epresentations such as swap mutation, inversion mutation, inser-
ion mutation, and so on [30]. By avoiding the loss of heritability in
ermutation representation, we adopt insertion mutation to gen-
rate the offspring. Insertion mutation selects a gene at random and
nserts it in another random position.

.5. Dynamic crowding distance (DCD)
Please cite this article in press as: R. Murugeswari, et al., A multi-obje
networks, Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.aso

Most MOEAs use population maintenance to wipe off indi-
iduals when the number of non-dominated solutions exceeds
opulation size. To remove the excess individuals, NSGA-II uses
rowding distance (CD) measure as given in Eq. (11). The
 PRESS
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individuals having lower values of the CD are preferred over indi-
viduals with higher values of CD in removal process.

CDi = 1
r

r∑
k=1

|f r
i+1 − f r

i−1|, (11)

where r is the number of objectives. f k
i+1 is the kth objective of the

(i + 1)th individual and f k
i−1 is the kth objective of the (i − 1)th indi-

viduals after sorting the population according to the CD. The major
drawback of CD is lack of uniform diversity. To overcome this prob-
lem, dynamic crowding distance (DCD) method is suggested by Luo
et al. [32].

In this approach, one individual with the lowest DCD value is
removed every time and DCD is recalculated for the remaining
individuals. The individual DCD is calculated as follows:

DCD = CDi

log
(

1
Vi

) , (12)

where CDi is calculated using Eq. (11) and Vi is calculated using the
Eq. (13)

Vi = 1
r

r∑
i=1

(|f k
i+1 − f k

i−1|CDi)
2
, (13)

where Vi is the variance of CDs of individuals which are neighbors of
the ith individual. Vi can give some information about the different
degree of CD in different objectives. This is illustrated below:

Let the population size is N, the non-dominated set at t-th gen-
eration is Q(t) and the size of Q(t) is M. If M > N, then use DCD to
wipe off M − N individuals from non-dominated set. The process of
DCD is summarized as,

1. If |Q(t)| ≤ N then stop population maintenance else goto step 2.
2. Calculate all individuals’ DCD in the Q(t) based on Eq. (12).
3. Sort the non-dominated set Q(t) based on individuals’ DCD and

wipe off an individual which has the lowest DCD in the Q(t) and
goto step 1.

4.6. MNSGA-II algorithm

The optimization process in MNSGA-II starts with a random pop-
ulation of solutions using priority based encoding. The flow diagram
of MNSGA-II is given in Fig. 1.

The off-spring is generated by applying the genetic operators
(i.e. PMX crossover and inversion mutation) to the parent popula-
tion. Then the non-dominated sorting approach is applied on the
combined population of parents and offspring. In this sorting proce-
dure, all non-dominated solutions are ranked 1 and are temporarily
removed from the population. The next set of non-dominated solu-
tions in the population is then defined and ranked 2. The procedure
is continued until all the solutions are ranked. Solutions at the
same non-domination front are compared by a dynamic crowd-
ing distance, which is a measure by the solution’s density at the
neighborhood of that solution. The new population is generated by
using the binary tournament selection to the current population. It
ctive evolutionary algorithm based QoS routing in wireless mesh
c.2015.12.007

randomly selects the two solutions for the current populations and
choose the best one. The procedure is terminated when a user-
defined maximum number of generations (MaxGen) is reached.
Algorithm 1 gives the steps involved in implementing MNSGA-II.

dx.doi.org/10.1016/j.asoc.2015.12.007
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repeated simulations to find optimal values for the parameters.
In this paper, optimal parameter combinations are experimentally
determined by conducting a series of experiments with different
parameter settings before conducting actual runs to get the results.

Table 1
Simulation parameters.

Parameters Values

Simulation area 1000 m × 1000 m
Propagation model Shadowing
IEEE standard 802.11b
Antenna model Omni directional
Routing protocol UMOLSR
Maximum number of packets in interface queue 60
Simulation duration 500 s
Number of nodes 20, 40, 60, 80, 100
Transmission range 250 m
ARTICLESOC 3364 1–9
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lgorithm 1. Modified Non-dominated Sorting Genetic
lgorithm-II.

1. Set t = 0, N = Population Size.
2. Select ETX and MD values from OLSR routing table.
3. Generate initial population routes using priority based

encoding.
4. Pt = Calculate the objective functions for the initial population.
5. Repeat.
6. Qt = Generate offspring from Pt according to recombination and

mutation operator.
7. Rt = Qt ∪ Pt .
8. F = Do Fast non dominated Sorting (Rt), Obtaining different

non dominated fronts (F1, F2, . . ., Fn).
9. Dynamic crowding distance assignment (Fi).

10. Apply the selection of routes based on the binary tournament
selection.

11. t = t + 1.
12. Until t < MaxGen.

MNSGA-II algorithm is implemented by using an OLSR routing
rotocol. It is an optimization of the classical link state algorithm.

t operates as a table driven, proactive protocol. Each node selects
set of its neighbor nodes as “Multipoint Relays (MPR)”. In OLSR,

he MPRs are selected nodes, which forward broadcast messages
uring the flooding process. This technique substantially reduces
he message overhead and number of retransmission is required.

PR node may choose to report only links between itself and its
PR indicators. The expected transmission count and transmis-

ion delay can be calculated by changing the value of the following
ariant of the OLSR routing protocol.

Agent/OLSR set mpralgorithm = 2.

Agent/OLSR set linkquality = 2.

Agent/OLSR set linkdelay = true.

here mpralgorithm indicates the multipoint relay (MPR) selection
lgorithm that is going to be used, linkquality refers how the link
uality metric will be computed and linkdelay indicates whether
he minimum delay between nodes will serve as criteria for the
election of paths between them. In order to compute delay, we
ave used a variation of the CapProbe algorithm by Waverton et al.
27].

From these changes we can obtain each node in the network
ith the metric values such as ETX and delay for every link towards

ll other nodes at a given time. After finding the metric values,
NSGA-II algorithm is executed in the routing protocol.

.7. Analytic hierarchy process (AHP)

Once solutions lying on the estimated Pareto-optimal set are
ound, it is usually required to choose one of them for implementa-
ion. From a decision maker’s perspective, the choice of a solution
rom all Pareto-optimal solutions is called a posterior approach.
t requires a higher-level decision-making approach which is to
etermine the best solution among a finite set of Pareto-optimal
olutions with respect to all relevant attributes. Multiple attribute
ecision-making (MADM) techniques are generally employed in
he posterior evaluation of Pareto-optimal solutions to choose the
est one among them. A number of methods have been developed
Please cite this article in press as: R. Murugeswari, et al., A multi-obje
networks, Appl. Soft Comput. J. (2015), http://dx.doi.org/10.1016/j.aso

or selecting the best compromise solution in multiple attribute
r multiple criteria problems. In this paper, analytic hierarchy pro-
ess [8,33] is used to find the best compromise solution. Algorithm 2
ives the steps required in the proposed analytic hierarchy process.
 PRESS
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Algorithm 2. Analytic hierarchy process.

1. Find the set of non-dominated solutions using MNSGA-II
algorithm.

2. Compute the path–path pairwise comparison matrix(ppcm) for
every metric.
ppcm(i, i) = 1, for same path;
ppcm(j, i) = 1/ppcm(i, j), for reciprocal paths;
ppcm(i, j) = mj/mi , for min criterion.
Here i, j are paths.

3. The normalized path–path pairwise comparison matrix(nppcm) is
calculated by
nppcm(i, j) = ppcm(i, j)/

∑
ppcm column(j) .

4. Average normalized priority path–path pairwise computation
matrix(anppcm) is done by
anppcm(i, j) =

∑
nppcmrow(i) ./P

5. The average normalized priority pairwise comparison
matrix(anprpcm) is assigned by equal priorities for every metric.
anprpcm = [0.5 0.5] .

6. Calculate total score for each path as

Path score =
∑n

i=1
(anprpcm[i]∗anppcm[i, j]), j = 1, . . ., p.

7. Select the path with the maximum total score as the best
compromise solution.

5. Performance evaluation

To analyze the performance of MNSGA-II algorithm we con-
sider the Optimized link state routing protocol (OLSR). In OLSR,
the Multi-Point Relays (MPR) play a very crucial role in forward-
ing the packets. The node which chooses its MPR will forward the
packets and reduce the redundant transmissions. The Fedora OS
is used to run the simulation software NS2 (Network Simulator 2)
version 2.34 for the evaluation. The patch for NS-2.34 to simulate
the OLSR is given by Ross [35]. Simulation and Comparisons were
conducted for two different scenarios. The first scenario consists of
20 nodes in random topology with 14 mobile nodes and 6 mesh
routers. The second one is the 5 × 5 grid topology and consists of
25 mesh routers. The simulation parameters are shown in Table 1.
Each simulation was run for 50 seconds and repeated 20 times. The
average value with standard deviation is plotted as error graphs,
The routing decision is made for considering the link qualities of
both ETX and MD. The routing table is maintained for every node in
the network and the metric values are stored for every link towards
all other nodes at a given time.

5.1. Parameter tuning for MNSGA-II and R-NSGA-II

The performance of multiobjective evolutionary algorithm is
sensitive to algorithm parameters. Hence it is needed to perform
ctive evolutionary algorithm based QoS routing in wireless mesh
c.2015.12.007

Maximum mesh client speed 20 m/s
Traffic type CBR
Mobility model for mesh clients Random way point
Smoothing factor 0.4

dx.doi.org/10.1016/j.asoc.2015.12.007
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Fig. 1. Flowchart for MNSGA-II algorithm.

Table 2
Control parameters selected for MNSGA-II algorithm.

Parameters Values

Population size 20
Number of generations 100
Crossover probability Pc 0.85
Mutation probability Pm 0.1
Selection of parents Binary tournament
New generation selection Elitist
 PRESS
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The crossover probability (Pc) is selected between 0.5 and 0.95, in
steps of 0.01 and for each Pc performance is analyzed. It is found
that Pc = 0.85, produces the best results. Other parameters such as
mutation probability (Pm) is selected between 0.1 to 0.3 and it is
found that Pm = 0.1 produces the best result. Table 2 shows the set
of control parameters selected after conducting the experiments.

5.2. Performance analysis

Fig. 2a shows the transmission delay for the 20 node network
with 14 mesh clients and 6 mesh routers by varying the node mobil-
ity. MNSGA-II performs well compared to R-NSGA-II in case of low
node mobility as well as the high node mobility. As the mobility of
the nodes increases, the paths between communication end points
will be broken frequently. In the proposed algorithm, the redun-
dancy of nodes in the path can be avoided by using the mapping
function of PMX crossover and hence there is no repair function
is needed for selecting the path. It is clear that MNSGA-II has
lesser delay than R-NSGA-II. Fig. 2b indicates the throughput for 20
nodes by varying the node mobility. In the proposed algorithm, the
dynamic crowding distance method only wipes off one individual
every time and recalculate the individual distance, so it provides
more chance to retain the individual in the non-dominated set.
Hence the throughput of MNSGA-II is higher than R-NSGA-II.

Fig. 3a plots the transmission delay comparison of MNSGA-II
and R-NSGA-II algorithm with increase in the number of nodes and
the speed of mesh client is 5 m/s. The initial population is encoded
at random, the possibility of a feasible chromosome solution is
less. In the proposed algorithm, the number of feasible solutions
is increased by using priority based encoding and automatically it
decreases the delay. It is observed that MNSGA-II performs better
than R-NSGA-II.

Fig. 3b shows the throughput comparison of MNSGA-II and R-
NSGA-II algorithm with increase in the number of nodes when
the speed of mesh client is 5 m/s. While the number of nodes is
increased, the proposed algorithm minimizes the expected number
of transmission by using PMX crossover which indirectly improves
the throughput. Hence MNSGA-II achieves higher throughput than
R-NSGA-II.

The best Pareto-front is obtained among 20 simulation runs of
random and static network using MNSGA-II and R-NSGA-II is shown
in Fig. 4a and b. The Pareto front contains a set of trade-off solu-
tions that are optimum from an “overall” standpoint, in a single run.
Each solution in Pareto front provides a candidate optimal assign-
ment of the WMN. It is observed from Fig. 4a and b that, MNSGA-II
is able to maintain the solutions uniformly in the Pareto-optimal
region. In MNSGA-II, the dynamic crowding distance algorithm
calculates the individual dynamic crowding distance dynamically
during the process of population maintenance. The dynamic crowd-
ing distance algorithm avoids some parts of the Pareto front which
are excessively gathered. The other parts which are sparse obtain
Pareto front with high uniformity thereby maintaining the diver-
sity of the non-dominated set. MNSGA-II approach is capable of
exploring more efficient and non-inferior solutions as compared to
R-NSGA-II.

5.2.1. Posterior evaluation of Pareto optimal front
A decision-making procedure based on the analytic hierarchy

process method is used to find the best compromise solution from
the set of Pareto-solutions obtained using MNSGA-II and R-NSGA-
ctive evolutionary algorithm based QoS routing in wireless mesh
c.2015.12.007

II. Fig. 4a and b it clearly shows that the throughput and delay are
lesser with MNSGA-II than R-NSGA-II. The best compromise solu-
tion using AHP for Fig. 4a is 6.7785 for throughput and 0.0545 for
delay. It is obvious that MNSGA-II performs better than R-NSGA-II.
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