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Abstract

RFID tags have become ubiquitous and cheaper to implement. It is often imperative to design
ultralightweight authentication protocols for such tags. Many existing protocols still rely on
triangular functions, which have been shown to have security and privacy vulnerabilities. This
work proposes UMAPSS, an ultralightweight mutual-authentication protocol based on Shamir’s
(2,n) secret sharing. It includes mechanisms for double verification, session control, mutual
authentication, and dynamic update to enhance security and provide a robust privacy protection.
The protocol relies only on two simple bitwise operations, namely addition modulo 2m and a
circular shift Rot(x,y), on the tag’s end. It avoids other, unbalanced, triangular operations.

A security analysis shows that the protocol has excellent privacy properties while offering a
robust defense against a broad range of typical attacks. It satisfies common security and the low-
cost requirements for RFID tags. It is competitive against existing protocol, scoring favourably
in terms of computational cost, storage requirement, and communication overhead.

Keywords: RFID, low-cost, mutual authentication, secret sharing, ultralightweight.

1. Introduction

Radio Frequency Identification (RFID) brought automatic object identification by electro-
magnetic wave into sensor technology, requiring no physical contact, which was revolutionary.
As costs steadily drop, RFID systems are increasingly deployed in varied environments, raising
numerous security and privacy concerns. Many works have pointed out that RFID is vulnera-5

ble to practical malicious attacks (see [1] and [2]) and security threats (see [3] and [4]). These
include eavesdropping, message interception and modification, blocking, jamming, counterfeit-
ing, spoofing, traffic analysis, man in the middle (MITM), traceability, and desynchronization
attacks. Effective authentication protocols to improve robustness, reliability, and security against
major attacks, both passive and active, are crucial.10

Based on memory type, power consumption, and price, RFID tags are either high-cost or
low-cost. In 2007, Chien proposed a tag classification based on computational cost and sup-
ported on-tag operations [5]. High-cost tags fall into either full-fledged or simple class. The
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low-cost tags are either in the lightweight or ultralightweight class. Low-cost RFID tags have
between 5000 to 10000 logic gates with only 250 to 3000 of them to use for security functions. It15

remains very challenging to deploy conventional cryptographic protocols on tags, especially the
ultralightweight ones. Their typical authentication protocol uses only simple bitwise operations
such as XOR, OR, AND, and rotation.

This paper incorporates threshold secret sharing into ultralightweight authentication proto-
cols (UAPs) for RFID tags. We start by evaluating existing UAPs to establish the security require-20

ments and identify common vulnerabilities. We then propose a new protocol that incorporates
Shamir’s (2,n) secret sharing, henceforth (2,n) SS. There are several advantages. The (2,n) SS
scheme is cheap to implement. It boosts the security of the overall system.

Measured against previous proposals, the followings are our contributions.

1. Our proposal provides a strong impersonation resistance. Its double verification mecha-25

nism demands key verification and secret recovery verification.

2. To counter threats that exploit timeout, we devise an overtime-exit function using a session
control mechanism to properly regulate the round-trip time of every challenge-response
cycle.

3. Unlinkability and forward security of the authentication sessions are enhanced by a dy-30

namic update mechanism. The mechanism prevents desynchronization among the tags,
the readers, and the trusted database (TD).

4. A double-entity-round mutual authentication mechanism is added to maintain authenticity
and integrity during transmission and updating. The protocol thwarts malicious attacks
that modify or block the exchanged messages and, hence, differs from the proposals in35

References [5] and [6] that resist only passive attacks.

5. The protocol meets the requirement of being ultralightweight, requiring only simple bit-
wise operations at the tag’s end.

The rest of this paper is organized as follows. Section 2 provides some preliminaries. Sec-
tion 3 reviews related works. The core discussion of our protocol is in Section 4. Sections 5 and 640

provide, respectively, the security and attack model analysis. A formal security analysis based
on the CasperFDR model can be found in Section 7. Section 8 gives the performance evaluation
and some conclusions will be given in Section 9.

2. Preliminaries

The first part of this section presents a typical deployment and assumptions of an RFID45

system. The second part recalls Shamir’s (t,n) secret sharing scheme.
A typical deployment involves three types of legitimate entities: the tags, the readers, and

a verifier (or a backend database). The low-cost tags are passive with very limited capabilities.
They do not maintain clocks. Before any tag is attached to an object, its unique static identifier ID
and an index-pseudonym IDS are written in its ROM and EEPROM, respectively, together with50

several secret values for authentication. The reader establishes some communication channel(s)
with the tags to be able to query them and to keep a record of proofs for each session. The
adversary should not be able to manipulate the record. The backend database T D is the only
trusted entity that may share some secret information, e.g., cryptographic keys, with the readers.
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The communication channel between the reader and the backend database is secure and has high55

performance. The channels between a reader and the tags are wireless and, hence, insecure.
Communications between the reader and the tags are initiated by the reader. Once the required
messages have been exchanged, the reader and the tags declare the protocol complete.

An RFID authentication protocol should comply with essential security and privacy require-
ments (see, e.g., [7]) to ensure data confidentiality, tag anonymity, forward security, untraceabil-60

ity, and robustness against malicious attacks. Such protocols are mainly concerned with security
issues at the protocol layer and not with physical or link layer issues.

A cryptography primitive that we would like to incorporate into our protocol is secret sharing.
Consider the scenario where n participants want to share a secret among themselves. They fix
a number 1 < t ≤ n and require that any t of them can recover the secret while any t − 1 of65

them gain no additional information whatsoever about the secret. Schemes to accomplish such
secret sharing were independently introduced by Blakley in [8] and Shamir in [9] as a solution
for safeguarding secret keys. This work uses (t,n)-SS to denote Shamir’s scheme where n is the
number of participants and t is the threshold. The scheme relies of the fact that a polynomial of
degree t−1 is uniquely determined by t values. A linear polynomial, for example, is determined70

by two points. A quadratic polynomial by three points, and so on. We briefly revisit the scheme
before using the (2,n)-SS for the rest of the paper.

The (t,n)-SS scheme has two main algorithms, namely the share generation algorithm GenS
and the secret reconstruction algorithm RecS. Let p be a prime larger than n and let Fp be the
field of p elements. Let the secret be represented by an element a0 ∈ Fp.75

1. GenS: A trusted dealer selects coefficients ai for 1 ≤ i ≤ t− 1 randomly from a uniform
distribution over the integers in Fp with at−1 6= 0 to form

f (x) = a0 +a1x+ . . .+at−1xt−1 ∈ Fp[x].

Next, for 1 ≤ j ≤ n, the dealer computes distinct shares s j := f (x j) from n nonzero pair-
wise distinct values x j in Fp and distributes s j to shareholder Pj secretly.

2. RecS: Given any t shares, the secrets a0 can be reconstructed using the Lagrange interpo-
lation formula since there is a unique polynomial f (x) of degree t−1 such that f (x j) = s j
for 1 ≤ j ≤ n. The formula, plus its generalization to the multivariable version, is given,80

e.g., in [10, Thm. 1.71]. We reproduce it here for convenience.

Theorem 1. (Lagrange Interpolation Formula) Let x0,x1, . . . ,xt be t+1 distinct elements
of Fp and let s0,s1, . . . ,st be t + 1 arbitrary elements of Fp. Then the unique polynomial
f (x) ∈ Fp[x] of degree ≤ t such that f (x j) = s j for 0≤ j ≤ t is given by

f (x) =
t

∑
j=0

s j

t

∏
k=0;k 6= j

(x j− xk)
−1(x− x j).

If an attacker can gather t shares, then it can recover the secret. If t participants become
corrupted, then they can combine their shares to reconstruct the secret.

3. Related Works

Research in RFID protocols is very active. Various tools have been combined into protocols.85

Many with little variations from the ones rather immediately prior. Several leading researchers
3



have even lamented that little, if any, real progress has been made in the last few years. The
rather chaotic general scenery, however, seems unavoidable as the deployments of RFID systems
widen and vary rapidly.

In this work we focus on ultralightweight authentication protocols. Before going there, we90

briefly mention several main strands which up to this point are considered not ultralightweight
enough yet. Depending on advances in hardware engineering, they may well become viable
options in the future.

Due to their attractive cryptographic strength, lightweight version of cryptographic primitives
such as AES and hash function are natural candidates. There has been a lot of effort dedicated95

to making hash functions lightweight enough for on-tag implementation to make authentication
anonymous. A prominent example is the PHOTON family of hash functions proposed in [11].
A remarkable recent contribution, in fact, managed to do away with such a requirement. Chen
et al. in [12] listed down various protocols that claim to ensure anonymity in authentication. All
but their own required on-tag hash functionalities.100

Proposals based on the NTRU cryptosystem have been put forward. Already in 2008, Atici
et al. discussed several low-cost implementations of NTRU for pervasive security, with deploy-
ments in RFID mentioned as a key application in [13]. While this appears to be likely the case,
further analysis remains to be done to come up with more concrete protocols, especially for au-
thentication purposes. Several works followed in this line of research. Very recently, Hwang and105

Lee proposed a lightweight NTRU-based mutual authentication scheme for RFID deployed in
medical devices [14].

A related source of hard problems for cryptography primitives is error-correcting codes.
Code-based systems provide fast and secure encryption and decryption schemes but suffer from
large public key sizes. Chikouche et al. in [15] presented a survey on RFID authentication proto-110

cols that rely on variants of the McEliece system. The survey identified the protocols’ common
weaknesses and gave their performance evaluation.

Cryptography primitives based on elliptic curves have also been explored. Some works fo-
cused on their lightweight implementations while some others explored aspects of RFID deploy-
ments that can benefits from incorporating such primitives. Some recent works utilizing elliptic115

curves are [16] and [17]. The latter was subsequently shown to be insecure in [18].
Forming another direction are the human based protocols, originally introduced by Hopper

and Blum in [19]. Many improved variants have been proposed since. A recent improvement
with an LPN (Learning Parity with Noise) flavour is the Tree-LSHB+ protocol in [20].

Secret sharing schemes have been used rather extensively in RFID key management in supply120

chains to transfer control and or ownership of the devices and relevant records. Several recent
works on this topic are [21, 22, 23]. Shared secret among tags, using a particular structure such
as a tree or a grid had also been proposed. Most of them have traceability issues. See [24, Sect. 3]
for a detailed treatment. Secret sharing schemes had been previously suggested for authentication
protocol in [25]. The proposal, however, was unconvincing. First, the Lagrange interpolation to125

recover the secret is performed by the tag, which is not feasible since doing so involves mul-
tiplication by inverses in the underlying finite field. Second, the recovered exchanged random
numbers between the reader and the tag are not used directly for authentication. The proposal’s
unfeasibility in ultralightweight setup is further shown in the generation of random number at
the tag’s end and in the usage of hash function on the payloads.130

From hereon we limit our attention to ultralightweight protocols. A series of ultralightweight
schemes had already been proposed for low-cost RFID systems since the late 1990s, initially
with little attention paid to their security. The work by Vajda [26] was the first to propose the use
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of lightweight cryptography. Juels then introduced the notion of minimalist cryptography in [27].
Peris-Lopez et al. proposed the UMAP family consisting of LMAP in [28], EMAP in [29], and135

M2AP in [30]. Their attractive ultralightweight design spurred further interest, directly inspiring
several other protocols, e.g., [31] to [32]. The family, unfortunately, was shown to be vulnerable
against an active attacker.

Chien introduced SASI, a typical ultralightweight protocol that provided strong authentica-
tion and integrity, in [5]. It was later demonstrated in [33] that a complete secret data disclosure140

could be obtained. Despite its multiple vulnerabilities, SASI reflected a turning point in design,
leading to Gossamer [34] and the scheme of Lee et al. in [35].

All of the above protocols assumed that ultralightweight tags could only compute simple
bitwise operations XOR, AND, and OR. This posed a hefty penalty in terms of security due to
their limited capabilities. AND, XOR, OR, and addition modulo 2m are said to be triangular145

functions or T-functions [36]. They remained vulnerable against many types of attacks, e.g., the
tango attack since OR and AND produce imbalanced outputs.

Numerous improvements have since been proposed. Many claimed to have properly fixed
general design concerns or to have completely addressed specific known shortfalls. Practically
all of them have subsequently shown to be inadequate, either in general or in some specific150

aspects. One can refer to Piramuthu’s survey [37, Table 1] for a list of vulnerabilities afflicting a
number of prominent protocols up to 2010. A more detailed list can be found in [38, Table 1]
for most of the protocols proposed up to early 2014.

Our aim in this work is to eliminate known vulnerabilities in UAPs, e.g., by removing trian-
gular functions. To further improve on the security we incorporate a secret sharing scheme for155

mutual authentication.

4. Our Protocol UMAPSS

Our design objectives are to enhance the robustness, improve the efficiency, and control
the session-cycle timing while keeping the computation and storage costs feasible. We pro-
pose UMAPSS, an ultralightweight mutual-authentication protocol equipped with a (2,n)-SS.160

Its double verification mechanism reduces the success probability of malicious attacks without
adding computational burden at both the reader’s and the tags’ ends. The protocol addresses the
overtime-exit issue using a session control mechanism. It regulates the round-trip time of every
challenge-response cycle and guarantees session unlinkability by adding forward security. It re-
mains lightweight because the tags operations consist of addition modulo 296, denoted simply by165

+ since the risk of confusion is minimal, and the circular shift Rot(x,y). Table 1 summarizes the
notations for entities and operations.

Here are the protocol’s specific design considerations.

1. Each tag stores secret values ID, IDS, and K = K1|K2|K3 in its memory. K is also stored
by T D. The IDS serves as a search index to allocate all information related to a particular170

tag stored in T D. The key K encrypts the data being transferred. Since each tag has its
own secret key, if the reader encrypts a message using K, then only the tag that has K can
decrypt the message.

2. To prevent traceability, the local values IDS and K are updated after each successful au-
thentication. This gives UMAPSS forward security and unlinkability. Additionally, the175

tags are required to store the old and (potential) new values of IDS and K to resist desyn-
chronization.
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Table 1: Notations used in UMAPSS
R, T , and T T P Reader, Tag, and Trusted Third Party

T D Trusted Database containing IDS, K, S, f (x) between T and R
ID Unique static identification information of T

IDS, IDSold , IDSnew Current, previous, and next index-pseudonym of T
K T ’s secret key; shared between T D and T

K1,K2,K3 Subkeys of K in current authentication session
Kold

1 ,Kold
2 ,Kold

3 Subkeys of K in previous authentication session
Knew

1 ,Knew
2 ,Knew

3 Subkeys of K in next authentication session
S Secret based on (2,n)-SS for current authentication
m Number of points on the curve defined by f (x)

(xi,yi) A point on f (x) based on (2,n)-SS for 1≤ i≤ m
PRNG Pseudorandom number generator, e.g., Warbler [39]

µ An output of the PRNG
∆T Time of challenge-response session between R and T
P Mutual-authentication session for R and T
+ Converts two binary strings into integers, add them modulo 296,

then converts the resulting integer back to binary.
Rot(x,y) Left-shift on x by y (mod 96) positions

3. To avoid using triangular functions, we implement only + and Rot(x,y) on tags. To im-
prove robustness while maintaining optimal security, Rot(x,y) in our protocol performs a
circular left shift on the value of x by y (mod 96) positions. This circumvents the known180

weakness of Rot(x,wt(y)) with wt(y) denoting the Hamming weight of y.

4. To reduce computational cost, the random number generation via PRNG() is done at the
reader’s end. The tags only use the numbers and performs + and Rot(x,y) to create fresh
communication messages. Our protocol resists both passive and active attacks that include
message modification, insertion, and or blocking.185

5. The length of any message is 96 bits, compatible with commonly deployed encoding
schemes, e.g., GTIN and GRAI, in EPCGlobal.

In short, we want a protocol with adequate security level that can be realistically deployed
in ultralightweight RFID tags. UMAPSS incorporates a (2,n)-SS to run a mutual-authentication
session between R and T . Here R authenticates T by recovering the original secret S after T190

sends its legitimate, i.e., not a forged, share. The reader imposes a time limit ∆T for each round
of challenge-response session. UMAPSS halts if ∆T is exceeded.

4.1. Four Stages
The protocol runs in four stages, namely an initial setup, the tag identification, the mutual

authentication, and the updating stages. Interactions between a particular reader R j and a tag Tr195

are in chronological ordering. Figure 1 summarizes the stages.
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Trusted Third Party

1.1 Performs GenS

Reader R j Tag Tr

1.2 Has IDS,K, 1.2 Has {IDS{old,new}},
µ,(x j,y j) {K{old,new}},(xr,yr)

Initiates 2.1 Sends Hello

2.2 IDS Responds with

IDSnew or IDSold

Matches IDS with T D’s data

Computes A|B in (1) 3.1 Sends A|B

Extracts µ1 from A and µ2 from B

Authenticates R j ⇐⇒ µ1 = µ2

3.2 Sends C|D Computes C|D in (2)

Extracts xr from C; yr from D

S′← RecS((xr,yr),(x j,y j))

Authenticates Tr ⇐⇒ S′ = S

4.2 Updates {IDS,K} by (4) Updating Phase 4.1 IDSold ← IDS and Kold
i ← Ki

Updates T D and gets new µ Updates {IDSnew,Knew
i } by (3)

Figure 1: UMAPSS

The Initial Setup Phase
The T T P selects a PRNG, say g : {0,1}k 7→ {0,1}2k for some security parameter k. It then

uses an output S of g as the secret in the current authentication session and constructs f (x) =
a1x+S∈Fp[x], keeping S= f (0) and a1 secret. The T T P then generates m points (xi,yi := f (xi))200

for 1 ≤ i ≤ m. It keeps ` of the points in ` valid readers R j for 1 ≤ j ≤ ` < m and keeps the
remaining m−` points in valid tags Tr for `+1≤ r≤m. The reader R j keeps (x j,y j) secret and,
similarly, the tag Tr keeps (xr,yr) secret. Let N := {R1, . . . ,R`,T1, . . . ,Tm−`}.

Each R j stores ∆T to control a cycle of challenge-response session. We intend for ∆T to
be decided based on the implementation requirements. Based on the simulations done prior205
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to deployment, keeping the usage and the assumptions on the attacker’s capabilities, the system
designer can set and then adjust this value to reach a desired trade-off between utility and security.

T D stores IDS, K, S, and f (x). Tr stores IDS and K while R j stores IDS, K, and S. Note that
K, S, and f (x) are always kept secret.

The Tag Identification Phase210

To trigger mutual authentication, the reader has to identify the tag. R j initiates a new session
by sending a hello message to Tr. The tag transmits IDSnew in response. R j uses IDSnew as an
index to search for a matching entry in T D. Only an authorized reader is able to search T D and
access Tr’s secret key K = K1|K2|K3, which is required in the next authentication stages.

If R j finds a match, it proceeds to the mutual authentication phase using Knew
i for 1≤ i≤ 3.215

Otherwise, it notifies Tr. The tag subsequently replies by sending IDSold . The identification is
retried, using IDSold instead of IDSnew. Note that Tr backscatters IDSold upon request. If the
identification is successfully done, then R j uses Kold

i in the mutual authentication phase. If IDS
is not in T D, the session is terminated.

The Mutual Authentication Phase220

R j uses IDS, K, and an output µ of g to compute

A := Rot(Rot(IDS+µ,K1),K2)+K3 and B := Rot(Rot(IDS+K1,µ),K3)+K2. (1)

Subsequently, A is used to send µ with a mask to Tr and B is used to authenticate R j and the
integrity of the messages. Effectively, R j sends A|B to Tr as a random challenge. Tr uses IDS
and K to extract µ1 , µ obtained from A and µ2 , µ obtained from B. If µ1 = µ2, then R j is
authenticated. Tr’s ability to retrieve the correct µ ensures R j’s legitimacy. Otherwise, Tr aborts
the session since the received messages may have been modified by an attacker or sent by an225

unauthenticated reader.
Once R j is authenticated, Tr constructs

C := Rot(K1 +K2,K3 +µ)+ xr and D := Rot(K2 +K3,K1 +µ)+ yr (2)

and sends C|D to R j for tag authentication.
If R j receives C|D in time ∆T , it uses K and µ to extract xr and yr. It determines S′ using

(xr,yr) of Tr and (x j,y j) of R j. If S′ = S, then Tr is successfully authenticated. Using IDS, R j
retrieves Tr’s unique ID from the T D and considers Tr with this ID as detected. This concludes230

the mutual authentication session P. Note that the challenge-response between R j and Tr does
not transmit Tr’s ID. If S′ 6= S, then Tr is illegitimate and the session is aborted. If R j does not
receive the response from Tr within time ∆T , the session is similarly abandoned.

The Updating Phase
Upon completion of the mutual authentication phase, IDS and K = K1|K2|K3 are updated

and synchronized separately. Tr assigns IDSold ← IDS and Kold
i ← Ki, stores them to prevent

desynchronization, and computes

IDSnew← Rot(IDSold +µ + xr,Kold
1 +Kold

2 + yr)+Kold
3 ,

Knew
1 ← Rot(Kold

2 +µ,Kold
3 + xr)+Kold

1 , Knew
2 ← Rot(Kold

3 +µ,Knew
1 + yr)+Kold

2 ,

Knew
3 ← Rot(Knew

1 +µ,Knew
2 + xr)+Kold

3 . (3)
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R j updates its local values

IDS← Rot(IDS+µ + xr,K1 +K2 + yr)+K3, K1← Rot(K2 +µ,K3 + xr)+K1,

K2← Rot(K3 +µ,K1 + yr)+K2, K3← Rot(K1 +µ,K2 + xr)+K3. (4)

and sends them to T D. Here R j does not store the old values, unlike Tr’s in (3). It keeps only235

the updated local values. The protocol has now run a complete round. The next authentication
session starts with tag identification.

4.2. Four Mechanisms

There are four mechanisms in UMAPSS.

Mutual Authentication240

To ensure access control, UMAPSS deploys a double-entity-round mutual authentication mode.
Unlike in previous protocols, its mutual authentication covers not only a check of consistency be-
tween the local and the received values using the same algorithm but also a check of consistency
between the secret S stored in a valid reader and the recovered secret S′ based on a (2,n)-SS after
(xr,yr) is extracted from C|D.245

Double Verification
The double verification between the R j and Tr is achieved by requiring both key verification and
secret recovery verification. Previous protocols require only key verification. Here in UMAPSS
the tag authenticates the reader by extracting µ from A|B by using K. In contrast to previous
protocols, the reader authenticates the tag not by comparing the received values with the local250

values, but by comparing the stored secret S with the recovered secret S′. The secret recovery can
be done in O(n log2n). This mechanism makes UMAPSS robust against impersonation attack
and reduces the success probability of the MITM or the counterfeiting attack.

Session Control
UMAPSS has an overtime-exit function. R j sets a time ∆T for each challenge-response session255

cycle while authenticating Tr. If ∆T is exceeded, the session is aborted to avoid some security
threats that exploit timeouts.

Dynamic Update
UMAPSS dynamically updates relevant values and keys in each authentication session to avoid
desynchronization among the tags, the readers, and the T D. In the mutual authentication phase,260

the random number µ is used to generate A|B, which is then used in a new challenge-response
cycle for dynamic updating. Once a reader is authenticated, the tag updates IDS and K. Similarly,
when a tag is authenticated, the reader updates its local values. This mechanism randomizes
every challenge-response between the reader and the tag to resist the tracking, the replay, and the
desynchronization attacks and provide forward security and unlinkability.265

5. Security Analysis

This section analyzes the security of UMAPSS based on commonly required criteria. Some
basic security sanity-check criteria were suggested in [38]. While it remains very challenging to
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satisfy all the requirements given the constraints on tags, we first note that our protocol avoids
common mistakes that have been highlighted from the cryptanalysis of past protocols.270

While Rot has some linear structure, the operation + add some nonlinearity. Recall that
+ adds the integer representations of two binary strings of length 96 each, take modulo 296,
and then converting the resulting integer back to binary string of length 96. Note in particular
that we design A,B,C and D to be nonlinear, as can be directly verified by, e.g., checking that
A(x+ y) 6= A(x)+A(y). Similarly with the other relevant functions. Performing the operation +275

requires less than 2×96×72 steps in time complexity, which is calculated on 2O(L log2(L)).
It is typical to assume that in an RFID deployment, the content of the tag’s memory is not

accessible to the attacker. We weaken this assumption to allow for the possibility of key leaks. So
long as the secret share of the tag remains uncompromised, a robust security protection persists.
Even if an attacker can obtain Kis of Tr, that is, the attacker passes Steps 2.1 to 3.1, it will fail to280

pass Step 3.2, i.e., recovering S remains hard.

Data Confidentiality
All messages must be securely transmitted. In both forward and backward links, the tag’s ID

is replaced by its current IDS. Data coming out of the tag and transmitted between the reader and
the tag is protected using µ . The construction of the public A|B and C|D involves K, µ , (xr,yr),285

and IDS. It is difficult to recover µ and (xr,yr) without knowing K. An attacker cannot obtain
any secret information about a tag from the intercepted messages due to the dynamic updating.
Thus, the tag’s ID and the secret values are well-protected, assuring data confidentiality.

Data Integrity
It is hard to infer the secret values from the messages transmitted through the wireless channel290

between the tag and the reader. Messages A|B and C|D not only provide the ingredients for
mutual authentication, but also vouch for the integrity of the secret values. If an attacker tries to
modify µ by flipping certain bits in A, then the tag finds B invalid. It is hard for the attacker to
adjust B to the correct value without knowing the shared secret key. Even a little modification on
µ leads to a very different output. Meanwhile, IDS and K are updated periodically. The updating295

mechanism requires valid K, µ , and (xr,yr). Only legitimate parties can calculate these values. If
the attacker succeeds in modifying the exchanged messages from any reader, then the tag detects
an anomaly and, thus, identifies an attack.

Tag Anonymity
The tag never reveals its ID but uses its current IDS as its identity in the protocol. The ex-300

changed messages are random because µ hides IDS, anonymizing the challenge-response mes-
sages. It is easy to verify that A|B and C|D are independent of ID. Both the reader and the tag
do not leak any information related to ID to any third-party. Even if an attacker intercepts and
decodes IDS, A|B, and C|D, it obtains no relevant information about the tag’s ID.

Mutual Authentication305

Our protocol ensures that the reader and the tag authenticate each other and blocks any unau-
thorized access. Only a reader possessing K can generate a valid A|B. Similarly, only a tag that
has K can compute µ from A|B and then construct C|D. Only a legitimate reader can derive the
tag’s (xr,yr) from C|D and successfully recovers S. Thus, only a valid party can generate valid
messages and be authenticated by the other party.310
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Untraceability
Tracking and traceability are two potential tag’s vulnerabilities. If a tag uses its ID, it is easy

for an attacker to locate and trace where the tag has been. To prevent this leak, the tag uses its
current IDS, instead of ID, and updates IDS and K after each successful mutual authentication.
With this mechanism, tracing and tracking become more difficult since no attacker knows what315

the next IDS and K will be. A fresh IDS is backscattered when the tag is interrogated.
To protect the secret data in transmission over the R-T channel, A|B and C|D change dy-

namically at random from one authentication session to the next. Since a tag’s successive IDSs
and messages A|Bs and C|Ds look random, an attacker cannot retrieve the tag’s ID and fails
to obtain the same responses from a particular tag by interfering with two or more dependent320

challenge-response rounds. All communications between the tag and the reader remain unlink-
able, thwarting the tracking attack. A legitimate tag’s location privacy is not compromised.

Forward Security
Forward security guarantees the security of past communications even when a tag becomes

compromised at a later stage. In UMAPSS, it is naturally embedded. Even if an attacker compro-325

mises a tag and acquires its current K, any information on the tag’s previous interactions cannot
be inferred by the attacker since µ is freshly generated and IDS and K are automatically updated.

It is clear that K and µ are random and periodic. An attacker cannot obtain the secret key
K j−∆T of session j−∆T based on K j in session j due to the hardness of breaking the PRNG.
Even if the tag becomes compromised in session j, the authentication sessions prior to session j330

remain valid. The attacker cannot compromise the tag’s past communications from the historical
transaction records.

6. Analysis on Attack Models

Due to the fact that most proposed protocols had been quickly shown to be vulnerable against
at least one attack (see [38, Table 1] for a comprehensive list up to mid 2014), users need to be335

reasonable in managing their expectation. It obviously remains a challenge to satisfy all desired
security aspects, especially against general attacks by a powerful adversary, while keeping the
tags ultralightweight. The specifics of the deployment environment can help decide which pro-
tocols or aspects of certain protocols to retain and what price in terms of security one should
prepare to pay.340

In proposing UMAPSS we do not claim to have overcome all of the limitations of past
protocols. Given known modes of attacks, we add the secret sharing ingredients and remove
vulnerable operations to enhance the security while keeping the cost at least on par with prior
ultralightweight protocols. We show that UMAPSS resists multiple modes of malicious attacks.
They include the replay, the MITM, the counterfeit, the desynchronization, and the disclosure at-345

tacks. Against the tango attack, we remove known weak operations to reduce the attack’s success
probability.

Against the Replay Attack
Each session’s µ and K are required to generate A|B and C|D. This ensures that replay

messages from either the tag or the reader will not be authenticated. In the replay attack, an350

attacker has access to and can store all exchanged messages. It can then proceed as follows.

1. It replays C|D j−1 in session j.
11



First, suppose that authentication in session j− 1 failed. Hence, K j = K j−1 and Tr uses
IDSold in session j. The reader constructs A|B j by using K j and a freshly generated µ j, and
forwards it to Tr. After authenticating the reader, Tr computes C|D j, by using K j, µ j, and355

(xr,yr), and sends it to the reader. The attacker intercepts C|D j from the tag and replays
C|D j−1 to Tr. Even if K j−1 = K j, the (x′r,y

′
r) that the reader gets would not match (xr,yr)

since µ j 6= µ j−1. The reader fails to recover S and the replayed C|D j−1 is deemed invalid.

The second scenario supposes that authentication in session j− 1 worked. Hence, K j 6=
K j−1 and Tr uses IDSnew in session j. The reader constructs A|B j using K j and the freshly360

supplied µ j before forwarding A|B j to Tr. After authenticating the reader, Tr computes and
sends C|D j to the reader. The attacker intercepts C|D j and replays C|D j−1 to the reader,
which then proceeds to extract (x′r,y

′
r) 6= (xr,yr) since K j 6= K j−1 and µ j 6= µ j−1, making

S′ 6= S.

In another scenario, the attacker assumes that the reader and the tag have not done the365

updating phase in session j−1 and waits for IDSold from the tag. A similar analysis to the
first scenario shows that replaying C|D j−1 leads to the reader’s failure to authenticate the
attacker.

2. It replays A|B j−1 in session j.

Suppose that authentication in session j−1 failed. Hence, K j−1 =K j and Tr uses IDSold in370

session j. The reader sends A|B j to Tr. The attacker intercepts A|B j but replays A|B j−1 to
Tr. Here Tr authenticates the attacker as a legitimate reader. Tr then uses K j, µ j, and (xr,yr)
to construct C|D j and send it to the reader. The attacker can then intercept C|D j. Note,
however, that an attacker that had been successfully authenticated as a valid reader gains no
secret information from C|D j since it knows none of K j, µ j and (xr,yr). In addition, even375

if the attacker lets C|D j reach the reader, the extracted (x′r,y
′
r) would not match (xr,yr),

implying that the reader cannot recover S and the replayed A|B j−1 is declared invalid.

Next, assume that authentication in session j− 1 worked. Hence, K j 6= K j−1 and Tr uses
IDSnew. The reader constructs a new A|B j and forwards it to the tag. The attacker intercepts
A|B j but replays the challenge A|B j−1. Since K j 6= K j−1 and IDSnew 6= IDSold , the µ ′j380

extracted from A|B j−1 matches µ j with negligible probability. The tag declares the attacker
an illegitimate reader.

Finally, the attacker may pretend that the reader and the tag have not accomplished the
updating phase in session j− 1. It waits for IDSold from Tr. Similar to the above failed
authentication in session j−1, the replayed A|B j−1 would be found invalid.385

Against the MITM Attack
UMAPSS provides a strong integrity and authentication protection on A|B and C|D. Any

modification on them leads to a failure to pass the validity verification. It is hard for the attacker
to change the data without detection. In order to obtain the tag’s valid messages in a successful
authentication session, the attacker tries to modify A to A′ and B to B′ with either A 6=A′ or B 6=B′390

and, similarly, change C to C′ and D to D′ with either C 6=C′ or D 6= D′ without getting noticed.
An MITM attack may take several forms.

1. Modify A|B to A′|B′.
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Assume that the attacker sends A′|B′ to Tr. The tag then discovers that the extracted µ ′
from A′|B′ is not equal to µ from A|B. Both are computed by using the current K and IDS.395

Thus, A′|B′ is declared invalid, foiling the attack.

What if the attacker sends A′|B′ to an illegitimate tag? The tag, similarly, fails to verify
and, hence, rejects A′|B′. It can use the modify-and-test method to guess the forged key
K′ = K′1|K′2|K′3. Extracting the valid µ from A′|B′, however, is as hard as breaking PRNG.
Even if this illegitimate tag pretends to have verified µ , it cannot construct valid C|D since400

it does not know K, µ , and (xr,yr).

2. Modify C|D to C′|D′.
The attacker transmits C′|D′ to Tr, which then checks whether the recovered secret S′ from
C′|D′ is equal to S. It computes (x′r,y

′
r) from C′|D′ by using K. It is clear that S′ 6= S

because C′|D′ is not the valid C|D from the tag. The reader declares C′|D′ invalid.405

Assume now that the attacker transmits C′|D′ to an illegitimate reader, which then fails
to match S′ and S since only a legitimate reader stores S. Even if the illegitimate reader
pretends to have validated C′|D′, the attacker cannot gain any secret information of a valid
tag Tr from C′|D′ since it does not have K, µ , and (xr,yr).

In either case, an attacker cannot succesfully interfere in the challenge-response process.410

Against Counterfeiting Attack
A timeout mechanism ensures that a legitimate tag responds within a time period ∆T . The

reader refuses any response that exceeds the allotted time in one authentication session. We
consider two cases, each having two possible scenarios.

1. Tag Impersonation.415

An attacker tries to impersonate a legitimate tag Tr within the broadcast range of some
readers by forging the secret key K′ = K′1|K′2|K′3. Even if the attacker has the valid A|B,
obtaining Tr’s K by using the modify-and-test method to guess the correct value of µ means
breaking PRNG.

Suppose that the attacker impersonates Tr with a forged key K′ upon receiving the valid420

A|B from a legitimate reader. The forged tag will fail to guess µ correctly since K 6= K′.
The forged tag may pretend to have gotten the correct µ by using K′. It will, however, fail
to construct C|D since it has no knowledge of K, the correct µ , and (xr,yr). The forged tag
now has two possible response scenarios.

First, it sends a forged response C′|D′ to a reader regardless of the latter’s legitimacy.425

An argument similar to the one in the second case of the MITM attack above suffices to
demonstrate that this tag will not be authenticated by any reader.

Second, it replays C|D j−1 in session j. A legitimate reader will fail to authenticate this
tag, irrespective of whether the reader had performed the updating phase in session j−1.
One can follow the reasoning given in the first case of the replay attack above to settle the430

matter.

2. Reader Impersonation.
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An attacker tries to impersonate a legitimate reader in the current session and sends the
challenge to the tag. Recall that the tag’s ID plays no role in the transmitted challenge-
response over the channel. Moreover, µ is freshly generated by a PRNG for each session.435

The forged reader cannot obtain any information about the tag’s private information. If
the forged reader eavesdrops and modifies the transmitted challenge-response, then the
authentication session fails, foiling the attack. There are two scenarios to consider.

First, the forged reader sends a forged challenge A′|B′ constructed using a forged key K′.
Any tag, legitimate or otherwise, is unable to authenticate the reader as already shown in440

the analysis for the first case of the MITM attack above.

Second, it replays A|B j−1. Following the analysis for the second case in the replay attack
shows why the tag, irrespective of whether it had done proper updating in session j− 1,
will fail to authenticate this reader.

Against Desynchronization445

This attack tries to force the tag and the reader to use different random numbers to update
their respective local data, causing authentication failure in all future transactions. An attacker
can modify the transmitted messages to change the value of µ . UMAPSS guards the authenticity
and the integrity of µ . Potential next secret key K is verified to ensure the correctness of A|B
and C|D. The process requires IDS, µ , and K. It is infeasible for the attacker to change the450

transmission without being noticed.
Old as well as potential new values of IDS and K are stored in the tag’s memory as an extra

precaution. Even if the attacker manages to make the tag update its local data while keeping the
reader from doing so, e.g., by intercepting C|D, the reader and the tag can still authenticate each
other using the old values (IDSold ,Kold) in the next session. They will then be able to recover455

their synchronized state and recognize subsequent communication requests.

Against Disclosure Attack
In a disclosure attack (see, e.g., [6], [31], and [40]) an attacker modifies the challenge from

the reader slightly in the hope of gaining partial information from the tag’s response. We have
already shown earlier that our protocol detects any such modification.460

Against the Tango Attack
The tango attack [41] mainly exploits the imbalance of the OR and AND bitwise operations,

some improper message designs, and the fixed positions of the bits. Such an attack tries to obtain
good approximations of the secrets. UMAPSS does not use OR and AND. It deploys the circular
shift Rot(x,y) to obfuscate the original positions of the bits, making it difficult to find proper465

approximations of the secrets without the secret values K, µ , and (xr,yr).

7. Formal Security Analysis

Sections 5 and 6 give some rather informal analysis of UMAPSS. We now present a formal
analysis using Casper/FDR. Communication Sequential Process (CSP) is a language to specify a
protocol’s process. The generated CSP file is then analyzed using Failure-Divergence Refinement470

(FDR), which is a model checker that verifies the specifications of the protocol. The Casper/FDR
tool [42] is a compiler to check the soundness of the protocol based on the specified security re-
quirements. It takes a high-level description of the protocol and analyses the protocol description
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Table 2: Casper Specifications: Free Variables and Protocol Description

Free Variables
T Agent
R Server
µ initial Seq

IDS, IDSold , IDSnew Session ID
Kold

1 ,Knew
1 ,Kold

2 ,Knew
2 ,Kold

3 ,Knew
3 , Session Key

K1,K2,K3,x j,y j,xr,yr

Rot Circular Shift
(Kold

1 ,Kold
1 ),(Knew

1 ,Knew
1 ), Inverse Keys

(Kold
2 ,Kold

2 ),(Knew
2 ,Knew

2 ),

(Kold
3 ,Kold

3 ),(Knew
3 ,Knew

3 ),

(K1,K1),(K2,K2),(K3,K3),

(x j,x j),(y j,y j),(xr,xr),(yr,yr),

(IDSold , IDSold),

(IDSnew, IDSnew),(IDS, IDS).
Protocol Description

0. R T
1. R→ T hello

2. T → R IDS
3a. R→ T Rot(Rot(IDS+µ,K1),K2)+K3
3b. R→ T Rot(Rot(IDS+K1,µ),K3)+K2

[(IDS← IDSold and (Ki← Kold
i : 1≤ i≤ 3) or

(IDS← IDSnew and Ki← Knew
i : 1≤ i≤ 3)]

4a. T → R Rot(K1 +K2,K3 +µ)+ xr

4b. T → R Rot(K2 +K3,K1 +µ)+ yr

against the stated specification. It has been used to model communication and security protocols
and verify its authentication and security requirements. Its capability to find vulnerabilities has475

been demonstrated in many protocols, see, e.g., [43], [44], and [44] for more details.
To verify UMAPSS formally, we specify the free variables and the protocol’s steps in Table 2.

Table 3 details the rest of the Casper code. Based on the Specification section in the script,
Casper/FDR would not find any feasible attack from among those mentioned in Section 6.

We now formally prove our claim in Section 5 that UMAPSS can resist traceability attacks by480

using the Raphael’s traceability model, also known as the Ouafi-Phan model from [46]. Consider
an adversary A performing the following steps.

1. Learning phase: A eavesdrops a perfect session between a legitimate tag and a legitimate
reader and obtains A|B from the legitimate reader and C|D from the legitimate tag.

2. Challenge phase: A chooses two fresh tags T0 and T1, having IDS0 and IDS1 respectively,485
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Table 3: Casper Specifications: The Remaining Details

Processes
RESPONDER(T,R,µ,xr,yr,Kold

1 ,Knew
1 ,Kold

2 ,Knew
2 ,Kold

3 ,Knew
3 , IDSold , IDSnew)

SERVER (R,T,µ,K1,K2,K3, IDS)
Actual Variables
Tag and Mallory are the Agents
R and µ from Table 2
IDS entity R, IDS entity T : Session ID
Session Key and InverseKeys from Table 2
Specification
Aliveness(R,T )
Secret(T,K1, [R])
Secret(T,K2, [R])
Secret(T,K3, [R])
Secret(T, IDS, [R])
Secret(T,µ, [R])
Secret(T,xr, [T ])
Secret(T,yr, [T ])
Secret(R,x j, [R])
Secret(R,y j, [R])
Agreement(R,T, [µ, IDS,K1,K2,K3])

Agreement(T,R, [µ,K1,K2,K3,xr,yr,x j,y j])

System
RESPONDER(T,R,Kold

1 ,Knew
1 ;Kold

2 ,Knew
2 ;Kold

3 ,Knew
3 ,xr,yr, IDS entity T )

SERVER(R,T,µ,K1,K2,K3, IDS entity R)
Intruder Information
Intruder = Mallory
IntruderKnowledge= {Tag, Reader, Mallory}
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to be tested and sends a test query. A performs the execute query by sending A|B and
receives C′|D′ in return.

3. Guess phase: If C =C′ and D = D′, then A outputs b′ = 0, otherwise it outputs b′ = 1. Let
Pr(E) be the probability that an event E occurs. We show that the advantage of A

AdvA , |Pr(A wins)−Pr(random coin flip)|= |Pr([b′ = b])−0.5)|
is negligible, i.e., smaller than a chosen miniscule positive value ε . In UMAPSS, to protect
the transmission of secret data, the public messages A|B and C|D over the R-T channel all
depend on the secret values shared only between the legitimate reader and genuine tag,490

including the dynamic random number µ and the updated secret key K = K1|K2|K3. The
messages are randomized and change dynamically in different authentication sessions.
Over different sessions, because of the successive IDS, the transmitted A|B and C|D from
the same tag look random. The attacker cannot identify the identity of the tag and cannot
obtain the same responses from the same tag by interfering with two or more dependent495

challenge-responses. The desired conclusion follows immediately and, consequently, all
communications between the tag and the reader are unlinkable.

8. Performance Evaluation

We simulated the communication between the tag and the reader using a program written in
C. The development tool was VS 2010 Integrated Development Environment (IDE) with client500

simulating a tag and the server simulating a reader. The network interaction was done by using
sockets that abstracted a TCP client/server connection. The reader waited for the connection with
the tag on a specified IP address and port. Once the tag successfully established a connection
with the reader, the protocol then executed one mutual-authentication session. Both the server
and the client machines ran Windows 10 on a hardware with Intel Core i5-3210 CPU at 2.50505

GHz equipped with 8 GB of RAM. The secret sharing scheme used a quadratic polynomial in
F101[x]. The average time required for a complete mutual authentication protocol executing the
steps in Figure 1 was 52 miliseconds. The average execution times for GenS and RecS were,
respectively, 1.2 and 1 miliseconds, showing that indeed the secret sharing part was feasible.

Table 4 summarizes a performance evaluation and some comparison between UMAPSS and510

several previous protocols. On the protocol’s computational cost, storage requirement, and com-
munication overhead, it suffices to evaluate the tag’s performance since the hardware environ-
ments of the reader and the backend database are not as constrained. The variable i in UP2RT [49]
is a positive integer that depends on the amount of random numbers utilized. The reader controls
this value.515

All operations in UMAPSS are suitable for ultralightweight tags since their hardware imple-
mentation is very efficient. In terms of computation, we focus on the types and frequencies of
operations for each tag. The storage requirement measures the memory to store the static values,
the shared keys, and the random number used in one authentication session. The communication
overhead calculates the transmitted messages over the channel in one authentication session.520

Computational Cost
Costly operations, e.g., multiplications and hash evaluations are not used in UMAPSS. Only

simple control commands and four primitive arithmetic operations are required, namely a poly-
nomial f (x), a pseudo-random number generator PRNG(), bitwise addition modulo 296, and the
circular shift Rot(x,y).525
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The GenS algorithm is performed by the T D, the routine PRNG() is implemented at the
reader’s end. Only two ultralightweight bitwise operations of addition modulo 296 and Rot(x,y)
are required at the tag’s end. Their implementations are low-cost and highly efficient, requiring
no additional hardware. The recovery RecS of a secret based on the (2,n)-SS is done at the
reader’s end. The required bitwise operations consume much less storage than cryptographic530

primitives such as hash function, cyclic redundancy code, and the sign-then-encrypt algorithms
do.
Storage Requirement

Each tag stores ID, its share (xr,yr), and two records (the old and the potential new values)
on IDS and K. Notes that in total only values relevant for two consecutive sessions are stored.535

A 96-bit length is assumed for all elements in accordance with the EPCGlobal Gen2 tag used in
data deliveries. Since ID and (xr,yr) are static values, they are stored in ROM. The IDS and K
values, both old and new, occupy 96×8 = 768 bits and are stored in a rewritable memory to be
accessed during different authentication sessions.

In contrast to SASI and Gossamer that need, respectively, two and five temporal nonces for540

each authentication session, UMAPSS does not require any. Let L stands for 96 bits. Each tag in
UMAPSS stores at most 11L, less than the 12L in Gossamer but more than the 9L in SASI. Most
other protocols link two random numbers to each session while UMAPSS uses only one, making
it cheaper and easier to implement.
Communication Overhead545

The communication overhead depends on the number of per-round exchanged messages be-
tween the readers and the tags. The total authentication process normally takes at least four
rounds. Since the mutual authentication phase dominates the communication cost, it suffices to
count this phase’s number of messages. There are only four exchanged messages A|B and C|D
for the individual challenge-and-response. Hence, the number of the transmitted messages is550

equal to that of SASI and Gossamer. The mutual authentication phase needs 4L = 384 bits to be
sent over the channel.

The comparison shows UMAPSS’ superiority to the other protocols. In particular, both in
types and frequency of per-tag computations and in the random number requirement, it takes
less resources. Including the required temporal nonces in one authentication session, UMAPSS’555

storage requirement falls between that of SASI and Gossamer. The remaining aspects, including
the memory size for each tag on database and the total communication messages, are similar
to those of SASI and Gossamer. Our protocol remains ultralightweight, albeit with a storage
requirement of 11L at the tag’s end, which is considered almost borderline with being lightweight
instead of ultralightweight.560

The table also contains a comparison on the security and privacy aspects. Our protocol is
superior since it supports data confidentiality and integrity, tag anonymity, mutual authentica-
tion, untraceability, and forward security. It protects against a variety of threats. In order to
notably improve on the security level and reduce computational cost, it stores extra nonces, a
very small price to pay. UMAPSS is implementable without obvious vulnerabilities, suitable for565

the resource-limited RFID applications fulfilling highly cost-effective requirements.

9. Conclusion

To overcome known security weaknesses and/or privacy omission in previous ultralightweight
authentication protocols, we propose UMAPSS. It incorporates the (2,n) Shamir’s secret sharing

19



and achieves significant security enhancement. It supplies a robust privacy protection through570

mechanisms for double verification and mutual authentication. It reduces the overtime security
omission using a session control mechanism. It ensures unlinkability and randomization by ap-
plying a dynamic update mechanism. Based on typical security characteristics and the ability to
resist malicious attacks, our protocol performs favourably.

It is ultralightweight, requiring only two simple bitwise operations on low-cost RFID tags575

without significantly increasing the burden at both the tag’s and the server’s ends. It removes tri-
angular function operations, lessening exposure to security issues related to their biased outputs.
UMAPSS balances superior security performance and practical competitiveness.
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Highlights

• An ultralightweight mutual-authentication protocol based on Shamir’s se-
cret sharing is proposed.

• It includes mechanisms for double verification, session control, mutual
authentication, and dynamic update.

• It offers a robust defense against a broad range of typical attacks and
satisfies the low-cost requirements for RFID tags.

• It is competitive against existing protocol in terms of storage, computa-
tional cost, and communication overhead.

1


