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This paper presents a reliability analysis of the pseudo-static seismic bearing capacity of a strip foun-
dation using the limit equilibrium theory. The first-order reliability method (FORM) is employed to
calculate the reliability index. The response surface methodology (RSM) is used to assess the Hasofer
—Lind reliability index and then it is optimized using a genetic algorithm (GA). The random variables
used are the soil shear strength parameters and the seismic coefficients (k, and ky). Two assumptions
(normal and non-normal distribution) are used for the random variables. The assumption of uncorrelated
variables was found to be conservative in comparison to that of negatively correlated soil shear strength
parameters. The assumption of non-normal distribution for the random variables can induce a negative
effect on the reliability index of the practical range of the seismic bearing capacity.

© 2018 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

Reliability
Genetic algorithm (GA)

licenses/by-nc-nd/4.0/).

1. Introduction

Uncertainty is an important issue in engineering design as
geotechnical engineers can basically introduce uncertainty in the
design when using a global safety factor. Reliability methods have
therefore become promising when assessing the effect of uncer-
tainty on geotechnical structure design. The designs using reli-
ability assessment were applied to many geotechnical engineering
projects (e.g. Mollon et al, 2009a,b, 2011, 2013; Griffiths and
Fenton, 2001; Griffiths et al., 2002; Kulhawy and Phoon, 2002).

Many theories have also been used to study the seismic bearing
capacity of a strip foundation (e.g. Budhu and AlKarni, 1993;
Dormieux and Pecker, 1995; Soubra, 1997). Their results indicated
that the value of the bearing capacity decreased with the increase
of the seismic acceleration coefficient. Inertia forces in the soil mass
decrease the bearing capacity of the soil and, as a result, the bearing
capacity of the foundation decreases. In recent years, some
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researchers such as Zeng and Steedman (1998), Garnier and Pecker
(1999), Askari and Farzaneh (2003), Gajan et al. (2005), Knappett
et al. (2006), and Merlos and Romo (2006) have drawn the same
conclusions by using the dynamic centrifuge tests. Using the
characteristics method, Cascone and Casablanca (2016) evaluated
the static and seismic bearing capacity factors for a shallow strip
foundation by the pseudo-static approach. Other researchers such
as Pane et al. (2016) numerically obtained the bearing capacity of
soils under dynamic conditions. Shafiee and Jahanandish (2010)
employed the finite element method to determine the seismic
bearing capacity of strip foundations with various seismic co-
efficients and friction angles. They also presented curves relating
the seismic bearing capacity factors to the seismic acceleration
coefficient.

In this context, the homogeneous soils and seismic properties
are used to analyze the seismic bearing capacity of strip founda-
tions. The bearing capacity is calculated using a single deterministic
set of parameters. Reliability analysis is then used to assess the
combined effects of uncertainties and provide a logical framework
for selecting the bearing capacity that is appropriate for a degree of
uncertainty and the failure consequences. Thus, the reliability
assessment useful for providing better engineering decisions is
performed as an alternative to the deterministic assessment.
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NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Hamrouni A, et al., Probabilistic analysis of ultimate seismic bearing capacity of strip foundations, Journal of
Rock Mechanics and Geotechnical Engineering (2018), https://doi.org/10.1016/j.jrmge.2018.01.009



http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:badreddine.sbartai@univ-annaba.dz
www.sciencedirect.com/science/journal/16747755
http://www.rockgeotech.org
https://doi.org/10.1016/j.jrmge.2018.01.009
https://doi.org/10.1016/j.jrmge.2018.01.009
https://doi.org/10.1016/j.jrmge.2018.01.009
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 A. Hamrouni et al. / Journal of Rock Mechanics and Geotechnical Engineering xxx (2018) 1-8

Over the last fifteen years, the reliability analysis of shallow
foundations subjected to a centered static vertical load has been
studied by Fenton and Griffiths (2002, 2003), Sivakumar Babu et al.
(2006), and Youssef Abdel Massih et al. (2008). However, the reli-
ability analyses of shallow foundations subjected to inclined,
eccentric or complex loads are rarely investigated (Ahmed and
Soubra, 2014). Probabilistic approaches for seismic bearing capac-
ity of shallow foundation are seldom elaborated in the literature
(Youssef Abdel Massih et al., 2008; Baroth et al., 2011). Johari et al.
(2017) used the slip lines method coupled with the random field
theory to estimate the seismic bearing capacity of strip founda-
tions. The bearing capacity factors N; (N, Ng and N,) are assessed
stochastically, with the values depending on friction angle.

In previous researches, different types of simulation approaches
were used to assess the reliability of geotechnical systems, in which
the response surface methodology (RSM) is basically used. Monte
Carlo simulation (MCS) (Wang et al., 2010) and importance sam-
pling (IS) (Mollon et al., 2009a) offered the implied estimates of the
system failure probability (Pr). However, they are rather time-
consuming (e.g. finite element method or finite difference
method). Different types of RSMs such as classic RSM, artificial
neural network (ANN) based RSM (Cho, 2009) and Kriging-based
RSM (Zhang et al., 2013) have been proposed to overcome this
disadvantage. However, they are all approximate methods which
cannot provide precise estimates.

This paper presents a reliability analysis of the seismic bearing
capacity of a strip foundation under pseudo-static seismic loading.
The uncertain parameters are modeled by random variables. These
variables are the soil shear strength parameters and the seismic
coefficients (ky and ky). Only the punching failure mode of the ulti-
mate limit states is studied. The deterministic model is based on the
limit equilibrium theory (Budhu and Al-Karni, 1993). The Hasofer—
Lind reliability index (fyL) was adopted to calculate the reliability
of the seismic bearing capacity. The RSM optimized by the genetic
algorithm (GA) have been used to find the approximate performance
function and derive (. The RSM optimized by GA saves computa-
tion time compared with the conventional RSM methods (Hamrouni
et al,, 2017a,b, 2018). The influence of normal and non-normal pa-
rameters distribution as well as the correlation between soil shear
strength parameters on the failure probability is studied.

2. Ellipsoid approach in reliability theory

The safety of geotechnical structures can be represented by
its By value which takes the inherent uncertainties as input
parameters. The fy. (Hasofer and Lind, 1974) is the most widely
used indicator in the literature. Its matrix formulation is
(Ditlevsen, 1981)

6HL =

; T-1
Jmin /= w)C e —p) (1)
where u is a vector of mean values, x is a vector representing the n
random variables and C is a matrix covariance.

The minimization of Eq. (1) is performed using the constraint
G(x) < 0 where the n-dimensional domain of the random variables
is separated by the limit state performance (G(x) = 0) into two
regions: an unsafe region F represented by G(x) < 0 and a safe re-
gion given by G(x) > 0. Eq. (1) is used in a form of the classical
method to calculate By, which is based on the transformation of
the performance limit state initially defined in the space of the
physical variables. This state must be shown in the space of the
normal random variables, centered, reduced and uncorrelated,
which is also called standard space. The Sy is the shortest distance
between the origin of the space and the state boundary surface.

Low and Tang (2004) proposed an interpretation of fy;. The
concept of iso-probability ellipsoid leads to a simpler calculation
method for @y in the original physical variables (see Fig. 1). Low
and Tang (2004), Mollon et al. (2009b), Li et al. (2011), Low
(2014) and Hamrouni et al. (2017a,b, 2018) demonstrated that the
ellipticity (ratio between the axes) of the critical dispersion ellip-
soid corresponds to the value of By, which is the smallest ellipsoid
dispersion that just touches the limit state surface to the unit
dispersion ellipsoid, i.e. the one obtained for fy. = 1 in Eq. (1)
without minimization.

They also stated that the intersection point between the critical
dispersion ellipsoid and the equivalent performance limit state
surface is called the design point (see Fig. 1). In the case of non-
normal random variables, the Hasofer—Lind method can be
extended. A transformation of each non-normal random variable
into an equivalent normal random variable with an average p" and
a standard deviation ¢" was proposed by Rackwitz and Flessler
(1978). Using the above-mentioned procedure, the trans-
formation makes it possible to estimate a solution in a reduced
space. The equivalent parameters evaluated at the design point X;
are given by

' = —alo ! [Fy (X))] +X; )
e )} N
Fx, (Xi>

where @ and ¢ are the cumulative density function (CDF) and the
probability density function (PDF) of the standard variables,
respectively; Fx, and fx, are the CDF and PDF of the original non-
normal random variables, respectively. The CDFs and PDFs of the
real variables and the equivalent normal variables identified at the
design point on the performance state surface are assimilated after
derivation of Egs. (2) and (3).

Low and Tang (1997, 2004) implemented an inclined ellipsoid
and an optimization algorithm to minimize the dispersion ellipsoid.
Eq. (1) can then be rewritten as

X

N

x ;x"y ] (4)

where [R]™! is the inverse of the correlation matrix [R]. The
configuration of the ellipsoid can be presented by this equation.

4 i : P |
X, Failure domain ; N: i Safe domain
101
H
Design point ——__ - mFemm———- E ..........
H
Limit state | By 0}
surface IUZN
N
A e e e W e

Unit dispersion
ellipsoid

\ Critical dispersion

ellipsoid

AL

\
- Sy
N

>

X;

=
=z

Fig. 1. Design point and equivalent normal dispersion ellipses in the space of two
random variables.
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The probability of failure is approximated using the first-order
reliability method (FORM) as follows:

Py =®(—fyy) (5)

2.1. RSM optimized by GA

If the objective function has a known analytical form, Sy may be
easily calculated. When using numerical calculations, it is impos-
sible to obtain an explicit analytical form of the objective function.
The RSM can then be used to approach this function by successive
iterations to calculate Sy and the design point. An algorithm based
on the RSM proposed by Tandjiria et al. (2000) was used in this
work consequently. This method approximates the function of
performance by an explicit function of the random variables using
an iterative process. The quadratic form (see Eq. (6)) of the
approximate performance function is the most widely used form in
the literature (second-order polynomial with squared terms):

G(x) = ag + Xn: aix; + Xn: bix? (6)

i=1 i=1

where a; and b; are the coefficients to be determined, and x; rep-
resents the random variable.

For a higher accuracy purpose, a more complex performance
function (Eq. (7)) can be used which contains quadratic and crossed
terms:

G(x) = ag + Xn: aix; + zn: Xn: bijxix; (7)

i=1 i—1j=1

The parameters a; and b;j in Eq. (7) can be determined using the
iterative method, but it seems to be rather time-consuming
(Youssef Abdel Massih and Soubra, 2008; Mollon et al., 2009b).
This method is used for a specific point of the limit state, thus it has
to repeat this calculation for determination of other reliability in-
dex values. In this paper, the parameters a; and b;; will be calculated
by an optimization using GA (Bouacha et al., 2014; Hamrouni et al.,
2017a,b, 2018). The coefficients a; and b;; are determined from a
number of deterministic calculations using values of the variables
x;, by the least-squares regression analysis.

In this study, the parameters of the optimization problem for
parameters a; and b; are translated into chromosomes with a data
string. To begin with the procedure of GA, an initial population is
needed. The size of the initial population depends on the nature of
the problem, and it usually contains several hundreds and thou-
sands of possible solutions (in our study, a number of 50 was cho-
sen). This population is generated randomly, covering the whole
range of possible solutions, i.e. the research space (Tang et al., 1996).

The minimum square error (MSE) is represented by the fitness
function in the GA approach to compare the results obtained with
Eq. (7) and the deterministic results. This permits to determine the
values of a; and byj, on which no constraints occur.

Several possible solutions are obtained from the variables space
and the physical conditions of these solutions are compared. If no
solution is reached, a new population is created from the original
(parent) chromosomes using “crossover” and “mutation” opera-
tions. From two random solutions (parents), the crossover forms a
child (new solution) by the exchange of genes. Mutation is used to
maintain population diversity by randomly switching a single
variable into a chromosome, as the process converges towards a
solution. The operation of the GA process is detailed in the flow-
chart shown in Fig. 2. The key advantages of GA are described as
follows:

(1) It is a population-based approach and thus considers a wide
range of possible solutions; and

(2) The mutation process restricts the solution to local minima
that can occur in alternative solution techniques.

The stop criteria for GA search operation are crucial and probably
difficult. Since GA is a stochastic global optimization technique, it is
rather difficult to know when the algorithm has reached its opti-
mum. With the measures of convergence and diversity, it is possible
to compare the performances of the GA during operation state.

3. Deterministic model

Budhu and Al-Karni (1993) assumed the logarithmic failure
surfaces as shown in Fig. 3 for determination of the seismic bearing
capacity of soils. They modified the commonly used static bearing
capacity equations of Meyerhof (1963) to obtain the dynamic
bearing capacity as follows:

qud = CNCscdcicec + ('YDf)NqSquqlqEq + %BNf)/Srydyi»\{e»\/ (8)

The bearing capacity factors in Eq. (8) are computed by the
following equations:

N¢ = (Ng—1)cot e (8a)
Ng = €™ @9 tan?(m/4 + ¢/2) (8b)
Ny = (Ng —1)tan(1.4¢) (8c)

where B is the width of the foundation, Ds is the depth of the foun-
dation, ¢ is the friction angle, c is the cohesion of soil, vy is the unit
weight, s is the shape factor, d is the depth factors, i is the inclination
factor, and H is the depth of the failure zone from the ground surface.

The parameters ec, g and e, are the seismic factors that are
estimated using the following equations:

e = exp(f4.3kﬂl+D> (8d)
5.3k12
eqg = (1— k\,)exp(l;lv> (8e)
9k1.2
ey = (1 gk\,)exp<1 hk > (8)
- v

where ky, and ky are the horizontal and vertical seismic coefficients,
respectively; and D is given by the following equation:

_YH 0.5B ™

D C mexp(z tan <p> + Dy 9)

4. Reliability analysis of seismic bearing capacity

For the failure mechanisms of Budhu and Al-Karni (1993), in this
paper, the deterministic results presented consider the case of a
shallow strip foundation with a width of 2.5 m and a depth of 1 m.
The unit weight of the soil is 18 kN/m?>. The values of the internal
friction angle and cohesion are 30° and 20 kPa, respectively. By
using Eq. (8), the ultimate seismic bearing capacity reaches only
729.51 kPa with ky, and ky values of 0.2 and 0.06, respectively.
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Fig. 2. Principle of optimization with GA.
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Fig. 3. Soil failure mechanism under static and seismic conditions assumed in the
theory of Budhu and Al-Karni (1993).

The Algerian seismic regulation (RPA, 2003) recommended that,
in Algeria, k, equals +0.3ky for several types of structures such as
foundations, retaining walls and slopes. Our study takes this linear
relationship between the two seismic coefficients, and will be
discussed only with the parameter ky,.

4.1. Performance function

Three random variables used in this study are the soil shear
strength parameters (c and ¢) and the seismic coefficient (kp,). The
values of the mean and the variation coefficient are chosen and
presented in Table 1. Two cases are studied: random variables with
normal and non-normal distribution, respectively. The parameters
c and ky are assumed to follow a lognormal distribution and ¢ is
considered to follow a Beta distribution to better represent the
friction angle (Fenton and Griffiths, 2003). The parameters of the
Beta distribution are determined from the mean value and standard
deviations of ¢. A negative correlation between the variables ¢ and
¢ (pc,) are considered equal to —0.5.

The performance function used in this study is given by

G = qud — cIu,min (10)

Failure will occur when the value seismic bearing capacity quq is
larger than the threshold value gy min (considered as deterministic).
The numerical algorithm implementation of RSM optimized by GA
was used:

(a) In this text, 100 sample points taken from the direct Monte
Carlo method were used to calculate quq using the random
variables.

(b) Coefficients (a;) of the performance equation G(o, c, k) are
optimized by GA using 100 sample points.

G(p, ¢, ky) = aq + Az + a39? + a4¢ + asc® + agky, + a7k2
+ agoC + agopky, + ajocky + aqqocky,

(11)

Table 1
Probabilistic model.

Variable Mean Variation Limitations of non-
value (u) coefficient (¢) normal variables

Distribution type

Case 1: Case 2:
normal non-
normal
o (°) 30 10% [0, 45°] Normal Beta
c(kPa) 20 15% [0, +] Normal Lognormal
kn 0.20 25% [0, 1] Normal Lognormal

(c) The Matlab optimization tool (fmincon) is utilized to deter-
mine the minimum value of By and the corresponding
design point (¢", ¢*, k; ) using the condition G(x) < 0 (G(x) is
presented in step b).

The advantage of GA is that it moves in the search space with
more possible solutions. The successful use of GA depends on how
accurately and quickly it converges to the optimal solution, avoid-
ing local minima to reduce the computation time. However, the
major disadvantage of GA in case of a large number of variables is
that it requires a significant computation time before the optimal
solution is finally reached. In our case study, the number of vari-
ables is 11 and the computation time is less than 1 min, which
makes it reasonable to choose this optimization method.

4.2. Numerical results

Eq. (11) is proposed to approximate the performance limit state.
The case with normal uncorrelated variables is used to present the
efficiency of GA approach. After 100 running of the GA, the best
results are selected to illustrate the best combination that satisfies
Eq. (11). The MSE is 1.9e~! with a; = 710.48405, a = —12.1999,
a3 = 037112, a4 = —18.54146, as = —0.1532, ag = 184.02496,
a7 = 1575.78991, ag = 3.78538, ag = —103.37221, ajp = 132.45428
and a1 = —14.90744.

For the case with normal uncorrelated variables, the Sy values
obtained after convergence are 3.981, 2.691 and 1.795 for qumin
values of 200 kPa, 300 kPa and 400 kPa, respectively. These indices
correspond to the failure probabilities of 0.003%, 0.357% and
3.629%, respectively, using the FORM.

A good way to validate the convergence of the GA optimization
approach is to consider the value provided by the model at the
design point. In case of normal uncorrelated variables, qyq values
provided by the deterministic model and the quadratic polynomial
are 200.02 kPa and 198.31 kPa, 301.5 kPa and 298.42 kPa, and
399.2 kPa and 399.90 kPa, respectively, which can be compared
with the acceptable maximum efficacy of 200 kPa, 300 kPa and
400 kPa. In this paper, the use of a GA is very effective to optimize
the unknown parameters of the performance function. Thus, a
quadratic polynomial with crossed terms between parameters is
used as the function of response surface that permits to obtain a
good approximation of the performance limit state in previous
analyses.

5. Reliability index, design point and partial safety factors

Table 2 shows the results of By, design points (¢", ¢* and ki ),
and partial factors for different bearing capacity limit values. The
calculations were performed for several cases: normal variables,
non-normal variables, variables correlated or not. Note that the
values of @y and partial factors increase with the decrease of the
bearing capacity limit value. The results of Sy are also shown in
Fig. 4, with a negative correlation between the shear strength
variables. It is the same as a lower extent when considering non-
normal variables.

For example, for a bearing capacity limit value equal to 300 kPa,
the comparison of the results between the correlated or uncorre-
lated variables shows that the value of Sy corresponding to the
negatively correlated variables is greater than that of the uncorre-
lated variables case. For the same bearing capacity limit values, the
value of By, decreases by about 10% if one considers non-normal
variables. We can conclude that the simplified assumption
considering the uncorrelated normal variables is safer compared to
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Table 2
Indices of reliability, design points, and partial safety factors.
Ju,min ﬂHL Pf (%) 49* (U) C* (kpa) k; qu FC Fkh
Normal uncorrelated variables 200 3.981 21.648 13.997 0.301 1.455 1.429 1.506
300 2.691 23.94 16.362 0.265 13 1.222 1.325
400 1.795 25.796 17.868 0.243 1.195 1.119 1.217
500 1.121 13.12 27.328 18.815 0.228 1.117 1.063 1.139
600 0.592 27.685 28.561 19.484 0.215 1.061 1.026 1.076
729.5 0 49.99 30 20 0.2 1 1 1
Non-normal uncorrelated variables 200 3.339 22.856 16.942 0.367 137 1.181 1.837
300 25 23.791 17.458 0.278 1.31 1.146 1.39
400 1.69 25.528 18.25 0.241 1.209 1.096 1.207
500 1.077 14.086 27.081 18.841 0.221 1.129 1.062 1.107
600 0.595 27.577 28.363 19.321 0.208 1.069 1.035 1.041
729.5 0 48.94 29.94 19.82 0.198 1.002 1.009 0.994
Normal correlated variables (p., ¢ = —0.5) 200 4812 22412 18.387 0.376 14 1.088 1.881
300 3.286 23.95 19.063 0.305 1.3 1.049 1.525
400 2.144 25.585 20.056 0.266 1.206 0.997 1.331
500 1.316 27.153 20.237 0.24 1.126 0.988 1.198
600 0.673 25.037 28.457 20311 0.22 1.065 0.985 1.099
729.5 0 49.99 30 20 0.2 1 1 1
Non-normal correlated variables (p., ¢ = —0.5) 200 3.683 25.845 19.654 0.442 1.192 1.018 2.211
300 2.84 24.974 19.586 0.334 1.24 1.021 1.672
400 1.949 25.675 20.088 0.269 1.201 0.996 1.343
500 1.242 10.72 26.979 20.138 0.234 1.134 0.993 1.17
600 0.673 25.062 28.25 20.141 0.213 1.075 0.993 1.065
729.5 0 48.91 29.98 19.94 0.197 1.0008 1.003 0.988
5 b *
~ —&— Normal uncorrelated variables F, — kfh ( 1 4)
45 1 —@— Non-normal uncorrelated variables kn U
O | : kh
4 4 ~—<—— Normal correlated variables
—<&— Non-normal correlated variables Lo
3.5 1 where p,, g and y, represent the mean values of friction angle,
3 4 cohesion of soil and horizontal seismic coefficient, respectively.
g 25 1 Factors for each bearing capacity limit value are also provided in
P ) Table 2. For uncorrelated variables, with the increase of the bearing
- capacity limit values, the partial factors are even lower, and almost
15 1 are equal to 1 for the limiting case. In the case of negatively
1A correlated variables, it is sometimes observed that the value of the
0.5 4 design point ¢* slightly exceeds the average value of ¢, which gives
0 i i | i ; i Fc less than 1 and large values of F, and Fy . This is due to the
100 200 300 400 500 600 700 negative correlation between c and ¢. This correlation implies that

(/u,miu ( kPa )

Fig. 4. Reliability index related to the performance limit.

more complex probabilistic models. This can therefore lead to un-
economic designs.

Engineers are interested in reliability index values of 2 < fy; < 4,
suggesting that taking into account the non-normal variables has
an influence on By.. This observation is related to the fact that the
distribution functions of normal and non-normal variables differ in
the zones of different design points obtained. The random variables
(¢, ¢) and ky have reverse effects on the behavior of the model. For
example, a low bearing capacity is induced by the reduction of (¢, ¢)
and the increase of (kp).

The coordinates (¢*, ¢* and k;) of the design points obtained for
bearing capacity limit values can be used to calculate the partial
factors F,, Fc and Fy, as follows:

tan u,,
= 12
4 tan (,0* ( )
He
Fo == 13
C C* ( )

if the value of c is smaller than its mean, then the values of ¢ and ky
will probably be high. For this reason, a case with F less than 1 does
not necessarily indicate failure, as long as the value of F, is high.
This conclusion is similar to those of Youssef Abdel Massih and
Soubra (2008), Mollon et al. (2009b), and Hamrouni et al.
(2017a,b, 2018).

From the @y values obtained by RSM optimized by GA, the
failure probability values are provided directly by the FORM
approximation, as shown in Fig. 5. Taking into account a negative

30 1

—@— Normal uncorrelated variables

25 —@— Non-normal uncorrelated variables
;: - —<— Normal correlated variables
~ —<— Non-normal correlated variables
£20 A
£ 15
210 A
o5

0 4 T J

100 200 300 400 500 600 700
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Fig. 5. Failure probability in relation to the performance limit.
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correlation between c and ¢ and the use of bounded laws instead of
the normal laws can significantly reduce the failure probability,
when other parameters remain unchanged. The assumptions of
normal and uncorrelated laws are quite acceptable. It is also
observed that the failure probability is much more sensitive to the
variations of ¢ and ky than c.

6. Conclusions

An analysis based on the reliability of seismic bearing capacity of
strip foundation subjected to a vertical load with pseudo-static
seismic loading is presented in this paper. The main conclusions
are drawn as follows:

(1) The use of GA is very effective in optimizing the unknown
parameters of the performance limit function. A quadratic
polynomial function with crossed terms between the param-
eters makes it possible to obtain a satisfactory approximation
of the limit performance state in the previous analyses.

(2) Assumption of negatively correlated shear strength param-
eters (c, ¢) was found conservative with respect to uncorre-
lated variables. For uncorrelated shear strength parameters
values, the design point value ¢” slightly exceeds the average
value of ¢, which gives partial safety coefficients F; less than 1
and large values of F, and F, . For this reason, a case with F;
less than 1 does not necessarily indicate failure, as long as the
value of F, is high.

(3) For the higher values of the minimum seismic bearing ca-
pacity, the reliability index By is low and induces a very high
failure probability value, indicating the vulnerability of this
structure.

(4) The simplified assumption considering a normal variable is
safer compared to more complex probabilistic models (non-
normal variables). This can lead to uneconomical designs.
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