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A B S T R A C T

In this study an earthquake predictor system is proposed by combining seismic indicators along with Genetic
Programming (GP) and AdaBoost (GP-AdaBoost) based ensemble method. Seismic indicators are computed
through a novel methodology in which, the indicators are computed to obtain maximum information regarding
seismic state of the region. The computed seismic indicators are used with GP-AdaBoost algorithm to develop an
Earthquake Predictor system (EP-GPBoost). The setup has been arranged to provide predictions for earthquakes
of magnitude 5.0 and above, fifteen days prior to the earthquake. The regions of Hindukush, Chile and Southern
California are considered for experimentation. The EP-GPBoost has produced noticeable improvement in
earthquake prediction due to collaboration of strong searching and boosting capabilities of GP and AdaBoost,
respectively. The earthquake predictor system shows enhanced results in terms of accuracy, precision and
Matthews Correlation Coefficient for the three considered regions in comparison to contemporary results.

1. Introduction

Earthquakes are highly feared natural catastrophic events that pose
threat to human lives and cause economic damages. The early predic-
tions of such damaging events have a potential for saving human lives
and diminish financial losses. Earthquake Predictor System (EPS) aims
to generate an alarm about the occurrence of earthquakes [1]. The
seismic indicators based EPS aims to predict earthquakes fifteen days
prior to earthquake. The seismic indicators are computed using the
temporal sequence of past earthquakes, recorded in earthquake catalog.
These seismic indicators are provided to computationally intelligent
algorithms to generate earthquake predictions, which eventually lead
to creation of EPS regarding forthcoming earthquakes. Moreover, the
contemporary literature sites numerous studies, which have employed
seismic indicators in collaboration with machine learning based
methods, to predict earthquake occurrences, thus findings of such stu-
dies are equally significant for the development of an earthquake pre-
dictor system.

Earthquake prediction is a challenging topic [2] and endeavors have
been made to predict earthquakes for over a century [3]. Earthquake
prediction approaches can be categorized into three types [4]: a)
mathematical and statistical methods [5,6], b) precursor investigations
[7–9], c) machine learning methodologies [10–12]. The recent

encouraging results obtained in this field of research are the outcome of
interdisciplinary interaction mainly, between seismology and Compu-
tational Intelligence (CI).

Machine learning based methodologies for earthquake prediction
use seismic indicators in order to develop a correlation between the
indicators and subsequent earthquakes. Thus, the study relies on the
temporal seismic behavior of a region. The computation of seismic in-
dicators is an effort to express the renowned principles of Gutenberg-
Richter's law, seismic energy release, foreshock frequency and seismic
rate changes, in numeric form. Machine learning based earthquake
prediction methodologies can also be classified into two categories,
depending upon the calculation approach of seismic indicators:

a) Computation of seismic indicators after a fixed duration of time
[11–13].

b) Computation of seismic indicators after every earthquake, inclusive
of the recent earthquake [10,14,15].

The former approach is designed to consider a fixed duration, such
as 1 month, 2 weeks, so forth, for single prediction period. It does not
address the issue, if multiple earthquakes strike the same region within
the single prearranged prediction period. However, this issue of making
multiple predictions for a single duration can be addressed through the
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latter approach. A seismic event occurrence may change the internal
seismic state of the region. Therefore, fresh seismic indicators are es-
sentially computed if an earthquake strikes the region during a pre-
diction period. A new earthquake prediction is obtained based upon
latest indicators, without waiting for the end of a prearranged predic-
tion period. The latter approach is also advantageous in terms of
number of feature instances to be used for developing prediction model.
The greater is the number of feature instances, the better a model is
trained. Since seismic indicators are computed for every recorded
earthquake, therefore greater number of feature instances are available
for training of model.

EPS is a field of science that has a potential for advancements. With
the advent of computer based techniques, rapid progress has been ob-
served in research and technology. CI and machine learning techniques
have been used vastly for classification and, regression to obtain solu-
tion for many problems. For example, diagnosis through medical
images [16], churn prediction through customer profiling [17], auto-
matic surveillance in videos [18], differentiation between micro seismic
events and quarry blasts [19], geological interpretation of structures
[20] and so forth.

In this study a novel idea of ensemble classification where Genetic
Programming (GP) is evolved using boosting (GP-Adaboost), has been
applied for earthquake prediction (EP-GPBoost). Seismically active re-
gions of Hindukush, Chile and Southern California are considered in
this study for modelling earthquakes and seismic indicators through
GP-AdaBoost. GP-AdaBoost is a unique ensemble classifier, where
searching capabilities of GP and boosting of AdaBoost are combined to
develop a strong classifier. The GP's evolution is supported through
boosting, where multiple GP strings are evolved per class, which act as
single class classifier.

In rest of the manuscript, Section 2 contains details of the related
literature. Section 3 encompasses the employed methodology, including
the computation of seismic indicators along with details of GP and
AdaBoost based methodology. Results and discussions can be found in
Section 4.

2. Related work

This section provides the overview of the research methodologies
offering the use of varied seismic indicators and precursors along with
various machine learning techniques. Seismic precursory analysis has
been carried out to develop earthquake prediction model through de-
tecting anomalous patterns in these signals. It is presumed that unusual
variations in seismic precursors are observed during earthquake pre-
paration process caused by tectonic movements beneath earth surface
[21]. The some of the studied seismic precursors are radon gas emission
from soil, atmospheric vertical electric field and ionospheric variations.
These earthquake precursory changes are bound together through a
unified concept of Lithosphere-Atmosphere-Ionosphere Coupling
(LAIC). The model signifies that anomalous activity caused due to
earthquakes in lithosphere would be propagated into atmosphere and
ionosphere [21]. Furthermore, animal behavior is also studied as an
earthquake precursor due to their sharp receptors, capability of re-
ceiving very low frequencies of, acoustics and seismic waves [22]. In an
experiment regarding animals’ behavior prior to seismic activity, mo-
tion sensing cameras were installed at Yanachaga National Park, Peru,
prior to 2011 Contamana earthquake of magnitude 7.0 [23]. A sig-
nificant decrease in animal activity was observed three weeks period
before the earthquake.

Probability based techniques have also been vastly applied for
earthquake forecasting [24]. Recently, the application of different
probability distributions, such as lognormal, gamma, Weibull distribu-
tions, are used for earthquake forecasting in Northeast India [5]. A
mathematical technique based on Fibonacci, Dual and Lucas (FDL)
numbers is also proposed for earthquake prediction [6]. The method is
intended to predict local as well as global earthquakes, exploiting the

planetary alignment in combination with FDL numbers.
CI based techniques have been increasingly used in earthquake

prediction research in recent past. Thereby a new line of work is now
introduced exploiting such CI techniques for earthquake prediction
leading towards EPS. CI techniques can only be used, once a meaningful
training dataset is provided. Therefore, it is considerably important to
find multiple seismicity indicators without worrying about their highly
non-linear relation with subsequent earthquakes. Eight seismic in-
dicators have been proposed to use in combination with Back
Propagation Neural Network (BPNN), Recurrent Neural Network (RNN)
and Radial Basis Functions (RBF) [11]. These seismicity indicators [T,
Mmean, dE1/2, β, α, ΔM, µ, ơ, η] hereafter called as Panakkat's indicators,
are computed based upon concepts of Gutenberg-Richter's law, seismic
energy release and foreshock frequency. The application of this meth-
odology is observed for Southern California and San Francisco bay re-
gions. RNN is reported to have performed better for these two regions.
Later on, in a similar effort, Probabilistic Neural Network (PNN) is
combined with Panakkat's set of seismicity indicators to predict earth-
quakes for the same regions [13].

The Panakkat's eight seismic parameters have also been exploited
for generating prediction models for Hindukush and Northern Pakistan.
Ensemble of tree based classifiers using Linear Programming Boost has
shown encouraging results for Hindukush region [12], while feed for-
ward neural network has performed better for Northern Pakistan [25].
Every region may possess different tectonic properties; therefore, it is
logical to have the same CI based methodology manifesting dissimilar
performances for different regions, even with the same seismicity in-
dicators. In a recent effort, an earthquake early warning method has
been generated for Southern California exploiting the Panakkat's eight
seismic indicators in combination with four different classification al-
gorithms. These algorithms are Neural Dynamic Classification (NDC),
Support Vector Machine (SVM), PNN and Enhanced PNN (EPNN). NDC
outperformed other applied techniques in generating earthquake early
warnings for predefined thresholds [26].

A different set of seven seismic indicators [x1, x2, x3, … x7] is pro-
posed based upon concepts of Gutenberg-Richter's law, Omori's law and
Otsu law [10,14]. This set of seven seismic indicators is hereafter re-
ferred as Reyes's seismic indicators. These indicators are combined with
different CI based techniques to generate earthquake prediction models.
Artificial Neural Networks (ANN) demonstrated better prediction re-
sults for the regions of Chile and Iberian Peninsula as compared to K-
Nearest Neighbor (KNN), SVM, Naive Bayes (NB) and so forth.

A study has been carried out to find the best performing set of
seismicity indicators among Panakkat's and Reyes's seismic indicators.
Every seismic indicator is evaluated using information gain and all the
indicators possessing null information are excluded. The remaining
indicators are together used in combination with ANN, KNN, NB and
SVM to generate earthquake predictions for Chile and Iberian peninsula
[27]. A setup has been arranged to analyze the sensitivity of both Pa-
nakkat's and Reyes's seismic indicators. This approach of sensitivity
analysis is tested on four Chilean zones [28]. In this study, the seismic
indicators are computed using various methods, which are onwards
employed with various combination of training and test datasets to
evaluate the variations in prediction performance. Another idea of
obtaining maximum available seismic indicators was exercised by Asim
et al. [15], in which all the seismic indicators are computed through
multiple applicable approaches. This idea leads to the computation of
more than 50 seismic indicators, which are further employed in com-
bination with tree based ensemble learning methodologies, including
decision tree J48, Random Forest, RotBoost and Rotation Forest. The
Rotation Forest has exhibited better results amongst others, for earth-
quake prediction in Hindukush region.

Earthquake prediction studies have been carried out on a global
scale, in which whole world is divided into four quadrants. The asso-
ciation rule mining and predicate logic has been applied on the earth-
quake data of all four quadrants. This predicate logic based prediction
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system is trained to predict earthquake in whole quadrant of earth for
forthcoming 12 h [29]. Fault lines are modelled in laboratory to study
earthquakes. Acoustic signals are emitted during motion of faults. The
physical properties of these acoustic signals are combined with machine
learning techniques to predict the time before the upcoming lab-
earthquake [30]. Recently, a machine learning technique, called Long-
Short Term Memory (LSTM) networks has been used to develop the
earthquake prediction model [4]. This model exploits the idea that
earthquakes occur in a region due to spatial and temporal interaction of
multiple regions. Therefore, this relationship has been learned using
LSTM.

EPS based on seismic indicators and machine learning has been a
subject undergoing intense study according to contemporary literature.
Quest for finding new meaningful seismic indicators is still underway.
Evolutionary algorithms, in particular GP and AdaBoost based machine
learning methods have not been explored so for in this field of research.
Thereby, the application of GP-AdaBoost based ensemble classification
in combination with innovatively computed seismic indicators is a
unique contribution for the field of earthquake prediction.

3. Data and methods

The regions considered for performing research on seismic in-
dicators based EPS are Hindukush, Chile and Southern California. A
large number of earthquakes have occurred in aforementioned regions
which make them interesting for earthquake prediction. In seismic in-
dicators based EPS, the required raw dataset is temporal sequence of
past seismicity for the selected regions. The past seismicity is available
in the form of a catalog, which is publicly available from the United
States Geological Survey (USGS) [31]. The catalog considered for this
study is taken from period of January 1980 to December 2016. The
coordinate boundaries of the regions are kept same as taken in the
previous earthquake prediction studies for the respective regions
[10–12]. The catalogs of the said regions are evaluated for cut-off
magnitude. Cut-off magnitude refers to the minimum magnitude, below
which earthquake catalog is deemed incomplete. There are numerous
techniques to assess the cut-off magnitude for a catalog, whereas in this
study it is obtained using the analysis of Gutenberg-Richter curve [32].
Table 1 summarizes the range of coordinates and cut-off magnitude for
each region.

3.1. Seismic indicators computation

In this study, seismic indicators are considered as base line for the
development of EP-GPBoost. These indicators are grounded on the well-
known seismic facts of Gutenberg-Richter's law, seismic energy release,
seismic rate changes, foreshock frequency and recurrence time of
earthquakes. The Panakkat's and Reye's indicators are considered, in
addition to some other indicators of seismic rate changes, standard
deviation of b-value, as considered in Zamani et al. [33]. Table 2 in-
troduces the seismic parameters introduced in this research. These in-
dicators are explained in detail in previous research studies carried out
in this field [10–12,33]. The state of the art in this research regarding
indicators is their computation strategy, which is based on idea of re-
taining maximum information regarding seismic state of the region.
Some of the specific seismic indicators can be computed via multiple

approaches, while there are few other indicators which are dependent
upon a variable parameter.

Every region may possess different geological properties and dif-
ferent nature of relation with earthquakes, which is intended to be
modelled in this study by the combination of seismic indicators and CI.
A set of seismic indicators showing best performance for one region
may not show the similar performance for other regions. But it would
be impractical and undesired to discover the best suited combination of
indicators for every different region in a real time EP-GPBoost.
Therefore, keeping this in view, the seismic indicators are computed
through multiple possibilities. All the computed indicators are si-
multaneously employed for developing EP-GPBoost. Seismic indicators
are classified into two categories based upon their computing strategy
as described below.

3.1.1. Non-parametric seismic indicators
The seismic indicators are computed mathematically using temporal

sequence of past seismicity. The indicators which are mathematically
independent of any other variable factor apart from past seismicity, are
directed as non-parametric seismic indicators. Table 3 briefs about all
the non-parametric seismic indicators and mathematical expressions.

For example, b-value is the slope of Gutenberg-Richter's law curve
and corresponds to seismic rate of a region [36]. It is based upon the
past seismicity only, without involvement of any other variable para-
meters, therefore, it is considered as non-parametric seismic indicator.
It can be computed using two different approaches, namely, least
square regression analysis (lsq) and maximum likelihood method (mlk).
Similarly, a-value is y-intercept of Gutenberg-Richter's law curve. Thus,
two b-values lead to the calculation of two a-values. The rest of seismic
indicators provide single value each, which lead to the total of ten non-
parametric seismic indicators.

3.1.2. Parametric seismic indicators
The seismic indicators, which are mathematically dependent upon

any other variable in addition to seismicity, are called as parametric
seismic indicators. In the previous research studies, a single value of
such parameters was considered only. In order to obtain the maximum
internal seismic information of a region, seismic indicators are com-
puted for multiple values of variable parameter. For example, standard
deviation of b-values (Σb) is dependent upon b-value itself. Since we
already computed two b-values, so employing both values separately
for computing Σb. This leads to the availability of two seismic in-
dicators for Σb. Similarly, total recurrence time (TRecurrence) is depen-
dent upon b, a-values along with a varying threshold magnitude (Mj). It
is computed for different combination of variable parameters, thereby

Table 1
Range of coordinate boundaries considered for respective regions and cut-off
magnitude of earthquake catalogs.

Regions Latitude range Longitude range Cut-off magnitude

Southern California 32–36.5 N° 114.75–121W° 2.6
Chile 32.5–36 S° 70–72.5W° 3.4
Hindukush 35–39N° 69–74.6 E° 4.0

Table 2
Seismic indicators employed in combination with GP-Adaboost in this study.

Symbolic representation Description

b Slope of Gutenberg-Richter curve
a y-intercept of Gutenberg-Richter curve
σb Standard deviation of b-value
Trecurrence Total recurrence time between earthquake

magnitudes
β Seismic rate change proposed by Matthews and

Reasenberg [34]
z Seismic rate change proposed by Habermann and

Wyss [35]
Mmean Mean magnitude
dE1/2 Rate of square root of energy
ΔM Magnitude deficit
η Mean square deviation
x6 Maximum magnitude earthquake recorded during last

week
x7 Probability of occurring a magnitude larger than or

equal to 6.0
T Time elapsed for last “n” seismic events
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providing multiple seismic features for TRecurrence. Overall fifty seismic
features have been obtained for parametric seismic indicators. The
names of parametric seismic indicators and their computation strategy
is summarized in Table 4.

3.2. Genetic Programming and AdaBoost

A classification algorithm establishes criteria for deciding a target
label for the test instance on the basis of values of features. A classifier
is induced with labeled instances and then a learned classifier differ-
entiates between test instances of binary classes, in the case of earth-
quake prediction system. GP has been applied in number of problems,
for attaining an optimal solution due to its searching capabilities. In this
work, GP has been ensembled with AdaBoost to construct a strong
classifier, with enhanced classification capabilities. AdaBoost algorithm
offers weight updating for hard instances in an iterative process. The
weight updating through boosting helps in dealing with hard instances,
which ultimately improves the classification performance. In GP-

AdaBoost ensemble, N GP strings are evolved per class through
boosting. AdaBoost contributes in evolving multiple GP strings through
an iterative process in such a way that each new GP string recognizes
the incorrectly classified instances of previous iteration. The boosting
performs weight update for instances in a bid to tackle hard instances.
Area Under Curve (AUC) is considered as a fitness function for the
evolution of GP strings per class. Moreover, each of the evolved GP
strings act as a single class classifier. The decision of a class label for a
test instance is made on the basis of higher value from a weighted sum
of the outputs of GP strings evolved for each class.

In GP-AdaBoost methodology, the GP's evolution is conducted
through adopting boosting for weight update. The boosting is employed
to generate P number of GP programs for each class. The obtained re-
sults are added and the decision of a class label for a test instance is
made on the basis of higher value from a weighted sum of the outputs of
GP strings evolved for each class. This GP-AdaBoost methodology de-
veloped for earthquake prediction is inspired from the work presented
by Idris et al. [17]. Fig. 1 shows the sequence of the processes involved
in GP-AdaBoost algorithm, whereas Fig. 2 lists the steps involved in the
algorithm.

In GP-AdaBoost algorithm, multiple parameters are involved which
need to be adjusted before training the methodology. The parameters
along with their values are shown in Table 5. These values are em-
pirically chosen after exhaustive experimentation during the training
phase. The overall flowchart of the proposed research methodology for
EPS is shown Fig. 3.

In GP-AdaBoost algorithm, multiple parameters are involved which
needs to be adjusted before training the methodology. The parameters
along with their values are shown in Table 5. These values are em-
pirically chosen after exhaustive experimentation during the training
phase. The Elite Size is the parameter which identifies the number of GP
program evolved through boosting, for each class involved in earth-
quake prediction. Similarly, cross over, mutation and reproduction
rates are set to 0.07, 0.90 and 0.03, respectively. The higher value of
mutation is used to ensure diversity for each of the next generation.
Moreover, Ramped half and half method is applied for initializing the
population, whereas AUC is applied for evolution of earthquake pre-
dictor system

4. Results and discussion

In this research EPS is modelled as a binary classification task with
aim to generate prediction for earthquakes of magnitude 5.0 and
greater 15 days prior to an earthquake. The results of the proposed
methodology are evaluated through parameters given below.

4.1. Evaluation parameters

The outcome of a binary classification model is either called as True
Positive (TP), False Positive (FP), True Negative (TN) or False Negative
(FN) when compared with original data. These terms are defined as:

Table 3
Details of non-parametric seismic indicators including frequency and mathe-
matical expresson.

Indicator
name

No. of
features

Mathematical expression

b 2 Least square regression analysis (lsq),
∑ − ∑ ∑

∑ − ∑

(n( MilogNi) Mi log Ni)
(( Mi)2 n Mi

2)

Maximum likelihood (mlk),
−M M

log10e
mean( ) min( )

a 2 Least square regression analysis (lsq),
∑ +b n(log N M )/10 i lsq i

Maximum likelihood (mlk), +N b Mlog min( )10 mlk

dE1/2 1
∑ +(10(11.8 1.5M))

1
2

T
,

T 1 − =tt , t time in daysn 1
Mmean 1 ∑i M

n
,

where n= total no. of earthquakes used
for computation of seismic indicators,
which in this study is taken as 50

z 1 −

+

RR1 2
S1
n1

S2
n2

where R1 and R2 correspond the seismic
rate for two different intervals. S1 and S2
represent the standard deviation of rate.
n1 and n2 show the number of seismic
event in both intervals

β 1 −

−

M t n
n
( , δ) δ
δ(1 δ)

where n represents total events in the
whole earthquake dataset, t is total time
duration and δ is the normalized duration
of interest. M(t, δ) shows the number of
events observed, defined using end time t
and interval of interest δ

x6 1 ∈ −M tmax { }, when [ 7, 0)i
Total 10

Table 4
Details of non-parametric seismic indicators including frequency and mathe-
matical expresson.

Indicator name No. of
features

Mathematical expression

x7 2 −

e
3bi

loge , for i= [lsq, mlk]
η 2 ∑ − −

−

a b

n

(logN i Mi )2

1
, for i= [lsq,mlk]

σb 2 ∑ = −

−
2.3b i M M

n nj2 1
n ( i mean( ))2

( 1)
, for j= [lsq, mlk]

ΔM 2 −a bM /max ,actual i i, for i= [lsq, mlk]
Trecurrence 42 =

−
T br

T

10ai iMj
, for i= [lsq, mlk] and j= [4.0,

4.1,4.2,…, 6.0]
Total 50

Fig. 1. Flow chart of GP-AdaBoost based earthquake predictor system.
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• True Positive (TP): An earthquake actually occurred and also pre-
dicted by EPS.

• False Positive (FP): No earthquake occurred but falsely predicted by
EPS.

• True Negative (TN): No earthquake occurred and no alarm gener-
ated by EPS.

• False Negative (FN): An earthquake occurred but EPS was unable to
predict.

The performance evaluation metrics are computed based upon
aforementioned quantities. These metrics and their mathematical for-
mulae are given in Table 6.

The reason of observing performance through multiple criteria is to
examine the different aspects of EP-GPBoost. Sensitivity signifies the
capability of EP-GPBoost to sense the earthquakes while specificity does
the same for non-earthquakes instances. P1 represents the ratio of actual
true predictions out of all the generated earthquake predictions. In
other words, it can be related to false alarms. Higher P1 refers to the
lower false alarm ratio, which is of utmost importance in EP-GPBoost.
The total accurate predictions, whether positive or negative, made by
EP-GPBoost are expressed by accuracy. However, accuracy is generally
not considered as a measure which truly reflects the competence of a
classifier [37]. Therefore, Matthews Correlation Coefficient (MCC) and
R Score (R) have also been introduced for performance evaluation. MCC
and R incorporate all four types of predictions (TP, TN, FN, TN)

simultaneously to give an overall balanced view of performance. Their
values vary between − 1 and + 1, where 1 signifies the perfect pre-
diction model while − 1 shows the opposite behavior of model. How-
ever, 0 depicts the total random behavior of algorithm.

4.2. Performance of the EP-GPBoost

The datasets of all three regions contain different number of in-
stances, depending upon the quantity of seismic events recorded in the
catalogs of the respective regions. The quality of the earthquake catalog
depends upon the density of instrumentation in a certain region. In this
regard, the Southern California takes lead with the least cut-off earth-
quake magnitude, followed by Chile and then Hindukush region with
the highest cut-off magnitude. It must be noted that before processing

Fig. 2. List of steps involved in GP-AdaBoost algorithm.

Table 5
List of varying parameters for GP-AdaBoost and their selected values.

Parameter values used in GP-AdaBoost algorithm

Parameter Name Value
Number of generation 20
Number of GP strings per class 5
Fitness function AUC
Functions +, /, *, If,> ,< , Pow, &, |, Max, Min, Exp,

Log
Max depth of trees 20
Mutation 0.90
Cross over 0.07
Reproduction of new programs 0.03
Population size 100
Population initializer Ramped Half and Half method

Fig. 3. Flowchart of overall research methodology.
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the earthquake catalog for seismic indicators’ computation, all the
seismic events below cut-off magnitude are removed. This ensures that
misleading and incomplete information is not considered to determine
the trends in seismic indicators.

In this study, due to the approach used for computation of seismic
indicators, the number of instances are dependent upon the quantity of
seismic events available in catalogs. Thus, the number of instances
available for Southern California are 33,543, while the dataset of Chile
contains 7656 instances. The Hindukush contains the least number of
instances, i.e. 4350. Every seismic region is different from other region
and may show varied behavior for different seismic indicators.
Therefore, separate training of EP-GPBoost is carried for every region
using 70% of the available seismic instances in the respective datasets.
Once the trained EP-GPBoost is obtained, the results are evaluated over
the rest of unseen 30% of datasets.

The performance of EP-GPBoost for all three regions is summarized
in Table 7. The EP-GPBoost shows remarkable performance for all three
regions, particularly in terms of low false alarms generation. The pre-
cision value of 74%, 80% and 84% for Hindukush, Chile and Southern
California, respectively implies that the ratio of false alarms is con-
siderably low. The model also shows remarkable performance in terms
of MCC and R score. MCC of 0.47 for Hindukush represents a note-
worthy positive relation between seismic indicators and subsequent
earthquakes, which improves for Chile to 0.60 and further strengthens
for Southern California to 0.67.

Inter-regional comparison of results obtained through GP-AdaBoost
expresses that Southern California takes lead followed by Chile and
then Hindukush. The reason for such trend is evident from the quality
of relevant earthquake catalog. Therefore, it is needed to improve the
quality of earthquake catalogs in terms of improved cut-off magnitude
that can be achieved by increasing the density of instrumentation for
recording earthquakes.

4.3. Comparison to existing works

The reason for selecting three aforementioned regions for devel-
oping seismic indicators based EP-GPBoost is to draw a comparison
with previous results obtained for these regions. Different seismic

indicators based predictions have already been carried out for these
regions using various machine learning techniques. Thus, in order to
prove the superiority of proposed methodology based on seismic in-
dicators computation, the comparison has been drawn with previously
proposed methodologies through said evaluation measures. It is evident
from Table 7 that the predictions obtained by the proposed metho-
dology have outperformed the previously obtained prediction results
for the respective regions.

The MCC recorded for Hindukush region by [12] is 0.33 which has
been improved to 0.50 in this study, thus showing notable improvement
in the prediction results. Furthermore, the current methodology has
also shown improved results for other criteria as well. Precision has
improved from 61% to 74% and accuracy from 65% to 78%. The only
decreased performance is Sn, which is affordable, given the improve-
ment recorded in all other performance measures. The prediction re-
sults for Chile has improved using the proposed methodology in terms
of all the used performance measures. MCC has increased from 0.39 to
0.6 while noticeable decrease in false alarms can also be witnessed
through increased precision from 61% to 80%. The similar trend of
improvement is also observed for Southern California region in which
MCC is improved from 0.51 to 0.66. Precision has improved from 71%
to 84%, while noteworthy improvement has also been observed in all
the performance measures except for Sn. The trade-off between small
decrease in Sn and rest of performance measures is acceptable. There-
fore, the obtained results show that the proposed approach, EP-
GPBoost, has outperformed the previously obtained results for the
considered regions.

GP-AdaBoost and inclusion of new seismic indicators through the
principle of retaining maximum information, both have contributed
towards the improvement of results. Newly introduced seismic in-
dicators covering different aspects of the already proposed indicators
have provided the detailed information of the seismic region. This de-
tailed information regarding the seismic region has been exploited by
the searching capabilities of GP. As GP searches for the best performing
features, is further coupled with ensemble methodology of AdaBoost,
thereby providing a robust model for earthquake prediction. Table 8
details the comparison of proposed methodology with previously pro-
posed methodologies for three regions, whereas Fig. 4 visualizes the
performance in terms of MCC. In previous research studies, such a
variety of seismic indicators have not been exploited simultaneously.
Furthermore, combined usage multiple machine learning techniques for
earthquake prediction is the novelty of this research.

5. Conclusion

In this research, seismic indicators based EP-GPBoost has been
proposed. A unique methodology is devised, which encompasses the
maximum information of a region through the computation of available
seismic indicators. These indicators are fed to a Genetic Programming
(GP) and AdaBoost (GP-AdaBoost) based ensemble classification
methodology. GP-AdaBoost is a unique combination of strong searching
and boosting capabilities of GP and AdaBoost, respectively. The GP-
AdaBoost based model has been trained and tested for the Hindukush,
Chile and Southern California regions. The obtained prediction results
for these regions exhibit improvement when compared with already
available studies. Inclusion of maximum available seismic indicators
and application of GP-AdaBoost, has resulted to enhance earthquake
prediction performance 15 days prior to an earthquake. Thus, the
computation of maximum seismic parameters and employing of GP-
AdaBoost has developed a new and robust EPS, called as EP-GPBoost.
Future efforts are aimed towards finding more suitable seismic in-
dicators and application of deep learning methodologies for earthquake
predictor system.

Table 6
Performance evaluation measures and the respective mathematical equations.

Performance metrics Mathematical equation

Sensitivity (Sn) =
+

Sn
TP

TP FN
Specificity (Sp) =

+
Sp

TN
TN FP

Positive Predictive Value/Precision
(P1)

=
+

P1
TP

TP FP

Negative Predictive Value (P0) =
+

P0
TN

TN FN
Matthews Correlation Coefficient

(MCC)
=

× − ×

+ + + +
MCC TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

R Score =
× − ×

+ +
R (TP TN) (FP FN)

(TP FN)(FP TN)

Accuracy =
+

+ + +
Accuracy TP TN

TP TN FP FN

Table 7
Prediction results for binary classification problem of GP AdaBoost based EPS.

Performance metrics Hindukush Chile Southern California

Sn (%) 57.7 61.2 68.7
Sp (%) 89.2 93.9 94.4
P1 (%) 74.3 80.2 84.2
P0 (%) 79.6 85.7 87.4
Accuracy (%) 78.7 84.5 86.6
MCC 0.50 0.60 0.67
R Score 0.47 0.55 0.63
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Table 8
Comparison of EP-GPBoost with previous methodologies applied for Hindukush, Chile and Southern California.

Hindukush Chile Southern California

Performance evaluation Asim et al. [12] Proposed methodology Reyes et al. [10] Proposed methodology Panakkat and Adeli [11] Proposed methodology

Sn (%) 91 57.7 43.1 61.2 80 68.7
Sp (%) 36 89.2 91.3 93.9 71 94.4
P1 (%) 61 74.3 61.1 80.2 71 84.2
P0 (%) 79 79.6 83.5 85.7 86 87.4
Acc. (%) 65 78.7 79.7 84.5 75.2 86.6
MCC 0.33 0.50 0.39 0.60 0.51 0.67
R Score 0.27 0.47 0.34 0.55 0.51 0.63

Fig. 4. Performance comparison between proposed methodology and previous
methodology for respective regions in terms of MCC.
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