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Abstract—The Internet of Things (IoT) extends traditional
cyber-physical systems by linking sensor based edge devices
to network accessible services and resources. In most current
IoT deployments, sensor data is streamed from edge devices
to servers for storage. Analytical pipelines are then used to
translate this raw sensor data into actionable information in
real-time. As additional IoT devices are deployed, the volume
and rate of data received on the server side can increase
dramatically. This has a possibility of offsetting the response
latencies beyond acceptable limits for IoT analytical systems.

In this paper, we compare the impact of alternative server-
side stream processing topologies for ingesting and analyzing
IoT sensor data in real-time. We use real building sensor data
with our real-time IoT platform called Namatad. We have
characterized and analyzed the latency and QoS impact due to
the different levels of granularity of the ingestion and routing
process by which we transmit data into the analytical pipelines.
Our results show that as IoT systems continue to scale in
density, server-side topology management for IoT data streams
is critical for latency-sensitive control and analysis applications.
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I. INTRODUCTION

Internet of Things (IoT) systems consist of multiple
compute platforms, notably edge devices and servers. Within
IoT systems, most of the focus has been on the development
and integration of novel new edge devices. For example, the
recent proliferation of wearable devices designed to monitor
personal health has increased significantly in recent years
yielding unprecedented awareness of fitness. Similarly, new
smart buildings are integrating new sensors with building
control systems to improve energy efficiency, occupant com-
fort, and safety [1], [2]. The raw data obtained using IoT
devices provides tremendous operational insight, which is
driving the deployment of additional IoT devices.

For deployed IoT devices, once sensor values are read the
data generated is transmitted across the network and stored
on server platforms for later analysis [3]. Once stored, this
data is then analyzed, leveraging recent advances in machine
learning. To date, most of these IoT analytics have been
performed offline, using batch-oriented techniques. How-
ever, as IoT analytics transition to online, real-time pipelines

that immediately translate raw data into actionable informa-
tion, earlier approaches to manage streaming data becomes
challenging. Additionally, as the number of deployed IoT
devices increases, how IoT data is routed and processed must
be handled judiciously to prevent overloading and ensure
scalability.

The server entry point for IoT data generated by edge
devices are often message queues. Effectively managing
these ingress queues is key to efficiently route streaming
data to analytical pipelines while maximizing scalability.
One common approach is to use message brokers, such as
MQTT or Apache Kafka to establish a single ingress queue.
This simplifies the configuration of IoT devices because all
data can be sent to the same destination message queue.
However, as an IoT deployment scales from a few edge
devices to thousands, this single message queue will quickly
become a bottleneck. The additional latency caused by using
a single queue will then have a ripple effect impacting all
downstream analytical processing pipelines. In the extreme
this additional latency can cause poor predictions and anal-
ysis.

In this paper, we describe and characterize the impact of
alternative IoT data processing topologies in the context of
real-time machine processing pipelines. Our goal is twofold.
First, we identify and compare the performance impact of
using different topologies that leverage different levels of
queue-level parallelism for server-side processing of IoT
data. Second, we identify patterns using real deployment
data (e.g. smart buildings) that can be generalized for
diverse IoT deployments. We leverage the complete real-
time streaming platform that we developed in previous
work [4] and extend this system to use alternative topolo-
gies that increase queue parallelism. We use real building
sensor data collected by the facilities department at the
University of Washington for a LEED certified building
that was recently renovated. These data streams, sourced
from multiple installed sensors are then routed through our
real-time streaming system to our analytical pipelines to
gain insights into room occupancy within that building. We
then analyze the performance impact of several alternative
topologies. More specifically, our contributions from this
paper include:

• Characterization of the impact of topology on an IoT
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system in terms of latency to prediction as well as the
impact on prediction accuracy.

• Characterization of the impact of real world parameters
including degree of disorder in data arrivals, varied data
set sparsity, and impact of missing values.

• Impact of new prediction models that enable occupancy
forecasting.

II. SYSTEM ARCHITECTURE & TOPOLOGIES

Most IoT systems are composed of edge devices con-
nected to web servers which ingest sensor data streams and
transfer them to persistent storage. This stored data is then
analyzed and visually displayed using dashboard interfaces.
Unfortunately, this approach fails to leverage the temporal
utility of sensor data.

To immediately take advantage of new sensor data, data
streams must be received and analyzed in real-time with
minimal latency. Many IoT servers use a message broker
such as MQTT or Apache Kafka to reliably receive and
queue incoming data and then use analytical pipelines for
processing the data. As an example, in previous work we
leveraged Kafka and open source analytical engines to create
a new end-to-end streaming system for IoT called Namatad
and used this system to infer occupancy from a minimal
set of environmental sensors using machine learning [4].
However, during several subsequent scaling experiments
for high-density sensor deployments within buildings, we
quickly encountered bottlenecks with our system that caused
our machine learning models to produce wildly inaccurate
predictions. These problems motivated us to conduct sev-
eral scaling experiments including adding IoT devices to a
deployment as well as increasing the rate at which these
devices send data to the server.

Several scaling issues became evident during these initial
experiments. First the prediction latencies of our real-time
analytical pipelines increased. We initially used a single
server-side queue within Kafka to capture the data from
all sensors within the building. We found that increasing
the number of IoT devices and rate at which each edge
device sent data to the server significantly increased the
depth of this single receive queue. Second, the computational
requirements on the server increased. This was due to the
increase in the sensor types that had to be parsed, split,
correlated with other sensor values in time, and then relayed
to the appropriate analytic pipeline for processing. Third,
the increase in rate and volume in IoT device generated
data caused the sensor values to often arrive at the server
out of order. This required additional buffer space within
the server given each analytic pipeline required multiple
correlated sensor values to provide a prediction.

A simple approach to coping with these issues would be to
increase the number of servers we used for processing real-
time analytic pipelines. However, particularly for many IoT
deployments, it is impractical to install a cluster of servers

Figure 1. Topology Comparisons

just to analyze sensor data. Additionally, after profiling
we found that not all cores of our single server were
being utilized, meaning the server had additional unused
computational capacity. Instead, how we used the server
was problematic. This was due to how sensor values from
different areas of the building were managed within the
streaming platform and routed through the analytic pipelines.
In other words, the topology used for receiving, filtering, and
processing IoT data in real-time limited our scalability.

To address this issue, we experimented with using al-
ternative topologies within our real-time analytic system.
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Using the data from our previous work to predict room
occupancy, we developed four different topologies that could
be configured. Figure 1 shows the four different topologies
used in this study which we refer to as sensor, room, floor,
and building based on how we group the data received. Each
topology has a different number of receive queues or topics.
Each topic consists the destination that IoT devices send
data to the server for processing. For each topology the
topics are created before the experiments are run. A sample
topic is named as CP-103-CO2 for sensor topology, CP-103
for room topology, CP-1 for floor topology, CP for building
topology. In our experimental setup, the number of topics for
the sensor topology is 24 (4 sensors per room * 6 rooms),
for room topology its 6 (since 6 rooms in total), for floor
topology its 2 (since 2 rooms in total), for building topology
its 1(since 1 building).

We have also configured a bijective mapping between
Kafka topic and Kafka consumers. This means that as we
increase the number of topics, we also increase the number
of computational pipelines that will be used to process the
data. Consumers pull data from distinct topics. Based on the
topology, the data is either segregated or aggregated into
room level key-value pair tuples and written to our key-
value temporary store using Apache Ignite. The tuples are
at room granularity since our machine learning models have
been trained to predict occupancy at room level.

III. EXPERIMENTAL METHODOLOGY

We experimented using sensor values from six rooms
from the Cherry Parkes building. This is consistent with
our previous work where we had predicted occupancy and
compared across several rooms [4]. To evaluate multiple
levels of granularity in terms of sensor, room, floor and
building levels we needed another floor along with various
types of rooms like class rooms, office rooms so that we
could also account for the sparsity of data. For a single
room, there are four sensors, which gives us time stamped
sensor values. For example, for room CP-103, we have
CO2(carbon dioxide), AV(supply air volume), AT(supply
air temperature) and RT(room temperature) sensors. So the
reading of a single sensor data value will follow a (YYYY-
MM-DD HH:MM:SS, sensor value) schema. For example,
the data value for CP-103-CO2 will be represented as 2016-
01-05 12:45:00, 368.67.

The motivation for our experiments was to evaluate the
time for orchestrating the flow of data from individual
sensors in a given room, aggregation time, and time for
writing the resulting tuples to Ignite which feeds them
to the trained machine learning models for prediction and
forecasting. In this evaluation, we captured the execution
times for the entire end to end run with a focus on the
aggregation time given this is dependent on topology. For all
runs, we fixed the CPU frequency on both the PI boards and
server to 900 MHz and 3 GHz respectively. This was done to

maintain experimental consistency, particularly given differ-
ent topologies have different CPU loads. Additionally, given
our system supports dynamic voltage frequency scaling we
wanted to ensure any observed performance differences were
due to topology and not system effects.

Figure 2. T(x) Duration : Each grey line represents the time it takes for
the sensor value to arrive and pass through its respective Kafka topic to
reach the consumer at the end. The length of the line can be assumed to
be roughly consistent for a topology.
The thickness of each of the grey lines is proportional to the information
gain (importance in quality of prediction) for that sensor type. In our case,
CO2 has the highest information gain followed by AT, whereas RT and AV
do not provide as much information. This provides a choice to trigger the
model when just the features with higher information gains have arrived
without waiting for all the features, as the quality of prediction will not be
too bad and we save on time to insight.
T(x) duration is shown by the dotted double headed arrow. Its least in case
of a) when all sensor values arrive in order, slightly more in case of b)
when sensor values arrive slightly out of order and a lot more in case of
c) when the arrival rates differ a lot.

We define a single transaction time as T(x), where T
is the transaction and x is the corresponding time stamp.
Figure 2 shows that we have defined a transaction as the
total time it takes for all four sensor (CO2,AV,AT,RT) data
values in a room to get pushed to their respective Kafka
topics via the Kafka producer on the sensors, the time to
perform any necessary processing, such as aggregating the
data based on their topics and creating and storing key-value
pairs in Ignite through the Kafka consumer code. When these
respective scripts are executed, their starting time and end
times are logged. We then analyzed the performance impact
of the execution times across the producer, consumer, and
modeling phases while generating twenty-four hours’ worth
of forecasting values. For all results shown, we conducted
five runs per experiment to characterize run time variances
and minimize any random errors. The plots in Figure 3
constitute the average of all the runs. Given that we quiesced
the system before each run, we observed minimal run-to-run
variance.
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IV. OCCUPANCY PREDICTION & FORECASTING

Based on discussions with first response teams and fa-
cilities management team there was a need to predict cur-
rent occupancy but also the occupancy in a future time
interval. Hence we evaluated several forecasting techniques
and used Linear Regression to predict the next ten set of
values for each of the four features (CO2,AV,RT,AT). To
forecast the feature values the forecasting model we use
a predefined time window of the historic feature values to
learn the pattern and then guess the next certain number
of feature sets. We set the model to predict the next ten
feature sets. The longer history the model looks at, the
better is the guess at the future set. However a limitation
of this approach is the inability to detect inflection points.
These are important since they effect the actuation of the
control systems attached to the sensors. We are currently
exploring ways to tackle this limitation by using ensemble
techniques to get forecasts from multiple models like Linear
Regression, Logistic Regression, ARIMA, etc. Once we have
the forecast feature set, we use that with the trained Random
Forest occupancy model for scoring, yielding forecasted
occupancy. An important difference between the Random
Forest model and the Linear Regression model is that the
Random Forest model was trained offline. We use it only
for scoring online, whereas the Linear Regression model
is learning and updating online. In future work we could
use advanced modeling techniques like Deep Learning to
potentially improve the quality of forecast but at the expense
of longer training times.

The goal of this study was to empirically determine
the impact of using the different topologies mentioned in
section II above on how close to real-time can we make
predictions while maintaining high quality predictions. In
previous work we concluded our model needed all four
features to provide the best prediction. In a real time scenario
there can be situations when all the values may not arrive to
the modeling phase at the same time, as shown in Figure 2
and the trained model has to either score with fewer features
than trained on or must wait for all features to arrive. In
the case of missing features, the quality of prediction will
decrease and if the most relevant feature, that is the one
with highest information gain is absent, the prediction may
be meaningless. One way to tackle this is to use statistical
techniques to impute some of the missing values; however,
this impacts predictions. Alternatively our learning pipeline
could wait for all the features to arrive and then predict the
class label. The challenge with waiting is to ensure values
arrive in the correct order. For example, the four features
for a real world time stamp T(i) should all arrive before the
next set of four features for real world time stamp T(i+1).
In the worst case, predictions will be delayed which dilutes
the near real-time aspect of the system and thus the utility
of the prediction is reduced.

V. RESULTS

The performance impact of topology on IoT stream pro-
cessing in terms of total execution time and phase-wise
execution times are shown in Figure 3. When there is
minimal contention in the data flow, the time to prediction is
minimized. When contention is high, this increases to time
to prediction. Interestingly, data aggregation and segrega-
tion, which essentially is a data transformation step within
the topologies is notably different between the topologies.
The aggregation time for each transaction type is further
explained in Figure 2.

Figure 3. Phase Wise Execution Times

In Figure 3 the y-axis represents the execution time
(in milliseconds) relative to the start time of the producer
phase and the x-axis compares the topologies. The phase
wise execution time follows a consistent trend across all
the rooms. The producer phase includes transit time from
the producer (raspberry PIs as hardware sensors) to the
respective Kafka topics. The consumer phase starts once the
consumer pulls the data from the topics and ends after it
transforms the data into required tuples and writes to the
key-value store in Ignite. The modeling phase runs when the
machine learning pipeline picks up the tuple from ignite and
scores the predictions followed by occupancy forecasting.
Each of the phases is described in further detail below.

A. Producer phase

As shown in figure 3 the producer duration is consistent
across topologies. This is as expected because there is
no blocking or waiting time for a producer to write to a
topic irrespective of topology. In the case of the sensor
topology each topic is being written to by a single producer,
whereas in the case of the building topology a single topic
is being written to by multiple producers. Consequently,
the producer phase could be longer in the latter case. Our
experimental results suggest otherwise, though we suspect
our experiments did not exhibit a sufficient load to showcase
this impact in the producer phase.
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B. Consumer phase

The consumer phase pulls data from the respective topics,
aggregates and transforms them into a key value schema as
explained before, and stores in Ignite. In the case of the
sensor topology each consumer must pull data from the
respective topics and create the key value pair; hence it
has the lightest computational load. However, in the case of
the room, floor and building topology more sensors write
to a single topic. In these cases every consumer has to
read the messages from its topic, parse and segregate them
into individual sensor values and then aggregate into the
appropriate key-value pair before it can be written to Ignite.
So as we progress from sensor topology towards building
topology, the workload of the consumer increases which is
supported by the results as well. We also observed that the
degree to which sensor data arrived out of order caused the
consumer to wait for the right set of values in case of sensor
topology. Doing multiple runs averaged out the differences
in the case of a single room.

C. Modeling phase

The modeling phase is divided into two phases - current
occupancy prediction and forecast occupancy prediction.
The current occupancy prediction nearly overlaps with the
ending of the consumer phase since it just reads the latest
tuple from Ignite and scores it against the trained Random
Forest room level occupancy model. The forecast occupancy
model as explained in Section IV uses a certain time window
of features so that it is able to forecast a specific number
of future feature values. The scoring is then done using the
forecast feature values. So the time for forecast depends on
how quickly the forecasting model can use the required time
window of features. In case of sensor topology, at the end of
each consumer phase only one set of values corresponding
to a T(x) is available, which then gets written to Ignite. It
must then wait for the next set of values to come through
the producer and consumer phase before writing to Ignite.
However, in case of the other extreme i.e. the building
topology, at the end of every consumer phase we have a
set of six values that are written to Ignite. So it reduces the
time required to build up the size of the historic feature set.
In the case of room topology, we have one set of values at
the end of each consumer phase, but this does not require the
aggregation time the sensor topology requires. Consequently,
the computational load is reduced for the room topology
relative to the sensor topology. In case of floor topology,
we have three sets of values which can be written to Ignite
after each consumer phase completes. These analogies are
supported by the results shown in above plots.

The room CP-206D shows anomalous behaviour for
consumer and modeling phase which can be attributed to
extremely sparse data that could be collected for that room.
Experimental observation shows that sparsity accentuates
degree of disorder. This is discussed below.

We further explored the challenges introduced due to out
of order arrival of sensor data, which lead to increased
aggregation time. The plots in Figure 3 show that although
the volume and transmission rate of data being collected
from each room is the same, due to varying sparsity and
varying degrees of out of order of data arrivals across
the different rooms, we see a difference in consumer and
modeling phase execution time for the same topology across
different rooms. This is because a single sensor value quickly
reaching its corresponding topic is not enough since it is the
transaction time that is required. Therefore even if one of the
sensor values arrive out of order, the total transaction time
increases as explained in Figure 2. Since the plotted results
are averaged over five sets of runs (standard deviation was
minimal) it shows that in the minimal contention scenario
there are always values arriving out of order as compared
to the other topologies, where there is more contention.
Therefore we conclude that increased contention in the
pipeline reduces the degree of disorder with the trade off
being an increased delay in the total execution time. We are
running further experiments to formulate an analytical model
to estimate aggregation time due to the data transformations
in our experiment.

Table I
COMPARING PREDICTIONS ACROSS TOPOLOGIES :

T4 >T3 >T2 >T1 I.E. T4 OCCURS LATER IN THAN T3
AFTER THE PREDICTION PIPELINE HAS BEEN STARTED.

Topology / Timestamp T1 T2 T3 T4
Sensor 2 2 2 2
Room 2 2 2 2
Floor 0 0 1 1
Building 0 0 1 0

Table I shows that the quality of modeling was affected by
the time it took for the sensor values to reach storage within
Ignite. For the building topology, which has the lowest
arrival rate and has 6 values being written to ignite at a
time, we see that our model predicted zero occupancy several
times. This was due to the lack of values within Ignite to
serve as input to the model; consequently the model assumed
all values were zero. This revealed that the modeling phase
must be configured to operate at a frequency independent
of the consumer phase, but dependent on the topology. We
are currently exploring the configuration of synchronization
gearing ratios as well as leveraging statistical imputation
techniques to handle missing values within our models.

VI. RELATED WORK

There has been considerable work in IoT systems that
leverage analytical systems for real-time processing [5], [6]
and sensor driven architectures [7], [8]. Other work has
proposed leveraging cloud computing as a means to extend
scalability, accepting the trade-offs of higher latency. For
example, [9] conducted a case study in which Arduino
boards and Raspberry Pi boards were used to transmit sensor
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data into a cloud based infrastructure to examine trade-offs
between security, scalability, and efficiency in smart home
sensor networks. The results showed that for wireless and
wired network setups, scalability and security are concerns,
while real-time results are obtainable.

Edge computing has recently emerged to minimize la-
tency for real-time systems [10]. Just as [11] did with
their Geelytics system, we shifted the focus from cloud to
edge computing using a fog server. However, our system
provides flexible software topology management techniques
rather than handling highly distributed IoT systems. We
show that not only can real time results be computed more
efficiently by edge computing, but overall QoS including the
scalability, security, and latency challenges proposed in [9]
can be managed. We have shown that by choosing a suitable
processing topology for data management, we can more
effectively use existing edge servers and reduce latency.

Similar to our approach, there has been work to deter-
mine the effective physical node arrangements in network
topologies of ad hoc cyber-physical systems [12], [13], as
well as topology control algorithms for how to maintain and
manage these nodes [14]. In many cases, node or sensors
arrangements are constrained by building or geographical
blueprints and real-time analytics are computed based on
existing sensor deployments. Our system provides multiple
ways to manage data flows through real-time analytical
pipelines and enables these to be tuned to minimize latency.

VII. CONCLUSION

In this paper, we explored the impact of alternative real-
time streaming topologies within the edge server of IoT
analytical systems. We evaluated these topologies in terms of
the time to insight from our machine learning models as well
as the quality of predictions. Our results show that topology
impacts stream processing in multiple ways and real world
parameters like missing values, out of order arrivals, varying
sparsity have a significant impact as we scale up the density
of sensor deployments.
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