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Highlights 

 

1. We propose a novel deep learning based predictor for human protein 

subcellular localization prediction. 

2. graphical processing unites and CUDA software optimize the deep 

network architecture and efficiently train the deep networks. 

3. The proposed deep learning network can automatically learn 

high-level and abstract feature representations of proteins by exploring 

non-linear relations among diverse subcellular locations.   
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Abstract 
 

Protein subcellular localization (PSL), as one of the most critical characteristics 

of human cells, plays an important role for understanding specific functions and 

biological processes in cells. Accurate prediction of protein subcellular 

localization is a fundamental and challenging problem, for which machine 

learning algorithms have been widely used. Traditionally, the performance of 

PSL prediction highly depends on handcrafted feature descriptors to represent 

proteins. In recent years, deep learning has emerged as a hot research topic in 

the field of machine learning, achieving outstanding success in learning 

high-level latent features within data samples. In this paper, to accurately 

predict protein subcellular locations, we propose a deep learning based 

predictor called DeepPSL by using Stacked Auto-Encoder (SAE) networks. In 

this predictor, we automatically learn high-level and abstract feature 

representations of proteins by exploring non-linear relations among diverse 

subcellular locations, addressing the problem of the need of handcrafted feature 

representations. Experimental results evaluated with 3-fold cross validation 

show that the proposed DeepPSL outperforms traditional machine learning 

based methods. It is expected that DeepPSL, as the first predictor in the field of 

PSL prediction, has great potential to be a powerful computational method 

complementary to existing tools.  
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Introduction  

Knowledge of the subcellular localization of proteins is critical for the 

understanding of their functions and biological processes in cells. Protein 

subcellular location information is of highly importance in various areas of 

research, such as drug design, therapeutic target discovery, and biological 

research, etc [1]. Accurate prediction of protein subcellular localization is the 

prequiste to help in-depth understanding and analysis of various protein 

functions.  

 

As the wide applications of next sequencing techniques, protein sequences have 

accumulated rapidly during the last decades [2, 3]. Facing with such large-scale 

sequences, experimental determination of their protein subcellular locations is 

extremely inefficient and expensive in this post-genomic era. Therefore, 

effective and efficient computational methods are desired to assist biologists to 

address these experimental problems. During the past few years, many 

computational efforts have been done for predicting protein subcellular 

locations, thus generating a serious of computational methods. Most of 

high-performance computational methods use machine learning algorithms 

together with diverse feature representations to make predictions [4-8]. These 

machine learning based methods can be roughly divided into two classes: (1) 

sequence-based, and (2) annotation-based.  

 

Sequence-based methods use sequential information from primary sequences of 

proteins. For instance, Park et al. [9] trained a set of SVMs based on multiple 

sequence-based feature descriptors, such as amino acid composition, amino 

acid pair, and gapped amino acid pair composition, and proposed a voting 

scheme using the trained SVMs to predict protein subcellular locations. The 

upcoming problem is that features based on amino acid pair composition would 

lost sequence order effect. In order to address this problem, Chou et al. [10] 

proposed a modified feature encoding method, namely Pseudo Amino Acid 



Composition (PseAAC), sufficiently taking the sequence order information for 

the remarkable improvement of the predictive performance. Most recently, 

Rahman et al. [11] proposed to fuse PseAAC, physiochemical property model 

(PPM), and amino acid index distribution (AAID) to improve the prediction 

accuracy. Moreover, other sequential information such as the sequence 

homology and sorting signals are often used to train machine learning models 

[12-15].   

 

Annotation-based methods utilize information beyond protein sequences, such 

as GO (Gene Ontology) terms. The GO terms contain the description 

information of the cellular components, biological processes, and molecular 

functions of gene products, thus facilitating the accurate prediction of protein 

subcellular localization [16]. Shen et al. [17] proposed a predictor namely 

Hum-mPLoc 2.0 that encodes proteins into binary features to represent the GO 

(Gene Ontology) information. To further improve the representation quality of 

the GO information, Chou et al. [18] proposed a more effective way to use real 

values as the representations of proteins rather than binary values in 

Hum-mPLoc 2.0. More recently, to incorporate the advantages of 

sequence-based and annotation-based methods, other methods are developed in 

a hybrid way, which is based not only on the GO information but also other 

features including amino acid compositions (AAC) [19], pseudo amino acid 

compositions (PseAAC) [20-22], and semantic-similarity [23] etc. 

 

In recent years, considerable progresses have been made for the accuracy 

improvements of machine learning based predictors. However, feature 

representation still needs handcrafted designation, which is the challenging 

research component, especially for those without prior field-related knowledge. 

In contrast to traditional machine learning approaches [24-32], deep learning is 

capable of automatically learning good feature representations from the input 

data with the multiple levels of hierarchical non-linear information processing. 

The representational capability of deep architectures has the great potential to 



efficiently and effectively describe the highly non-linear and complex patterns. 

Classical deep learning architectures include deep belief networks (DBNs) [33], 

stacked auto-encoder (SAE) [34], and convolutional neural networks 

(CNNs) [35]. As compared to traditional machine learning architectures, deep 

learning has shown outstanding results in many applications, such as image 

classification, object recognition, and medical image analysis. In the last few 

years, deep learning has begun to be used in many fields of computational 

biology. For instance, Wen et al. [36] developed a deep-learning framework 

named DeepDTIs in prediction of drug−target interaction. DeepDTIs uses the 

DBN to build prediction models, and performs better than traditional machine 

learning algorithms. Likewise, Alipanahi et al. [37] used Conventional Neural 

Network (CNN) and proposed a deep-learning method called DeepBind for 

predicting sequence specificities of DNA- and RNA-binding proteins. DeepBind 

was reported to outperform state-of-the art methods. In addition, Jo et al. [38] 

constructed a deep-learning network model named DN-Fold, remarkably 

improving the performance of protein fold recognition. Zhang et al. [39] 

developed a deep learning based framework, named TIDE, for accurately 

predicting translation initiation sites (TISs) on a genome-wide scale data. It was 

found that TIDE is superior to existing prediction methods. In short, deep learning 

has exhibited extraordinary performance in computational biology. Accordingly, 

it is interesting to see whether it can succeed in the prediction of protein 

subcellular localization, which is still a major challenging task in computational 

biology.   

Motivated by this, in this paper, we propose a new predictor using deep 

learning networks for predicting protein subcellular localization. To the best of 

our knowledge, this is the first-time use of deep learning architectures in the 

field of protein subcellular localization prediction. More specifically, for 

training, we initially use an unsupervised approach to automatically learn the 

high-level latent feature representations in the input data and initialize 

parameters, and then, use a supervised approach to optimize these parameters 

with the back propagation algorithm. Using the computational power of 



graphical processing units (GPUs) and CUDA, we train the deep networks 

efficiently. After feature learning phase, we add an output layer at the top of 

deep learning networks. This layer includes a softmax regression classifier that 

trains the deep learning based features to predict protein subcellular 

localizations. The evaluation results show that our proposed prediction method 

achieves satisfactory performance in terms of overall accuracy in the prediction 

of protein subcellular localizations.  

 

Methods and materials 

 

Dataset preparation  

Human protein sequences were collected from a well-known database – 

UniProtKB [40] (http://www.uniprot.org/help/uniprotkb). After eliminating 

repeat sequences, we yielded 11,689 protein sequences, covering 

approximately 200 subcellular locations. We ran statistics and sorted the 

number of proteins in each location, and then selected the top ten locations: 

cytoplasm, nucleus, cell membrane, membrane, secreted, cytoskeleton, cell 

projection, endoplasmic reticulum membrane, cell junction, and mitochondrion, 

respectively. To avoid the homolog bias, we employed the CD-HIT program 

[41] with a cutoff value of 0.7 to reduce the sequence similarity of the dataset. 

After this operation, any two of proteins in the dataset has  70% sequence 

similarity. At this end, 9,895 different samples are retained in the dataset.  

 

In this study, we consider the prediction of protein subcellular localization as a 

single-label or multi-class classification problem. Considering the situation that 

a single protein may distribute in two or more subcellular locations 

simultaneously, thus it needs to introduce the definition of “locative protein”. 

Given a same protein sequence that simultaneously exists in two different 

subcellular locations, it will be counted as 2 locative proteins; if simultaneously 

existing in three different locations, it will be counted as 3 locative proteins; 

and so forth. The number of locative proteins can be formulated as,  



            
          (1) 

where      is the number of total locative proteins; m is the number of total 

subcellular locations;      is the number of proteins with  th subcellular 

locations. Thus, of the 9,895 different proteins, 6,845 belongs to one location, 

2,209 proteins to two locations, 583 to three locations, 158 to four locations, 48 

to five locations, 11 to six locations, and 4 to seven locations. Hence, there are 

13,978 (= 6,845 + 2,209 × 2 + 583 × 3 + 158 × 4 + 48 × 5 + 11 × 6 + 4 × 7) 

samples in this dataset, which is denoted as Dh. The distribution of protein 

subcellular locations is summarized in Table 1. For convenience of discussion, 

the dataset is denoted as Dh, and the 10 locations are labelled as 10 classes (see 

Table 1): Class1, Class2, Class3, Class4, Class5, Class6, Class7, Class8, Class9 

and Class10, respectively.  

 

Table 1. Protein subcellular location distribution of locative proteins in the Dh 

dataset.  

Classes Subcellular locations Number of proteins 

Class-1 Cytoplasm 3,374 

Class-2 Nucleus 3,520 

Class-3 Cell membrane 1,611 

Class-4 Membrane 1,677 

Class-5 Secreted 1,090 

Class-6 Cytoskeleton 800 

Class-7 Cell projection 521 

Class-8 Endoplasmic reticulum membrane 550 

Class-9 Cell junction 443 

Class-10 Mitochondrion 392 

 Total 13,978 

 

Input feature descriptors 

Given protein primary sequences, the first thing we should do is to extract 

features as the input of deep learning architecture. Here, we consider two 

well-known feature representation methods. The first one is based on 

physicochemical properties of proteins while the other is based on adaptive 



skip dipeptide composition. Both of features have been proven to be effective 

in multiple Bioinformatics problems. Thus, they are considered in this study. 

The two feature types are briefly described as follows. 

Features based on physicochemical properties  

To capture the physicochemical information, we adopted a powerful feature 

descriptor that uses protein physicochemical properties to represent peptide 

sequences [4, 42]. This feature descriptor considers the following eight 

physicochemical properties: (1) normalized van der waals volume, (2) 

secondary structure, (3) solvent accessibility, (4) polarizability, (5) polarity, (6) 

hydrophobicity, (7) charge, and (8) surface tension. For each property, 20 

standard amino acids {A,N,C,Q,G,H,I,L,M,F,P,S,T,W,Y,V,D,E,K,R} are 

divided into three groups, e.g., {ANCQGHILMFPSTWYV, DE, KR} for the 

charge property. To quantize the physicochemical information, the sequence P 

is encoded from the following three aspects: content, distribution and bivalent 

frequency for each physicochemical property. The details of encoding 

procedure can be referred to [4, 42]. To this end, the peptide sequence P is 

subsequently represented with a 188-dimension feature vector. 

Features based on adaptive skip dipeptide composition 

Dipeptide composition is the fraction of every two adjacent residues within a 

given peptide sequence. This is a measure of the correlation between two 

adjacent residues. However, the correlation information between the 

intervening two residues is lost. Here, we propose a modified dipeptide 

composition, called adaptive skip dipeptide composition, which is the fraction 

of every two residues with <=L intervening residues within a given peptide 

sequence, reflecting the correlation information of not only adjacent residues, 

but also different intervening residues. The adaptive skip dipeptide composition 

feature vector of a given peptide sequence is represented by, 

                    
  (2) 



where  

    
  

      
   

 (3) 

and where    represents the observed total number of i-th two residues with 

<=L intervening residues, and      represents the total number of all possible 

two residues with <=k intervening residues. If k=1, the feature vector is exactly 

the dinucleotide composition. In this study, the maximum value of k cannot 

succeed the minimum length of sequences in the dataset.   

 

To this end, by fusing the above two feature types, we yielded a total of 588 

features (=188+400) as the input of deep network.  

 

Auto-Encoder (AE) 

An auto-encoder is one type of artificial neural networks that include three 

layers: input layer, hidden layer, and output layer. It is a feedforward neural 

network that produces the output layer as close as possible to its input layer 

using a lower dimensional representation (hidden layer). The auto-encoder 

consists of an encoder and a decoder. The encoder is a nonlinear function (i.e., 

sigmoid function), applied to a mapping from the input layer to the hidden layer; 

while the decoder is also a nonlinear function that uses to map the feature 

representations from the hidden layer to the output layer.  

Given an input feature vector x ∈ RDI, the encoder maps it to a compressed 

feature representation y through the following mapping formula: 

            (4) 

where W is m × n weight matrix and b is bias vector with m dimension. The 

function f is a non-linear transformation on the linear mapping. Then, the decoder 

takes the hidden representation y from the input layer and decodes it as closely 

as possible to the original dimension. The decode transformation can be 

expressed as follows,  



              (5) 

The transformation is performed by a linear mapping followed by an arbitrary 

linear or non-linear function t that employs an n × m weight matrix    and a 

bias vector of dimensionality n. 

Stacked Auto-Encoder (SAE)  

A stacked auto-encoder (SAE) is a hierarchical network that comprises of 

multiple auto-encoder layers. The SAE network uses the greedy layer-wise 

unsupervised learning algorithm for training. More specially, in the layer-wise 

training, the first auto-encoder layer (hidden layer) is trained on the original 

input data from the input layer. Then, the learned feature representations are fed 

to the second auto-encoder layer for training. This learning process is repeated 

for subsequent layers until the layer-wise pre-training is complete. This greedy 

layer-wise learning is so called ‘pre-training’. It is worth noting that the 

pre-training process initializes the parameters of the deep network in an 

unsupervised manner. To improve the performance, it uses the 

back-propagation algorithm to further optimize the parameters generated by the 

pre-training process in a supervised manner. This supervised optimization step 

is referred to as ‘fine-tuning’. The top output layer is used to represent the class 

label of an input data. In this layer, the number of units is set to 10, 

representing the 10 protein subcellular locations (classes). This layer can be 

also regarded as a classification layer, which the input data are classified into 

their corresponding classes (i.e., subcellular locations in this study). To avoid 

overfitting in the learning phase (both pre-training and fine-tuning) of the SAE, 

we used a dropout regularization factor, which is a method of randomly 

excluding fractions of hidden units in the training procedure by setting them to 

zero. This method prevents nodes from co-adapting too much and consequently 

avoids overfitting.  

Implementation 



The SAE algorithm of DeepPSL was implemented in MATLAB (2016b 

version), using the famous DeepLearningTutorials package. The algorithm is 

accelerated on the GPU (NVIDIA Tesla K80 using CUDA. The operate system 

is Windows 10 with 4.4 GHz Intel core i7 processor and 32G memory.  

Measurements 

We employed k-fold cross validation for performance evaluation of prediction 

models. In k-fold cross validation, the original dataset is randomly partitioned 

into k equal-size subsets. Of the k subsets, the k − 1 subsets are used as raining 

data for model training, and the remaining one is retained as the validation 

dataset for testing the model. The cross-validation process is then 

repeated k times (the folds), with each of the k subsets used exactly once as the 

validation data. The k results from the folds can then be averaged to produce a 

single estimation. In this study, the value of k is set to 3.  

To quantify the predictive performance of a predictor, two metrics are used, 

which are accuracy (ACC) and overall accuracy (OA). The two metrics are 

calculated as follows: 

         
       

    

    

   
       
   

       
   

      (6) 

where      represents the number of sequences correctly predicted in the i-th 

subcellular locations, and      represents the number of sequences in the i-th 

subcellular locations. The    is the average ratio of correctly predicted 

subcellular locations over the total locations including the predicted and the 

real ones.  

 

Results and Discussion 

The aim of this study is to apply and estimate the accuracy of deep 

learning-based method to predict protein subcellular localizations.  



To evaluate the prediction quality of a predictor, we performed the proposed 

DeepPSL on the dataset we mentioned in Section “dataset preparation”. This 

dataset includes 10 different subcellular locations (classes), denoted from 

class-1 to class-10. The 3-fold cross validation test was used for the 

performance valuation of a predictor. The performance of the proposed 

DeepPSL is listed in Table 2. As seen from Table 2, the DeepPSL achieved 

satisfactory overall performance, obtaining 37.4% in terms of overall accuracy 

(OA) for the 10-class subcellular localization prediction. To be specific, the 

DeepPSL had relatively high performance for the “Cytoplasm”, “Nucleus”, and 

“Secreted” subcellular locations with 45.9%, 53.6%, and 47.8% in terms of 

accuracy (ACC), respectively. For the “Cytoskeleton”, “Cell projection”, and 

“Cell junction” subcellular locations, the proposed predictor had extremely 

poor performance with the ACCs in the range of 0.38%-4.9%. This is probably 

because we trained the deep learning based predictor on the imbalance dataset, 

i.e., the ratio of the major against few class is roughly 9:1. Thus, it easily results 

in that the proteins in the few class are incorrectly predicted to the major class. 

More specially, in the “Cell projection” location, only 2 protein samples are 

correctly predicted among the 521 protein samples. The imbalance problem 

will be addressed in our future work.  

 

In the last layer of our proposed deep learning network, the softmax regression 

classifier is used for prediction by default. To investigate the effect of 

classification algorithms, we chose two typical and high-efficiency 

classification algorithms, SVM and RF, to compare with the default softmax 

regression classifier. We used the feature representations generated from the 

layer before the last layer to train SVM and RF to make predictions, 

respectively. The comparison results of the underlying softmax regression 

classifier and the two classifiers (SVM and RF) are illustrated in Figure 1. As 

shown in Figure 1, we can see that the softmax classifier achieved 37.4% in 

terms of overall accuracy, significantly outperforming the other two classifiers 

(34.5% for SVM and 35.1% for RF) by 2.9% and 2.3%. This indicates that the 



softmax classifier have stronger classification ability than the other two 

classifiers for prediction of protein subcellular localizations. Thus, there is no 

need to substitute the underlying softmax classifiers with other classifiers in the 

deep networks. It is worth noting that all the classifiers are performed under 

their default parameter settings.  

 
Table 2. The performance of the proposed DeepPSL on the Dh dataset. 

Subcellular locations 

Number of proteins Number of 

correctly predicted 

proteins 

ACC (%) 

Cytoplasm 3,374 1,548 45.9 

Nucleus 3,520 1,887 53.6 

Cell membrane 1,611 502 31.2 

Membrane 1,677 514 30.6 

Secreted 1,090 521 47.8 

Cytoskeleton 800 39 4.9 

Cell projection 521 2 0.38 

Endoplasmic reticulum 

membrane 
550 

117 21.3 

Cell junction 443 6 1.35 

Mitochondrion 392 90 23.0 

Total 13,978 5,226 37.4 

 

 

 
Figure 1. Performance of the underlying softmax regression classifier and other 

classifiers with the learning feature representations on the Dh dataset 
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Conclusion 

In this paper, we have proposed a deep architecture, namely DeepPSL, for the 

classification of protein subcellular localizations. Unlike existing machine 

learning based methods that consider only handcrafted features extracted 

directly from protein primary sequences, the proposed predictor can 

automatically learn and extract meaningful feature representations such as 

non-linear correlations among features that enable to improve the prediction 

accuracy. We evaluated and compared the performance of the proposed method 

with traditional machine learning algorithms. The experimental results show 

that the proposed DeepPSL has better prediction performance, indicating that 

deep learning has great potential for the performance improvement in 

Bioinformatics. In future work, we expect that as more protein subcellular 

location data becomes available, this model will further improve in 

performance and reveal more useful and meaningful feature patterns. Deep 

learning based methods require large-scale data sets.  
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