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Abstract. Cybersecurity continues to be a serious issue for any 
sector in the cyberspace as the number of security breaches is 
increasing from time to time. It is known that thousands of zero-
day attacks are continuously emerging because of the addition of 
various protocols mainly from Internet of Things (IoT). Most of 
these attacks are small variants of previously known cyber-
attacks. This indicates that even advanced mechanisms such as 
traditional machine learning systems face difficulty of detecting 
these small mutants of attacks over time. On the other hand, the 
success of deep learning (DL) in various big data fields has drawn 
several interests in cybersecurity fields. The application of DL 
has been practical because of the improvement in CPU and 
neural network algorithms aspects. The use of DL for attack 
detection in the cyberspace could be a resilient mechanism to 
small mutations or novel attacks because of its high-level feature 
extraction capability. The self-taught and compression 
capabilities of deep learning architectures are key mechanisms 
for hidden pattern discovery from the training data so that 
attacks are discriminated from benign traffic.  This research is 
aimed at adopting a new approach, deep learning, to 
cybersecurity to enable the detection of attacks in social internet 
of things. The performance of the deep model is compared 
against traditional machine learning approach, and distributed 
attack detection is evaluated against the centralized detection 
system. The experiments have shown that our distributed attack 
detection system is superior to centralized detection systems 
using deep learning model.  It has also been demonstrated that 
the deep model is more effective in attack detection than its 
shallow counter parts.  
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1. INTRODUCTION 

 As an emerging technology breakthroughs, IoT has enabled 
the collection, processing and communication of data in smart 
applications [1]. These novel features have attracted city 
designers and health professionals as IoT is gaining a massive 
application in the edge of networks for real time applications 
such as eHealth and smart cities [2]. However, the growth in 
the number, and sophistication of unknown cyber-attacks have 
cast a shadow on the adoption of these smart services. This 
emanates from the fact that the distribution and heterogeneity 
of IoT applications/services make the security of IoT complex 
and challenging [1],[3]. In addition, attack detections in IoT is 
radically different from the existing mechanisms because of 
the special service requirements of IoT which cannot be 
satisfied by the centralized cloud: low latency, resource 
limitations, distribution, scalability and mobility, to mention a 
few [4]. This means that neither cloud nor standalone attack 
detection solutions solve the security problems of IoT. 
Because of this, a currently emerged novel distributed 
intelligence, known as fog computing, should be investigated 
for bridging the gap. Fog computing is the extension of cloud 

computing towards the network edge to enable cloud-things 
service continuum. It is based on the principle that data 
processing and communication should be served closer to the 
data sources [5]. The principle helps in alleviating the problem 
of resource scarcity in IoT as costly storage, computation and 
control, and networking might be offloaded to nearby fog 
nodes. This in turn increases the effectiveness and efficiency 
of smart applications. Like any services, security mechanisms 
in IoT could be implemented and deployed at fog layer level, 
having fog nodes as a proxy, to offload expensive storage and 
computations from IoT devices. Thus, fog nodes provide a 
unique opportunity for IoT in deploying distributed and 
collaborative security mechanisms.    
 
Though fog computing architecture can offer the necessary 
service requirements and distributed resources, robust security 
mechanisms are also needed resources to protect IoT devices. 
As preventive security schemes are always with the 
shortcomings design and implementation flaws, detective 
mechanisms such as attack detection are inevitable [6]. Attack 
detections can be either signature based or anomaly based 
schemes. The signature based solution matches the incoming 
traffic against the already known attack types in the database 
while anomaly based scheme caters for attack detection as a 
behavioral deviation from normal traffic. The former approach 
has been used widely because of its high accuracy of detection 
and low false alarm rate, but criticized for its incapability to 
capture novel attacks. Anomaly detection, on the other hand, 
detects new attacks though it lacks high accuracy. In both 
approaches, classical machine learning has been used 
extensively [7].  With the ever increasing in the attacker’s 
power and resources, traditional machine learning algorithms 
are incapable of detecting complex cyber breaches.  Most of 
these attacks are the small variants of previously known cyber-
attacks (around 99% mutations). It is evident that even the so 
called novel attacks (1%) depend on the previous logics and 
concepts [8]. This means that traditional machine learning 
systems fail to recognize this small mutation as it cannot 
extract abstract features to distinguish novel attacks or mutants 
from benign. The success of deep learning in big data areas 
can be adopted to combat cyber threats because mutations of 
attacks are like small changes in, for instance, image pixels. It 
means that deep learning in security learns the true face 
(attack or legitimate) of cyber data on even small variations or 
changes, indicating the resiliency of deep learning to small 
changes in network data by creating high level invariant 
representations of the training data. Though the application of 
DL has been mainly confined to big data areas, the recent 
results obtained on traffic classification, and intrusion 
detection systems in [9],[10],[11] indicate that it could have a 
novel application in identification of cyber security attacks.     
 



Deep learning (DL) has been the breakthroughs of artificial 
intelligence tasks in the fields of image processing, pattern 
recognition and computer vision. Deep networks have 
obtained a momentum of unprecedented improvement in 
accuracy of classification and predictions in these complex 
tasks.  Deep learning is inspired by the human brain’s ability 
to learn from experience instinctively. Like our brain’s 
capability of processing raw data derived from our neuron 
inputs and learning the high-level features on its own, deep 
learning enables raw data to be fed into deep neural network, 
which learns to classify the instances on which it has been 
trained [12],[13]. DL has been improved over classical 
machine learning usually due to the current development in 
both hardware resources such as GPU, and powerful 
algorithms like deep neural networks. The massive generation 
of training data has also a tremendous contribution for the 
current success of deep learning as it has been witnessed in 
giant companies such as Google and Facebook [14],[15]. The 
main benefit of deep learning is the absence of manual feature 
engineering, unsupervised pre-training and compression 
capabilities which enable the application of deep learning 
feasible even in resource constraint networks [16].  It means 
that the capability of DL to self-learning results in higher 
accuracy and faster processing. This research is aimed at 
adopting a novel distributed attack detection using deep 
learning to enable the detection of existing or novel attacks in 
IoT. 
 
The contributions of our research area: 

 To design and implement deep learning based 
distributed attack detection mechanism, which 
reflects the underlying distribution features of IoT  

 To demonstrate the effectiveness of deep learning 
in attack detection systems in comparison to 
traditional machine learning in distributed IoT 
applications 

 To compare the performance of parallel and 
distributed network attack detection scheme using 
parameters sharing with a centralized approach 
without parameters sharing   in IoT. 

2. RELATED WORK 

Though research works in the application of deep learning 
have currently flourished in domains like pattern recognition, 
image processing and text processing, there are a few 
promising researches works around cybersecurity using deep 
learning approach.  
 
One of the applications of deep learning in cybersecurity is the 
work of [9] on NSL-KDD dataset.  This work has used self-
taught deep learning scheme in which unsupervised feature 

learning has been employed on training data using sparse-auto 
encoder. The learnt features were applied to the labelled test 
dataset for classification into attack and normal. The authors 
used n-fold cross-validation technique for performance 
evaluation, and the obtained result seems reasonable. This 
research work is like ours in terms of feature learning though 
it considers centralized system while our approach is 
distributed and parallel detection system used for fog-to-things 
computing. The other relevant work is the application of 
autoencoders for anomaly detection in [17], in which normal 
network profile has been learned by autoencoders through 
nonlinear feature reduction. In their study, the authors 
demonstrated that normal records in the test dataset have small 
reconstruction error while it produced a large reconstruction 
error for anomalous records in the same dataset. Intrusion 
detection using a deep learning approach has also been applied 
in vehicular security in [10]. The research has demonstrated 
that deep belief networks (DBN) based unsupervised pre-
training could enhance the intrusion detection accuracy. 
Although the work is novel in its approach, the artificial data 
used, and its centralized approach might limit its practicality 
in fog networks. Another research of this category has been 
conducted by [18]. The authors have proposed IDS which 
adaptively detect anomalies using AutoEncoders on artificial 
data. Both anomaly detection papers considered artificial data 
cases which do not reflect the malicious and normal behaviors 
of real time networks. Apart from that, they adopted a 
centralized approach which is impractical for distributed 
applications such as social internet of things in smart city 
networks.   
 
Deep learning approach has also been applied by [11] for 
malicious code detection by using AutoEncoders for feature 
extraction and Deep Belief Networks (DBN) as a classifier for 
detection. The article has shown that the hybrid mechanism is 
more accurate and efficient in time than using a sing DBN. It 
strengthens that deep networks are better than shallow ones in 
cyber-attack detection. The main limitation of this research is 
that the dataset should have been more recent to come up with 
the conclusion. Nevertheless, the research is significantly 
different from ours since it does not handle the distributed 
training and sharing of updated parameters.  The other paper 
which has investigated deep learning scheme for malicious 
code detection is [19]. It has applied denoising AutoEncoder 
for deeper features learning to identify malicious javascript 
code from normal code. The result has produced promising 
accuracy in the best-case scenario. Although the approach is 
effective in web applications, it can be hardly applied to 
distributed IoT/Fog systems. Our model is novel as it enables 
parallel training and parameters sharing by local fog nodes, 
and detects network attacks in distributed fog-to-things 
networks using deep learning approach.    
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6.3. RESULTS AND DISCUSSIONS

In the evaluation process, classification accuracy and other 
metrics were used to show the effectiveness of our scheme 
compared to shallow models in distributed IoT at fog level. 
The comparison of distributed training to centralized approach 
in accuracy is also one of our evaluation criteria.  Table 5 
compares the accuracy of the deep and shallow models, while 
fig. 3 shows the accuracy difference between centralization 
and distribution.  

Fig.3: Accuracy comparison of distributed and centralized models 

Table 6: Accuracy of deep model (DM) and shallow model (SM) 
2-class 4-class

Model 
Type 

Accuracy 
(%) 

DR 
(%) 

FAR 
(%) 

Accuracy 
(%) 

DR 
(%) 

FAR 
(%) 

DM 99.20 99.27 0.85 98.27 96.5 2.57% 

SM  95.22 97.50 6.57 96.75 93.66 4.97 

Fig.4: comparison between DL and SL in training time 

Fig.5: comparison between DL and SL in detection time 

Table 7 (a): Performance of 2-class  
Model Type Class Precision (%)  Recall (%) F1 Measure (%) 

Deep Model Normal  99.36 99.15 99.26 

Attack 99.02 99.27 99.14 

Shallow 
Model 

Normal  97.95 93.43 95.65 

Attack 92.1 97.50 94.72 

Table 7 (b): Performances of 4-class 
Model 
Type 

Class Precision 
(%)  

Recall 
(%) 

F1 Measure 
(%) 

Deep 
Model 

Normal  99.52 97.43 98.47 

DoS 97 99.5 98.22

Probe 98.56 99 98.78

R2L.U2R 71 91 80 

Shallow 
Model 

Normal  99.35 95 97 

DoS 96.55 99 97.77

Probe 87.44 99.48 93

R2L.U2R 42 82.49 55.55 
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The experiment result has demonstrated double standards. The 
first one is that the distributed model has a better performance 
than the centralized model. As it can be seen from fig. 3, with 
the number of increased nodes in the distributed network of 
Fog systems, the overall accuracy of detection increased from 
around 96% to over 99%. The detection rate in table 6 also 
exhibits that deep learning is better than classic machine 
learning for both binary and multi-classes. This shows that 
distributing attack detection functions across worker fog nodes 
is a key mechanism for attack detection in social IoT systems 
such as a smart city which needs real time detection. The 
increase in accuracy on distributed scheme could be because 
of collaborative sharing of learning parameters which avoids 
overfitting of local parameters, and hence, contributes to the 
accuracies of each other. On the other hand, the accuracy of 
the deep model is greater than that of shallow model, as shown 
in the table 6. In addition, table 6 shows the false alarm rate of 
the deep model, 0.85% is much less than that of machine 
learning model (6.57%). As shown in table 7 (a) and (b), the 
performance of deep learning is better than the normal 
machine learning model for each class of attack. For instance, 
the recall of deep model is 99.27%, while the traditional 
model has a recall of 97.50% for a binary classification. 
Similarly, the average recall of DM is 96.5% whereas SM has 
scored average recall of 93.66% in multi-classification. 
However, fig.4 shows that deep learning takes longer learning 
time than traditional machine learning algorithms while the 
detection rates (fig.5) of the both algorithms are significantly 
the same. It is expected that deep networks consume larger 
time in training because of the size of parameters used in 
learning. The main issue for attack detection systems focuses 
more on the detection speed than the learning speed.  Thus, 
this indicates that deep learning has a huge potential to 
transform the direction of cybersecurity as attack detection in 
distributed environments such as IoT/Fog systems has 
indicated a promising result.  

7. CONCLUSION AND FUTURE WORK 

We proposed a distributed deep learning based IoT/Fog 
network attack detection system. The experiment has shown 
the successful adoption of artificial intelligence to 
cybersecurity, and designed and implemented the system for 
attack detection in distributed architecture of IoT applications 
such as smart cities. The evaluation process has employed 
accuracy, the detection rate, false alarm rate, etc as 
performance metrics to show the effectiveness of deep models 
over shallow models. The experiment has demonstrated that 
distributed attack detection can better detect cyber-attacks than 
centralized algorithms because of the sharing of parameters 
which can avoid local minima in training. It has also been 

demonstrated that our deep model has excelled the traditional 
machine learning systems such as softmax for the network 
data classification into normal/attack when evaluated on 
already unseen test data. In the future, we will compare 
distributed deep learning IDS for on another dataset and 
different traditional machine learning algorithms such as 
SVM, decision trees and other neural networks. Additionally, 
network payload data, will be investigated to detect intrusion 
as it might provide a crucial pattern for differentiation.  
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Highlights  
 Deep learning has been proposed for cyber-attack 

detection in IoT using fog ecosystem  
 We demonstrated that distributed attack detection 

at fog level is more scalable than centralized cloud 
for IoT applications  

 It has also been shown that deep models have 
excelled shallow machine learning models in 
cyber-attack detection in accuracy. 

 In the future, other datasets and algorithms as well 
as network payload data will be investigated for 
comparisons and further enhancements.  

 
 


