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Abstract. Cybersecurity continues to be a serious issue for any
sector in the cyberspace as the number of security breaches is
increasing from time to time. It is known that thousands of zero-
day attacks are continuously emerging because of the addition of
various protocols mainly from Internet of Things (1oT). Most of
these attacks are small variants of previously known cyber-
attacks. This indicates that even advanced mechanisms such as
traditional machine learning systems face difficulty of detecting
these small mutants of attacks over time. On the other hand, the
success of deep learning (DL) in various big data fields has drawn
several interests in cybersecurity fields. The application of DL
has been practical because of the improvement in CPU and
neural network algorithms aspects. The use of DL for attack
detection in the cyberspace could be a resilient mechanism to
small mutations or novel attacks because of its high-level feature
extraction capability. The self-taught and compression
capabilities of deep learning architectures are key mechanisms
for hidden pattern discovery from the training data so that
attacks are discriminated from benign traffic. This research is
aimed at adopting a new approach, deep learning, to
cybersecurity to enable the detection of attacks in social internet
of things. The performance of the deep model is compared
against traditional machine learning approach, and distributed
attack detection is evaluated against the centralized detection
system. The experiments have shown that our distributed attack
detection system is superior to centralized detection systems
using deep learning model. It has also been demonstrated that
the deep model is more effective in attack detection than its
shallow counter parts.

Keywords: Cyber Security, Deep Learning, Internet of things,
Fog Networks, Smart Cities

1. INTRODUCTION

As an emerging technology breakthroughs, IoT has enabled
the collection, processing and communication of data in smart
applications [1]. These novel features have attracted city
designers and health professionals as IoT is gaining a massive
application in the edge of networks for real time applications
such as eHealth and smart cities [2]. However, the growth in
the number, and sophistication of unknown cyber-attacks have
cast a shadow on the adoption of these smart services. This
emanates from the fact that the distribution and heterogeneity
of IoT applications/services make the security of IoT complex
and challenging [1],[3]. In addition, attack detections in IoT is
radically different from the existing mechanisms because of
the special service requirements of IoT which cannot be
satisfied by the centralized cloud: low latency, resource
limitations, distribution, scalability and mobility, to mention a
few [4]. This means that neither cloud nor standalone attack
detection solutions solve the security problems of IoT.
Because of this, a currently emerged novel distributed
intelligence, known as fog computing, should be investigated
for bridging the gap. Fog computing is the extension of cloud

computing towards the network edge to enable cloud-things
service continuum. It is based on the principle that data
processing and communication should be served closer to the
data sources [5]. The principle helps in alleviating the problem
of resource scarcity in IoT as costly storage, computation and
control, and networking might be offloaded to nearby fog
nodes. This in turn increases the effectiveness and efficiency
of smart applications. Like any services, security mechanisms
in [oT could be implemented and deployed at fog layer level,
having fog nodes as a proxy, to offload expensive storage and
computations from IoT devices. Thus, fog nodes provide a
unique opportunity for [oT in deploying distributed and
collaborative security mechanisms.

Though fog computing architecture can offer the necessary
service requirements and distributed resources, robust security
mechanisms are also needed resources to protect IoT devices.
As preventive security schemes are always with the
shortcomings design and implementation flaws, detective
mechanisms such as attack detection are inevitable [6]. Attack
detections can be either signature based or anomaly based
schemes. The signature based solution matches the incoming
traffic against the already known attack types in the database
while anomaly based scheme caters for attack detection as a
behavioral deviation from normal traffic. The former approach
has been used widely because of its high accuracy of detection
and low false alarm rate, but criticized for its incapability to
capture novel attacks. Anomaly detection, on the other hand,
detects new attacks though it lacks high accuracy. In both
approaches, classical machine learning has been used
extensively [7]. With the ever increasing in the attacker’s
power and resources, traditional machine learning algorithms
are incapable of detecting complex cyber breaches. Most of
these attacks are the small variants of previously known cyber-
attacks (around 99% mutations). It is evident that even the so
called novel attacks (1%) depend on the previous logics and
concepts [8]. This means that traditional machine learning
systems fail to recognize this small mutation as it cannot
extract abstract features to distinguish novel attacks or mutants
from benign. The success of deep learning in big data areas
can be adopted to combat cyber threats because mutations of
attacks are like small changes in, for instance, image pixels. It
means that deep learning in security learns the true face
(attack or legitimate) of cyber data on even small variations or
changes, indicating the resiliency of deep learning to small
changes in network data by creating high level invariant
representations of the training data. Though the application of
DL has been mainly confined to big data areas, the recent
results obtained on traffic classification, and intrusion
detection systems in [9],[10],[11] indicate that it could have a
novel application in identification of cyber security attacks.



Deep learning (DL) has been the breakthroughs of artificial
intelligence tasks in the fields of image processing, pattern
recognition and computer vision.
obtained a momentum of unprecedented improvement in
accuracy of classification and predictions in these complex
tasks. Deep learning is inspired by the human brain’s ability
to learn from experience instinctively. Like our brain’s
capability of processing raw data derived from our neuron
inputs and learning the high-level features on its own, deep
learning enables raw data to be fed into deep neural network,
which learns to classify the instances on which it has been
trained [12],[13]. DL has been improved over classical
machine learning usually due to the current development in
GPU, and powerful
algorithms like deep neural networks. The massive generation
of training data has also a tremendous contribution for the
current success of deep learning as it has been witnessed in
giant companies such as Google and Facebook [14],[15]. The
main benefit of deep learning is the absence of manual feature
unsupervised pre-training and compression

Deep networks have

both hardware resources such as

engineering,
capabilities which enable the application of deep learning
feasible even in resource constraint networks [16]. It means
that the capability of DL to self-learning results in higher
accuracy and faster processing. This research is aimed at
adopting a novel distributed attack detection using deep
learning to enable the detection of existing or novel attacks in
IoT.

The contributions of our research area:

e To design and implement deep learning based
distributed attack detection mechanism, which
reflects the underlying distribution features of IoT

e To demonstrate the effectiveness of deep learning
in attack detection systems in comparison to
traditional machine learning in distributed IoT
applications

e To compare the performance of parallel and
distributed network attack detection scheme using
parameters sharing with a centralized approach
without parameters sharing in [oT.

2. RELATED WORK

Though research works in the application of deep learning
have currently flourished in domains like pattern recognition,
image processing and text processing, there are a few
promising researches works around cybersecurity using deep
learning approach.

One of the applications of deep learning in cybersecurity is the
work of [9] on NSL-KDD dataset. This work has used self-
taught deep learning scheme in which unsupervised feature

learning has been employed on training data using sparse-auto
encoder. The learnt features were applied to the labelled test
dataset for classification into attack and normal. The authors
used n-fold cross-validation technique for performance
evaluation, and the obtained result seems reasonable. This
research work is like ours in terms of feature learning though
it considers centralized system while our approach is
distributed and parallel detection system used for fog-to-things
computing. The other relevant work is the application of
autoencoders for anomaly detection in [17], in which normal
network profile has been learned by autoencoders through
nonlinear feature reduction. In their study, the authors
demonstrated that normal records in the test dataset have small
reconstruction error while it produced a large reconstruction
error for anomalous records in the same dataset. Intrusion
detection using a deep learning approach has also been applied
in vehicular security in [10]. The research has demonstrated
that deep belief networks (DBN) based unsupervised pre-
training could enhance the intrusion detection accuracy.
Although the work is novel in its approach, the artificial data
used, and its centralized approach might limit its practicality
in fog networks. Another research of this category has been
conducted by [18]. The authors have proposed IDS which
adaptively detect anomalies using AutoEncoders on artificial
data. Both anomaly detection papers considered artificial data
cases which do not reflect the malicious and normal behaviors
of real time networks. Apart from that, they adopted a
centralized approach which is impractical for distributed
applications such as social internet of things in smart city
networks.

Deep learning approach has also been applied by [11] for
malicious code detection by using AutoEncoders for feature
extraction and Deep Belief Networks (DBN) as a classifier for
detection. The article has shown that the hybrid mechanism is
more accurate and efficient in time than using a sing DBN. It
strengthens that deep networks are better than shallow ones in
cyber-attack detection. The main limitation of this research is
that the dataset should have been more recent to come up with
the conclusion. Nevertheless, the research is significantly
different from ours since it does not handle the distributed
training and sharing of updated parameters. The other paper
which has investigated deep learning scheme for malicious
code detection is [19]. It has applied denoising AutoEncoder
for deeper features learning to identify malicious javascript
code from normal code. The result has produced promising
accuracy in the best-case scenario. Although the approach is
effective in web applications, it can be hardly applied to
distributed IoT/Fog systems. Our model is novel as it enables
parallel training and parameters sharing by local fog nodes,
and detects network attacks in distributed fog-to-things
networks using deep learning approach.



3. CYBER SECURITY INSOCIAL 10T

The advancements in technologies of hardware have enabled a
massive number of IoT devices to be connected to the Internet.
Smart city applications are by far the quickest and deeply
affected areas of public services by social internet of things as
this technological breakthrough is helping cities to manage
effectively infrastructures such as water, power, transport, and
so on. Typically, the integration of social IoTs and ICT for
innovative, smart city design is to create a data-driven
approach to public service delivery, infrastructure and public
planning.
components in the smart city are depicted in the Fig. 1.
However, this massive connection of IoT devices as a data
collection and distribution platform in the emergence of smart
cities could bring about novel or variant attacks which can
cause the loss of multi-million dollars and human life [20].

In general, the social IoT applications in

Fig.1: Social Internet of Things: Components of smart city

Though the attacks in IoT seems the same as in traditional
Internet, the scale and simplicity of attack targets are larger for
IoT with limited protection. As the recent survey [7] shows,
DoS attacks are the most frequently associated attack types
with IoT/Fog networks in social internet of things such as
smart cities. The IoT ecosystem consists of a massive number
of smart things distributed across a given geographical area,
such as smart city. Millions of users are connected to social
services via IoT, taking advantage of it for private and public
services. The interconnectivity of these numbers of things,
however, makes a fertile target for malicious adversaries who
can exhaust their resources and launch DoS attacks. A DoS
attack causes the denial of service for legitimate users or
nodes by a single host (DoS attack) or coordinated attackers
(DDosS attack) [21],[22],[23].

However, remote access attacks using backdoors could be
major threats as they can escalate to root access attacks.
These attacks leave a certain patterns and characteristics in
network traffic, which might affect the way learning
algorithms will be able to distinguish between an attack and
benign. For instance, DoS attacks are usually known by
overwhelming a single node from multiple sources. Table 1
shows the common attack categories [24].

Table 1: Attack categories of Fog ecosystem

Category | Attack Type and Description
Probe e  Satan- probing of a network for some well-
known weaknesses
e Ipsweep- pinging of multiple hosts to reveal
the target’s IP
e Portsweep- scanning of ports to discover
services on a host
e  Nmap- various means of network mapping
R2L e  Warezclient- downloading illegal software
uploaded previously by the warezmaster
e guess passwd- guessing password over telnet
e warezmaster- uploading illegal software
(warez) on FTP server exploiting wrong write
permissions
e imap- illegal access of local user account
using vulnarabilities
e ftp write- creating .rhost file in anonymous
FTP to obtain local login.
e  Multihop- multi-day scenario where a user
breaks into a system
e phf- CGI script enabling to execute arbitrary
commands on a machine with a
misconfigured web server.
e spy- breaking into system via vulnerabilities
to discover important information
U2R e Dbuffer overflow- the ffbconfig UNIX system
command causes buffer flow leads to root
shell
e  rootkit- enables to access admin level
e loadmodule- gaining root shell by resetting
IFS
e perl- creating root shell by perl attack which
sets the user id to root
DoS o  smurf- flooding of ICMP echo reply
e  Neptune- flooding of SYN on port(s)
e Back- requesting of a URL having many
backslashes from a webserver
e  Teardrop- causing system reboot or crash
using mis-fragmented UDP packets
e  Pod- pinging with malformed packets causing
reboot or crash
e Land- sending UDP packet having the same
source and destination address to remote host




4. OVERVIEW OF DEEP LEARNING

Deep Learning has been the state of the art for training
stability and generalization, significant
scalability on big data. It extracts complex and nonlinear
hierarchical features of training data of high dimension to
build a model which transforms inputs to outputs (e.g.
classification). Multi-layer deep networks are the most
prevalent forms of deep learning algorithms. The output of
each previous layer and a bias are computed by a nonlinear
activation function f to form weighted inputs W, for the next
layer n of a neural network, i.e a,=f(W,a._;) [25]. Activation
functions are listed in the table 2. Given a set of unlabeled
training data {x", x®x®, ...}, deep learning algorithms
usually set output values to be either equal or less than inputs.
The cost functions to be optimized in deep models during deep
feature extraction are generally loss functions. In the equation
1, loss function is shown in which the first term is the
reconstruction error specified using the mean of sum-of-square
error terms for k instances of training data, and the second
term is a regularization term which is used for avoiding over-
fitting problem in training.

and achieved

J(W,b) =
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Where nl represents the number of layers and sl is the number
of nodes in each layer

Table 2: Activation functions

Function Formula Range
Tanh flo) = S5 f() e [-1,1]
Rectified Linear fla) = max(0, o) f(-) e R,
Maxout flay, a2) = max(a;, as) fl-)eR

The mechanism of minimizing the loss function L(W, B | j) is
a stochastic gradient descent (SGD, where the gradient VL(W,
b |J)is a standard gradient computed via backpropagation
using constant o as a learning rate. The final parameters W, B
are obtained by averaging. Equation (2) shows the iteration of
standard gradient descent on updates of weight W and bias b
using sample i until the convergence is obtained. As the
gradient descent of parameters over the whole available data
(batch) is not efficient, computing gradient over mini-batch
(sampling subset) simplifies the learning process [15].

AL(W, blj)
W = Wj; — S
aL(W, blj)
bji = Wji = a—5,— )

J

In training process, as the layer increases, abstraction of
features increases towards the answers of the model. The
activation function and weight matrices determine the
abstraction nature at every layer of the network, but it is
challenging to enable the deep learning model to automatically
learn training parameters that meet the accuracy objective of
the deep network. The parameters of training are usually learnt
through gradient descent, which is a nonlinear optimization
problem. Gradient descent is initiated randomly by setting a
set of deep network parameters, but it is updated at each step
to decrease the gradient by computing gradient descent of
nonlinear function being optimized. The output of this
repetition yields the optimization of the algorithm to a local
optimum.

For a known number of classes, softmax is employed at the
end of neural networks as activation function. Having p
classes in the dataset and deep network inputs x, softmax
assumes that the probability that P(y=p|x) for each value of
p=1,...,P could be estimated as it outputs a K-dimensional

vector summed to 1. In other words, our estimate hy(x) take

the following form [26]:

T
Py =15;6) exp (6 )
ho(x) = Py =.2|x; 0)|_ 717_ exp (Q(Z)Tx)
Py =Py TaETD| i
' lexp(8®7x)]
where 6(1),0(2),...,0(K)ER" are the parameters of our model,
1
and the term D is normalization of

3P, exp(60)Tx)

distribution. The cost function of softmax will be given by:

m P exp(g(p)Tx(i))
_ O =
J(e) Z Z 1{y p}log 37 exp(8D7xD)

i=1p=1

5. OUR APPROACH

The fog nodes are responsible for training models and hosting
attack detection systems at the edge of the distributed fog
network since they are closer to the smart infrastructures
supported by social internet of things. The coordinating master
node should be in place for collaborative parameter sharing
and optimization. In addition to giving the autonomy of local
attack detection using training and parameter
optimization, the benefits of this approach are the acceleration
of data training near to the source and the gain of updated
parameters from neighbors. The master node updates the
parameters of each cooperative node, and propagates the
resulting update back to the worker nodes. This plays a

local



significant role in offloading storage and computational
overheads of models, data and parameters from IoTs while it
provides fast response time. The centralized training and
optimization approach could be extended to distributed
networks by distributing SGD. Figure 2 shows a general
architecture of our distributed and parallel attack detection
system in fog-to-things computing.

DeepLearning based DS (master)

Master model, param,

and data ==
&\%“‘ — | AN %é‘
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& Fe Ik 10,2 7% T3
W Y033 2 % H
W - e 4 -]
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Fig.2: Distributed attack detection architecture for Fog-to-
things networks

The outputs of model training on distributed fog nodes are
attack detection models and their associated local learning
parameters. These local parameters are sent to coordinating
fog node for global update and re-propagation. This sharing
scheme results in better learning as it enables to share best
parameters and avoids local overfitting.

6. EVALUATION

6.1. DATASET, ALGORITHM AND METRICS

KDDCUP99 [27], ISCX [28] and NSL-KDD [24] are the most
commonly used datasets in the intrusion detection research.
We used NSL-KDD intrusion dataset which is available in csv
format for model validation and evaluations. The NSL-KDD
intrusion dataset not only reflects the traffic compositions and
intrusions, but are also it is modifiable, extensible, and
reproducible. The dataset composes of the attacks shown in
table 1, and identified as a key attack in IoT/Fog computing
[1-5]. Table 3 shows sample records of NSL-KDD dataset.

Table 3: snapshot of records in NSL-KDD dataset

0 tep ftp data SF 491 0

0 udp other SF 146 0

0 icmp ecr i SF 1480 0

0 tcp http SF 232 8153
0 tcp http SF 199 420
15159  tcp ftp SF 350 1185
0 tep private SO 0 0
315 udp other SF 146 105
240 tcp http SF 328 275
0 tep private S0 0 0

0 tep private REJ 0 0
5607 udp other SF 147 105

The original dataset consists of 125,973 records of train and
22,544 records of test, each with 41 features such as duration,
protocol, service, flag, source bytes, destination bytes, etc. The
traffic distribution of NSL-KDD dataset is shown as in the
tables 4(a) and 4(b).

Table 4 (a): traffic distribution of NSL-KDD in 2-class

Traffic Training Test
Normal 67343 9711
Attack 58630 12833
Total 125973 22544

Table 4 (b): traffic distribution of NSL-KDD in multi-class

Traffic Training Test
Normal 67343 9711
DoS 45927 7458
Probe 11656 2754
R2L 995 2421
U2R 52 200
Total 125973 22544

Before training the network, categorical features have been
encoded into discrete features using 1-to-n encoding
technique. Because of encoding, we obtained 123 input
features and 1 label, as shown in the table 5. For our
experiment, we have taken the dataset in 2-class (normal vs
attack) and 4-class (normal, DoS, Probe, R2L.U2R). The
minority class U2R is merged to R2L to form a class of
R2L.U2R.

Table 5: the encoded form of our dataset



B R e +----=-=--- +
| features|category|
o e e e e e e e e oo R e +
|[0.0,491.0,0.0,0....] 1]
|[0.0,146.0,0.0,0....| 1]
|[0.0,0.0,0.0,0.0,...] 0]
|[0.0,232.0,8153.0... | 1]
i e e e e e -+

The system uses the same technique of preprocessing for both
training and test. At this step, the data is ready for training and
testing. Suppose D, are data across n nodes in the fog
ecosystem, and Wb, are parameters their local parameters ,
each node having local data D, subset of D, as samples per
iteration. Each node runs data training on deep networks in
parallel way, but asynchronously exchange learned parameters
with the coordinating node. The coordinating node broadcasts
the update regularly.  The following algorithm shows
distributed training on each local fog node while exchanging
updated parameters with neighbor nodes via coordinating fog
node.

many of the attacks does the model return, while precision
represents how many of the returned attacks are correct. F1
Measure provides the harmonic average of precision and recall
[31]. The mathematical representation of these metrics can be
derived from confusion matrix as:

Algorithm 1: local training and parameter exchange

1. Recieve initial or update of Wj; and b;; from master to
workers
2. For node n in the network, do in parallel:
=  Get local training traffic sample i € D,, from
local D,
*  Execute SGD on local traffic, and update w;; €
W, biases bj; € b,

W e — OB

o= Wi —a W, ®
IL(W, blj)

bj' = VVji - O(T (2)

J
*  Compute AW}; and Ab;; and send to master node

3. Compute VVj'i ’bji :Vle' +AVV1'1', b]l +Ab]l
4. Repeat (1)

In the training and testing phase, Apache Spark [29] has been
used for distributed and parallel processing of SGD
asynchronously, while Keras on Theano package [30] was
employed for deep learning. The most important evaluation
metrics for attack detection such as accuracy, the detection
rate (DR) and false alarm rate (FAR) were chosen for
comparison between deep and shallow models. However,
performance metrics such as precision, recall and F1 Measure
has been added a comparison between individual classes in the
deep learning model DR denotes ratio of intrusion instances
detected by the model, while FAR represents the ratio of
misclassified normal instances. Accuracy is the percentage of
true detection over total data instances. Recall indicates how

Predicted:NORMA | Predicted:ATTAC
L K
Actua:NORMA | TN FP
L
Actual:ATTACK | FN TP
ACC = TP+ TN DR = s FAR
" (TP+TN+FP+FN)'~ "~ (TP +FN)’
FpP
“ (TN + FP) M
p L TP R o= TP
recision = (TP + FP)’ ecall = TP+ EN)’
2TP
F1 Measure = 2

(2TP + FP + FN)

where, TP: true positive, TN: true negative, FP: false positive,
FN: false negative

6.2. EXPERIMENTAL ENVIRONMENT

As a first attempt towards exploring the performance of our
model, we used the 2-class (normal and attack) and 4-class
(normal, DoS, Probe, R2L.U2R) categories. In performance
measure, unseen test data are chosen to represent zero-day
attack detections. Our experiment has two objectives. The first
one is to compare the result of our distributed attack detection
with a centralized system. This experiment has been
conducted by deploying the deep learning model on a single
node for centralized system, and multiple coordinated nodes
for distributed attack detection. To test the performance of
parallelism and distribution, as a benchmark for our detection
scheme, we varied the number of machines used for training
the network as a function of training accuracy. The second one
is to evaluate the effectiveness of deep learning against
shallow learning algorithms for attack detection in IoT. The
deep learning system, after hyper-parameter optimizations, has
used 123 input features, 150 first layer neurons, 120 second
layer neurons, 50 third layer neurons and the last softmax
layer with neurons equal to the number of classes. The model
has various batch sizes in 50 epochs, and trained with dropout
to avoid the overheating problem.




6.3. RESULTS AND DISCUSSIONS

In the evaluation process, classification accuracy and other
metrics were used to show the effectiveness of our scheme
compared to shallow models in distributed IoT at fog level.
The comparison of distributed training to centralized approach
in accuracy is also one of our evaluation criteria. Table 5
compares the accuracy of the deep and shallow models, while
fig. 3 shows the accuracy difference between centralization
and distribution.

ACCURACY OF DEEP VS SHALLOW
LEARNING

—&— Distributed Model = == Centralized Model

102
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Fig.3: Accuracy comparison of distributed and centralized models

Table 6: Accuracy of deep model (DM) and shallow model (SM)
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Fig.5: comparison between DL and SL in detection time

Table 7 (a): Performance of 2-class

2-class 4-class
Model Accuracy DR FAR Accuracy | DR FAR
Type (%) (%) (%) (%) (%) | (%)
DM 99.20 99.27 | 0.85 98.27 96.5 | 2.57%
SM 95.22 97.50 | 6.57 96.75 93.66 | 4.97

Model Type Class Precision (%) Recall (%) F1 Measure (%)
Deep Model Normal | 99.36 99.15 99.26
Attack 99.02 99.27 99.14
Shallow Normal | 97.95 93.43 95.65
Model Attack 92.1 97.50 94.72
Table 7 (b): Performances of 4-class
Model Class Precision Recall F1  Measure
Type (%) (%) (%)
Deep Normal 99.52 97.43 98.47
Model DoS 97 99.5 98.22
Probe 98.56 99 98.78
R2L.U2R 71 91 80
Shallow Normal 99.35 95 97
Model DoS 96.55 99 97.77
Probe 87.44 99.48 93
R2L.U2R 42 82.49 55.55




The experiment result has demonstrated double standards. The
first one is that the distributed model has a better performance
than the centralized model. As it can be seen from fig. 3, with
the number of increased nodes in the distributed network of
Fog systems, the overall accuracy of detection increased from
around 96% to over 99%. The detection rate in table 6 also
exhibits that deep learning is better than classic machine
learning for both binary and multi-classes. This shows that
distributing attack detection functions across worker fog nodes
is a key mechanism for attack detection in social IoT systems
such as a smart city which needs real time detection. The
increase in accuracy on distributed scheme could be because
of collaborative sharing of learning parameters which avoids
overfitting of local parameters, and hence, contributes to the
accuracies of each other. On the other hand, the accuracy of
the deep model is greater than that of shallow model, as shown
in the table 6. In addition, table 6 shows the false alarm rate of
the deep model, 0.85% is much less than that of machine
learning model (6.57%). As shown in table 7 (a) and (b), the
performance of deep learning is better than the normal
machine learning model for each class of attack. For instance,
the recall of deep model is 99.27%, while the traditional
model has a recall of 97.50% for a binary classification.
Similarly, the average recall of DM is 96.5% whereas SM has
scored average recall of 93.66% in multi-classification.
However, fig.4 shows that deep learning takes longer learning
time than traditional machine learning algorithms while the
detection rates (fig.5) of the both algorithms are significantly
the same. It is expected that deep networks consume larger
time in training because of the size of parameters used in
learning. The main issue for attack detection systems focuses
more on the detection speed than the learning speed. Thus,
this indicates that deep learning has a huge potential to
transform the direction of cybersecurity as attack detection in
distributed environments such as IoT/Fog systems has
indicated a promising result.

7. CONCLUSION AND FUTURE WORK

We proposed a distributed deep learning based IoT/Fog
network attack detection system. The experiment has shown
the successful adoption of artificial intelligence to
cybersecurity, and designed and implemented the system for
attack detection in distributed architecture of IoT applications
such as smart cities. The evaluation process has employed
accuracy, the detection rate, false alarm rate,
performance metrics to show the effectiveness of deep models
over shallow models. The experiment has demonstrated that
distributed attack detection can better detect cyber-attacks than
centralized algorithms because of the sharing of parameters
which can avoid local minima in training. It has also been

etc as

demonstrated that our deep model has excelled the traditional
machine learning systems such as softmax for the network
data classification into normal/attack when evaluated on
already unseen test data. In the future, we will compare
distributed deep learning IDS for on another dataset and
different traditional machine learning algorithms such as
SVM, decision trees and other neural networks. Additionally,
network payload data, will be investigated to detect intrusion
as it might provide a crucial pattern for differentiation.
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Highlights

Deep learning has been proposed for cyber-attack
detection in IoT using fog ecosystem

We demonstrated that distributed attack detection
at fog level is more scalable than centralized cloud
for ToT applications

It has also been shown that deep models have
excelled shallow machine learning models in
cyber-attack detection in accuracy.

In the future, other datasets and algorithms as well
as network payload data will be investigated for
comparisons and further enhancements.



