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A B S T R A C T

This paper performs a probabilistic stability analysis for an existing earthfill dam using a Stochastic Finite
Element Method (SFEM) and considering the spatial variability of soil properties based on field data. Previous
works on probabilistic slope stability analysis are generally based on hypothetical data while using data from
existing earth structures is not widespread.

A probabilistic procedure based on field data is here implemented to analyze the stability of an existing
embankment dam. The spatial variability of several soil properties is modeled from the geostatistical analysis of
the available dataset of the dam studied. Random variables and random fields representing the variability of dam
materials are integrated into an FE model by performing Monte Carlo simulations (MCS). This probabilistic
analysis based on field data allowed to characterize the variability of the sliding safety factor for the case study of
an existing dam.

1. Introduction

The probabilistic analysis of slope stability is a topic that has been
widely studied in the literature. Works in this domain have mainly
considered uncertainties relating to soil mechanical properties obtained
from geotechnical investigations. These uncertainties essentially stem
from inherent spatial variability and measurement errors [1,2], to
which can be added limited site investigation data and the assumptions
included in the stability model [3]. Among these sources of un-
certainties, some studies have shown that spatial variability is the most
important [4–6]. Therefore, it is the aspect on which research studies
have focused most [2,3,7–16]. Thus, the theory of random fields [17] is
best suited for modeling the spatial variability of properties of con-
tinuous media like soils. In recent years, much research has integrated
this kind of modeling in embankment slope stability analysis covering
different aspects. For example, Gaouar et al. [18] and Auvinet and
Gonzalez [19] studied the reliability of hypothetical earth dams using
random fields of undrained shear strength. Nishimura et al. [47] em-
ployed the Swedish weight sounding test to identify the spatial corre-
lation structure of the materials of an earth-fill dam. Zheng et al. [48]
conducted a Bayesian updating approach with monitoring data to im-
prove the predictions of embankment settlements. Cho [11] used direct

MCS to investigate the effect of the spatial variability of shear strength
parameters on the failure surface with 1-D random fields and LEM.
Others have paid attention to the influence on both seepage and slope
stability of the characteristics of random fields like: (i) correlation
length [2,20]; (ii) the coefficient of variation (CoV) [14]; (iii) the choice
of the autocorrelation function (ACF) used to represent spatial varia-
bility [3,16]. Finally, Liu et al. [3] proposed a numerical procedure to
combine Subset Simulations (SS) with the Kriging method for assessing
the reliability of an embankment slope in spatially variable soils.

Most of these studies used the limit equilibrium method (LEM) to
assess slope stability. However, with the rapid development of com-
putational tools, FEM is increasingly used in geotechnics. This is par-
ticularly true concerning sliding stability analyzes [21] which have
been extensively combined with the strength reduction method (SRM),
based on Zienkiewicz’s work [22]. SRM has since been used for slope
stability analyzes by many authors like Matsui and San [23], Griffiths
and Lane [24], Cheng et al. [25], Huang and Jia [26] and others.
Combined with SRM technique, FEM is used as an alternative to LEM
because it presents several advantages that are described in detail in
[24,25]: (i) no assumptions are needed concerning the failure surface,
(ii) no assumptions on inter-slice side forces are needed, since there is
no concept of slices, and (iii) soil behavior can be modeled in terms of
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stresses/strains. Furthermore, several studies have shown that LEM and
SRM give similar FoS [24,25], except in some specific cases pointed out
by Cheng et al. [25].

Different methods are used in the literature to evaluate reliability in
geotechnical issues. Some authors used first-order, second-moment
(FOSM) methods [2,7,27], whereas others used the FORM method
[11,20,28]. MCS is nevertheless the method used most for probabilistic
slope stability analysis [3,8,9,13,15,16]. MCS is a simple and robust
tool for simulating the statistical distribution of FoS, although it re-
quires considerable computational effort in terms of calculation time
[13,15].

Regarding earthfill dams, large quantities of geotechnical data are
available in the form of design studies, construction controls and
monitoring measurements [29,30]. These data are still not well
exploited in studies relating to the reliability of earth dams (or for that
of concrete dams [33]), although some authors have underlined the
benefits of carrying out a geostatistical analysis on them [31,32].
However, the probabilistic assessment of geotechnical properties gen-
erally depends on the type of soils and considerations found in the
literature, such as in the work of Phoon and Kulhawy [5,6].

Thus, all the studies mentioned above concern one or several as-
pects of earth dam reliability. The lack of global studies involving all
the aspects involved, and most particularly the use of real data through
geostatistical approaches, is regrettable.

This article describes a probabilistic procedure, based on several
elements available in the literature, to assess the reliability of an ex-
isting earth dam using the stochastic finite element method (SFEM).
The originality of this work is to base probabilistic developments on the
dataset available on the case study. The spatial variability of several
properties of the embankment materials are modeled from these data
with random fields. The uncertainties are then spread using MCS in a
coupling between a mechanical FE model and a reliability model in
order to simulate the statistical distribution of the FoS. The article
implements a similar approach to the probabilistic modeling of the pore
water pressure inside an earth dam [30].

This article is organized as follows: Section 2 presents the different
theoretical notions already available in the literature and which are
used in the probabilistic procedure. The case study and the available
dataset are also described in this section. Section 3 presents the general
principle of the probabilistic procedure implemented on the studied
earth dam. This section also describes the development of the de-
terministic FE model and the probabilistic modeling based on the field
data of the case study. Finally, the results obtained are discussed and
the main conclusions are summarized in the last section.

2. The stochastic finite element method for sliding stability
analysis

2.1. Factor of safety calculation by SRM in FEM

Slope stability analysis by FEM has been performed extensively
using SRM. The general principle of SRM is to incrementally reduce the
values of effective shear strength parameters until failure occurs. The
initial shear strength parameters ′c and ′φtan are reduced by a factor F
to give the parameters ′cred and ′φtan red used in the calculations:

′ = ′ ′ = ′−c c F φ tan φ F(tan / )red red
1 (1)

The FoS is considered as the factor of reduction F at failure. This
leads to the same definition of the FoS as in LEM [21,24,26].

Most studies using SRM consider the Mohr-Coulomb (MC) failure
criterion in the analyzes [13,24,26,34], above all due to its relative
simplicity. This failure criterion presents the advantage of being di-
rectly dependent on the shear strength parameters ′c and ′φtan . How-
ever, this criterion can lead to computational difficulties caused by the
irregularities of its hexagonal pyramidal yield surface. Some authors

have proposed solutions to overcome this difficulty through using an
approximate MC failure criterion [35]. In the case of study presented in
this article, the Drucker-Prager (DP) criterion is chosen as an approx-
imation of the MC criterion. The DP criterion is very close to the MC
criterion, except that it has the advantage that the conical yield surface
of the DP criterion allows better convergence of the calculations in the
FE model. Furthermore, the DP criterion’s parameters can be linked to
the shear strength parameters, ′c and ′φtan , and to the dilatancy angle

′ψ , through simple relations described in the literature [36].
For SRM, the non-convergence of the FE model is generally taken as

an indicator of failure occurrence, although other definitions are pos-
sible [24]. This definition of (numerical) failure has the advantage of
simplicity of implementation but the disadvantage of not having a
physical basis.

Slope stability analyzes involving saturated/unsaturated seepage
could be performed through two approaches [26]. On the one hand, the
seepage and stress/deformation calculations can be done in-
dependently. The results of hydraulic FE modeling, i.e. pore water
pressures, matric suctions and saturation level are used as inputs in the
mechanical FE model. The elasto-plastic calculations are thus per-
formed in terms of effective stresses. On the other hand, the coupling
between hydraulic and mechanical calculations can be stronger. In that
case, the iterative procedure involves both seepage and deformation
calculations which are performed at every step. This approach demands
a massive computational effort and is used in specific cases that require
considering the effects of consolidation. Thus, the first approach is more
often preferred because of its relative simplicity and effectiveness [26].

Taking into account the configuration of the dam studied, an un-
coupled approach was used for the seepage analysis in the case study.
The present article will focus on the mechanical part, since that con-
cerning seepage has already been presented in a previous work [30].

2.2. Spatial variability modeling

Soils used to build embankment dams are natural materials whose
properties are by nature highly variable [11]. Spatial variability re-
presents the main part of soil variability because of the combination of
geological, environmental, physical and chemical processes [5]. Soils
are heterogeneous in natural state but this heterogeneity is also present
in human constructions like earth dams. Although embankment mate-
rials are rearranged beforehand and are subjected to continuous control
during construction, the layer-based construction method does not
eliminate this spatial variability.

To accommodate the spatial variations of soil properties, the
random field theory has been widely used recently in the literature
relating to geotechnical issues, and most particularly to slope stability
[2,3,11–16,26,37,38,46]. A development of this theory can be found in
[17]. Random fields can represent spatial variability but, if considered
as Gaussian, they require the definition of at least the statistical mo-
ments, i.e. mean and standard deviation, and the autocorrelation
function (ACF). These characteristics are generally estimated from hy-
pothetical or statistical considerations. However, geostatistics allow
analyzing and modeling a spatial phenomenon in interpreting the be-
havior of an existing sample [32]. The first step of a geostatistical
analysis is to describe variability by a function of the structure γ(h),
called a variogram, which represents the semi-variance between the
deviation of the values taken by a point at position xi and a second
separated from the first by distance h. In practice, preference is given to
an estimator of the theoretical variogram, often called experimental
variogram ∗γ (h), given by Eq. (2):

∑= + −∗

=

γ (h) 1
2N(h)

[Z(x h) Z(x )]
i 1

N(h)

i i
2

(2)

where N(h) is the number of pairs of variable Z(x) separated by distance
h.
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If the sample is not regularly spaced, the sampled pairs are re-
grouped into intervals in which the average distance is used instead of h
[32]. Then, a mathematical model is applied to the experimental var-
iogram and permits representing either the theoretical variogram di-
rectly, or the ACF, which will allow the generation of the random fields
[17]. The exponential model, described by Eq. (3), is one of the most
common variogram models used as ACF in the literature.

= − =− δγ(h) C[1 e ] 2.996(δh/a) (3)

The parameter C is the sill value at which the variogram levels off.
This value represents the order of magnitude of the variability along the
considered axis and it is homogenous to the variance value of the
overall data. The parameter a represents the range of the variogram
(also called autocorrelation distance). It is the distance at which the
variogram reaches the sill value: there is no correlation beyond this
distance. For bounded models like the exponential model, the sill is
reached asymptotically and the autocorrelation distance (also called the
practical range) is equal to the scale factor a/δ corresponding to the
distance where the variogram reaches 95% of the sill.

In this article, stationary Gaussian random fields with an ex-
ponential ACF are taken into account for their simplicity, and for
consistency with most of the studies on the subject. Further develop-
ments could be accomplished to extend the approach proposed to more
complex random fields (i.e. non-Gaussian or non-stationary random
fields) but they are beyond the scope of this article.

2.3. Reliability approach

The deterministic value of the FoS is generally not sufficient for
evaluating the global safety of the slope of an embankment [39], in
particular in a risk analysis. In recent years, reliability approaches have
been developed and used in the domain of slope stability analysis
[4,11,13,27,39–41,46]. The reliability approach is based on the defi-
nition of a performance function Xg ( ) in which X represents a random
vector of the input variables. This function defines the limit state sur-
face separating the safe and unsafe regions. It can be described math-
ematically as: =Xg ( ) 0 on the limit state surface, >Xg ( ) 0 on the
safety domain, and <Xg ( ) 0 on the failure domain [27]. Regarding the
slope stability problem, the performance function is usually used in the
form defined by Eq. (4).

= −Xg FoS( ) 1 (4)

The performance function Xg ( ) is evaluated in our case through the
numerical FE model. A major advantage of the reliability approach is
that it permits evaluating the variability of output variables of the
performance function Xg ( ), which then yields other results such as the
probability of failure Pf and the reliability index β. Thus, this article will
focus on the variability of the FoS (obtained by the FEM) by evaluating

the mean and standard deviation. The failure probability is linked to the
performance function and is defined as:

∫= < =
<

X X XP g f dP [ ( ) 0] ( )
Xf g X( ) 0 (5)

where Xf ( )X is the joint probability density function of the input
variables [13]. This integral is however too difficult to evaluate directly
because it is practically impossible to know the joint probability density
function Xf ( )X and the integration domain exactly.

Different methods exist to overcome this difficulty. In the field of
slope stability, one of the most commonly used methods is to evaluate
the uncertainties through a reliability index β. There are many defini-
tions of reliability index [39]. Most of them involve the first two sta-
tistical moments of the FoS distribution, i.e. mean μFoS and standard
deviation σFoS. In the present article, the reliability index used is given
by Eq. (6), following a form used in several studies [4,27,39–41].

=
−μ

σ
β

1FoS

FoS (6)

In the approach adopted, MCS are first used to evaluate the varia-
bility of FoS and then as an alternative to evaluate the integral of Eq. (5)
[11]. Indeed, this method allows computing the distribution of the
performance function in generating the values of the different random
input variables according to their specific probability distributions. This
approach requires repeating the procedure many times in order to ob-
tain a robust response of the FE model. The computational effort needed
is offset by the relative simplicity of the MCS.

2.4. Dam studied and available data

The earth dam analyzed is a pseudo-zoned dam located in France. It
is a 23m high and 170m long structure which closes a valley covered
with alluvial deposits. The dam body includes three zones: a core (COR)
composed of sandy silts and two shoulders (UPS: upstream shoulder and
DOS: downstream shoulder) made of coarse sands. Both materials are
relatively similar (pseudo-zoned dam) and they stem from the altera-
tion of schists composing the bedrock. The downstream shoulder is
composed of a material slightly coarser than that of the upstream
shoulder. The foundation is also composed of more or less altered
schists whose superficial layers have been purged. The main cross-
section of the structure is shown in Fig. 1.

Different data are available on the earth dam studied. These data are
divided into two categories according to their origin along the dam
lifecycle: preliminary studies or construction (test board or compaction
controls). Table 1 presents an overview of the data available for the
case study.

Regarding the data stemming from preliminary studies, about thirty
samples had been taken from borrow pits for both materials composing
the structure. These samples were subjected to grain size distribution

Fig. 1. Standard cross-section of the dam studied.
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analyzes, and other laboratory tests including identification tests
(Atterberg limit measurements) and mechanical tests (triaxial tests,
compaction tests and oedometer tests) were performed on some of
them. However, Table 1 shows that only a few of these mechanical tests
were available. The triaxial test results are presented in Table 2. They
show that the two materials (i.e. sandy silts of the core and coarse sands
of the shoulders) have roughly similar long-term behaviors with similar
values for both the effective friction angle ′φ and effective cohesion ′c .
Nonetheless, the two materials differ concerning the undrained shear
strength characteristics with less friction and better undrained cohesion
for the finer materials constituting the core.

Afterwards, a test section was delimited to evaluate the compaction
of the materials through grain size distribution analyzes and plate
bearing tests. Then, compaction controls were performed during the
construction of the dam. These controls essentially consisted of water
content and dry density measurements determined in-situ with a gamma-
densimeter. In all, more than a thousand measurements were performed
in the three zones (UPS: 376, COR: 419, DOS: 333, respectively), most of
which have been geolocated (Fig. 2). The control measures were com-
pared to the results of Proctor tests performed periodically during con-
struction on samples taken directly from the three zones of the earth dam
under construction. About twenty grain size distribution analyzes per-
formed on the same samples completed the dataset.

The quantity of available data on the dam studied corresponds to the
typical dataset of an earth dam of the same dimensions. In addition, the
case study has the advantage that a reference system was installed during
its construction, which made it possible to localize the compaction control
measurements in space (according to the three axes). This system consists
of a grid formed by ten profiles (P0 to P9) in the longitudinal direction (Y
axis) and thirteen profiles (A to M) in the transversal direction (X axis) (see
Fig. 2). The longitudinal profiles are 20m spaced along the Y axis, ex-
cepted between P8 and P9 where the space is equal to 10m. The trans-
versal profiles are 13m spaced along the X axis from profiles A to E and I
to M, and 8m spaced from profiles E to I. The compaction control mea-
sures (dry density and water content) were generally performed on the
grid, but not systematically, as seen on Fig. 2. The grid permits the loca-
lization of the measurements on the (X-Y) plan and the knowledge of the
construction layer gives the elevation of the measurements along the Z
axis. Therefore, among the set of available dry density measurements, a
large number of these measurements have a relatively precise localization
in the space (UPS: 248, COR: 381, DOS: 272, respectively). Therefore,
among the set of available dry density measurements, a large number of
these measurements have a relatively precise localization in the space
(UPS: 248, COR: 381, DOS: 272, respectively). Fig. 2 shows three plan
views of the compaction control locations.

3. Probabilistic stability analysis of the case study

3.1. Steps of the probabilistic FoS modeling

This section presents an overview of the procedure implemented on
the case study in order to evaluate the statistical distribution of the FoS
based on the available data measured on the dam materials. The pro-
cedure adopted follows the steps described hereinafter.

(1) collect the available data on the dam under study;
(2) choose an elasto-plastic criterion to model the mechanical behavior

of the dam materials. In this case, the DP criterion is chosen as an
approximation of the MC criterion, under a formulation allowing to
model the dilatancy and the hardening;

(3) determine from the available data the deterministic values of the
material properties that participate in the safety evaluation model
(seepage analysis and elasto-plastic criterion). This determination is
achieved by using transformation models between the direct mea-
surement from the geotechnical tests and design parameters.
Reviews of such models were proposed by Kulhawy and MayneTa

bl
e
1

O
ve

rv
ie
w

of
th
e
da

ta
av

ai
la
bl
e.

Sa
m
pl
es

G
ra
in
-s
iz
e
di
st
ri
bu

ti
on

A
tt
er
be

rg
lim

it
s

C
U

tr
ia
xi
al

te
st
s

U
U

tr
ia
xi
al

te
st
s

O
ed

om
et
er

te
st
s

C
om

pa
ct
io
n
te
st
s

D
ry

de
ns
it
y

W
at
er

co
nt
en

t

So
il
ty
pe

*
(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

Pr
el
im

in
ar
y
st
ud

ie
s

11
13

10
13

3
12

5
3

2
2

2
2

5
5

0
0

0
0

C
on

st
ru
ct
io
n
(t
es
t
bo

ar
d)

11
0

11
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
on

st
ru
ct
io
n
(c
om

pa
ct
io
n
co

nt
ro
ls
)

16
14

16
14

0
0

0
0

0
0

0
0

10
14

37
6/

33
3

41
9

37
6/

33
3

41
9

To
ta
l

38
27

37
27

3
12

5
3

2
2

2
2

12
19

37
6/

33
3

41
9

37
6/

33
3

41
9

*
(1
)
U
PS

/D
O
S:

C
oa

rs
e
sa
nd

s
(s
ho

ul
de

rs
m
at
er
ia
l)
;(
2)

C
O
R
:S

an
dy

si
lt
(c
or
e
m
at
er
ia
l)
.

A. Mouyeaux et al. Computers and Geotechnics 101 (2018) 34–47

37



Table 2
Triaxial tests available on the dam studied.

Coarse sands (UPS&DOS) Sandy silts (COR)

Samples M01 F05 F09 F14 F14_bis E50 F28 F29

% passing 80 µm 10% 6% 5.5% 8% 56% 43% 55%
% passing 2 µm – 3% 2% 2.5% 23% 16% 19%
CU+u triaxial tests
Effective friction angle ′φ 33° 34° 35° 33° 36° 32° 36° 35°

Effective cohesion ′c 15 kPa 8 kPa 0 kPa 10 kPa 14 kPa 15 kPa 5 kPa 10 kPa
UU triaxial tests
Undrained friction angle φUU 15° 16° 0° 0°
Undrained cohesion CUU 70 kPa 49 kPa 125 kPa 126 kPa

Fig. 2. Locations of compaction control in the dam studied.
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[42] and Monnet [43]. These two reviews include theoretical or
empirical relationships linking in-situ or laboratory measurements
to geotechnical parameters involved in the mechanical behavior of
the soil. In this case study, the friction angle φ is related to the void
ratio e (and so indirectly to the dry density) by Caquot’s relation-
ship described by Eq. (7), where k represents a constant:

=φ ke·tan( ) (7)

(4) construct a deterministic FE model in order to evaluate the slope
stability of the structure. This model enables the calculation of the
FoS with the SRM. For this case study, an open-ended FE code was
chosen to add specific developments inherent to the approach, such
as random field generation;

(5) perform a sensitivity analysis of the parameters to identify those
which have a significant influence on the FoS and have to be
modeled probabilistically. According to Griffiths and Lane [24],
among the six mechanical parameters required for accurately
modeling elasto-plastic behavior (i.e. friction angle, cohesion, dry
density, Young’s modulus, Poisson’s coefficient and dilatancy angle)
the first three have a significant influence on the FoS;

(6) give a probabilistic description of the parameters of interest em-
phasized in step (5). At this stage, the parameters can be re-
presented as random variables thanks to a statistical analysis of the
available data and the transformation models used in step (3);

(7) perform a geostatistical analysis of the compaction controls mea-
surements (dry density). As there are sufficient and localized data,
this analysis will give horizontal and vertical experimental vario-
grams. These variograms give information on the spatial variability
of the dry density which can be then modeled as a random field;

(8) use previous statistical and geostatistical analysis to obtain a spatial
representation of all the influential parameters. The aim here is to
model the spatial variability of every important parameter with
random fields using transformation models and the random field of
dry density from step (7);

(9) perform probabilistic analysis in running MCS from the deterministic
FEM model developed in step (4). Numerous runs are necessary to
characterize the variability of the FoS. The number of runs to be
performed must be sufficient to obtain the convergence of the sta-
tistical moments (i.e. mean and standard deviation) of the FoS.

3.2. Deterministic FE model for slope stability

The case study dam was modeled with the Cast3M FE code. This
code was not initially developed to treat geotechnical issues. However,
the Cast3M code is an open-source code that allows the integration of
user-developed procedures, which is highly beneficial for probabilistic
analysis. The next subsections present the procedures developed in this
study. For the sake of simplicity, only the situation corresponding to the
normal operating level with a constant reservoir level is considered in
the following. Other research works propose to model the reservoir
level by a random variable based on hydrological considerations [44].
The mechanical behavior on which this study focuses is therefore long-
term behavior with effective shear strength parameters.

3.2.1. Soil elasto-plastic behavior and deterministic values of the parameters
As seen in Section 2.1, the FE model developed considers the DP cri-

terion as an approximation of the MC criterion. The input parameters of the
DP criterion (α, β and κ) are expressed from the MC criterion parameters
(friction angle ′φ , cohesion ′c and dilatancy angle ′ψ ) using the available
relationships [36]. The aim is to give a deterministic value from the avail-
able data to the input parameters ( ′φ , ′c and ′ψ ), as well as those needed to
simulate the loads acting on the dam: pore water pressures, self-weight and
hydrostatic pressure. The probabilistic modeling of the spatial variability of
pore water pressures was dealt with in a previous study [30] and only the
mechanical parameters will be treated here. Finally, seven parameters had
to be considered: dry unit weight γd, friction angle ′φ , cohesion ′c , dilatancy
angle ′ψ , a hardening parameter H and elasticity parameters, i.e. ′E and ′ν .

Concerning dry unit weight, the deterministic values adopted cor-
responded to the mean of the measurements mentioned in the previous
section, with values of 19.8 kNm−3 and 17.9 kNm−3 for coarse sands
and sandy silts, respectively.

Concerning the shear strength parameters, only a small number of
triaxial tests were available. In order to optimize these tests, the fol-
lowing process was adopted: (i) all the Mohr’s circles linked to all the
CU triaxial tests are reported on a single graph; (ii) the linear regression
is determined on the top of the circles (Kf line); (iii) this line is trans-
posed into the Coulomb line thanks to the relationships ′ = ′φ αsin tan
and ′ = ′ ′c a φ/cos , where ′α and ′a are parameters defining the Kf -line
(see Fig. 3). The values obtained are given in Table 3. The dilatancy
angle is then obtained from the friction angle in the empirical

Fig. 3. Regression on Mohr’s circles from available CU triaxial tests.
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relationships described in [42,43]. Given the similarity between the
values of the friction angle for the two materials, dilatancy angles close
to 12° are computed for both materials.

The CU triaxial tests are also used to determine the deterministic
values of the elastic modulus and the hardening parameter. These va-
lues correspond to the mean slopes of the two parts of the deviatoric
stress vs. strain curves. Finally, Poisson’s ratio is taken as equal to 0.33
because there is no data to determine its value from the available
measurements. Table 3 synthetizes the deterministic values adopted for
all the input parameters.

3.2.2. Validation of the FoS calculation
A 2D model is generally adopted in engineering as well as in the

scientific literature to analyze the sliding mechanism
[2–4,11–15,18,20,24–28,34,37]. Thus, for the FE model developed in
this work, a 2D model was adopted in order to facilitate the analysis of
the studied dam (in particular for the validation of the FoS calculation).
Nonetheless, the subsequent development of a 3D model can also be of
interest [19,46] given the geometry of the studied dam (having a length
and a width of the same order of magnitude).

In the FE model developed, SRM was implemented by a user-specific
procedure in the Cast3M code. This iterative procedure reduces the
strength parameters from initial deterministic values and searches a
new equilibrium state with reduced parameters starting from an initial
stress field. The FoS is obtained with an interpolation technique of the
maximal displacement vs. the factor of reduction F curve. By fitting a
vertically asymptotic equation to this curve, the FoS can be predicted
more accurately as the parameter reduction is implemented. This
technique allows avoiding a non-convergence which would cause the
FE code to stop (which could be very detrimental to MCS).

The commercial software SLOPE/W using LEM (Spencer method
with search for circular slip surfaces) is here used to validate the FE
model developed with the Cast3M code. LEM and FEM models using a
similar hypothesis are compared to the deterministic case in Fig. 4. The
FoS values computed (SLOPE/W: 2.71; Cast3M: 2.64) are close but not
equal as is the location on the failure surface. Fig. 5 presents a direct
comparison of the FoS computed with the two models for ten different
parameter sets obtained randomly. The results are close to the unit line
which validates the FoS obtained by the FE model developed.

3.2.3. Sensitivity analysis
A deterministic sensitivity analysis was performed on the para-

meters mentioned on last subsection on ranges of values corresponding
to the measurements performed on the materials composing the dam
studied. The sensitivity analysis results are synthetized in Fig. 6. The
crosses represent the minimal and maximal values of the FoS obtained
for each parameter for the variation ranges specified in the figure.

Afterwards, the influence of three mechanical properties is drawn:
dry unit weight γd, friction angle ′φ , cohesion ′c . These properties are
considered probabilistically while the others will be considered with
their deterministic values listed in Table 3. In Fig. 6, the arrows re-
present the FoS variation obtained for the dry unit weight, cohesion and

friction angle parameters using the mean ± standard deviation values
(showed in Table 4).

3.3. Probabilistic analysis with spatial variability modeling

3.3.1. Probabilistic assessment of parameters of interest
Modeling the three parameters – dry unit weight γd, friction angle ′φ

and cohesion ′c – as random variables from available data is done by
considering the previous steps. First, regarding dry unit weight γd, a
statistical analysis of the compaction control sample measurements is
performed. For both materials, the dry unit weight distribution can be
represented by a normal distribution (χ2 test). Truncated distributions
are used in order to avoid unrealistic values. The mean of these dis-
tributions corresponds to the one listed in Table 3, whereas the bounds
correspond to the extreme values really measured in the field.

For the shear strength parameters – i.e. friction angle ′φ and cohesion
′c – random variables can be determined with the regressions performed
on the Mohr’s circles obtained from the CU triaxial tests (Fig. 3). The
distributions of the shear strength parameters were obtained by MC si-
mulations, by propagation of the uncertainties of the intermediate
parameters a′ and α′ (evaluated by linear regression to obtain the Kf
line). The linear regression performed on the top of the Mohr circles to
determine the Kf line gives the mean and the standard deviation of the
two regression parameters (a′ and α′). By adopting a normal distribution,
a sample of one million values was generated randomly for each of the
regression parameters a′ and α′. A value of ′c and ′φ is then calculated for
each pair of a′ and α′ thanks to the relationships ′ = ′φ αsin tan and
′ = ′ ′c a φ/cos . These Monte Carlo simulations lead to generating a million
values for the shear resistance parameters ′c and ′φ , allowing thus to
evaluate their dispersion (standard deviation or CoV). Thus, Monte-Carlo
simulations make it possible to propagate the uncertainties of the re-
gression parameters on the evaluation of the shear strength parameters
(but they will not increase the information on the variability of shear
strength parameters). Therefore, the resulting distribution represents the
uncertainty of the evaluation of shear strength parameters from a small
sample of available measurements. During simulations, the distributions
of the shear strength parameters have been truncated to avoid unrealistic
values. Given the small number of triaxial tests available, a wider trun-
cation interval was adopted than observed from these tests.

The characteristics of the random variable distributions are de-
scribed in Table 4.

3.3.2. Geostatistical analysis of compaction control measurements
At this stage, the parameters of interest for the sliding study – i.e. dry

unit weight γd, friction angle ′φ and cohesion ′c – can be modeled as
random variables from the available data. Nonetheless, their spatial
variability could be taken into account by performing a geostatistical
analysis of the available geolocalized data. This analysis is therefore per-
formed on the numerous dry density measurements carried out in-situ for
compaction control of the whole dam. Eq. (2) is used to assess the ex-
perimental variograms on each of the three zones of the dam (UPS, COR
and DOS) in the vertical and horizontal directions. The horizontal direc-
tion corresponds to the upstream/downstream direction for stability ana-
lyzes performed in 2D. The autocorrelation lengths are obtained by fitting
an exponential model on these experimental variograms (see Section 2.2).
Fig. 7 shows the experimental variograms calculated for the downstream
shoulder (DOS) in the horizontal and vertical directions (dashed broken
lines), as well as the exponential variograms fitted to them (solid lines).
The black squares on the exponential variograms in Fig. 7 represent the
points in where 95% of the total variance is reached. The abscissa of these
squares is considered as the autocorrelation distances (practical range),
respectively in the horizontal direction (lx =4.9m) for the left plot and in
the vertical direction (lz =1.9m) for the right plot.

Table 5 details the results obtained from the geostatistical analysis.
Knowing these autocorrelation lengths and the two first statistical
moments (i.e. mean and standard deviation) makes it possible to

Table 3
Mean value of input parameters.

Properties Mean value

Coarse sands (UPS&DOS) Sandy silts (COR)

Dry unit weight γd (kNm−3) 19.8 17.9

Friction angle ′φ (°) 34.8 34.1

Cohesion ′c (kPa) 8.9 13.4
Dilatancy angle ′ψ (°) 12 12
Hardening H 100 100
Elastic modulus ′E (MPa) 45 40
Poisson’s ratio ′ν 0.33 0.33
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represent the spatial variability of dry density in the three zones com-
posing the dam section.

Autocorrelation lengths for dry density detailed in Table 5 show that
considerable homogeneity is found in the UPS, whereas, with shorter au-
tocorrelation lengths, the COR and DOS zones are more spatially variable.
This difference can be explained by better selection of the material com-
posing the upstream zone and greater attention given to its construction.

Table 5 also shows that the main spatial variability is in the vertical
direction in which autocorrelation lengths are lower. This is due to the
construction principle which is done by layers. Plots given in appendix
show as information the measured values of the dry density (and the
associated values of friction angle) against the elevation Z.

The nugget effect corresponds to about half the variance for the
upstream shoulder (UPS) and to a slightly lower fraction for the
downstream shoulder (DOS) and the core (COR). The nugget effect can
be attributed to the mixture of the materials during their excavation

from the borrow pits. In our case, it is considered as a microstructure
whose scale is less than the sampling step.

3.3.3. Random field of shear strength parameters
The random field of dry density is obtained directly with the geos-

tatistical analysis presented in last subsection. However, random fields
of shear strength parameters cannot be obtained this way. In the ap-
proach implemented, physical relationships between geotechnical
parameters are used to link the shear strength parameters to dry den-
sity. These relationships are listed in [42,43]. For the friction angle,
Caquot’s relation, described in Eq. (7), is used in the case of the dam
studied to obtain the representation of the spatial variability of the
friction angle through a random field of dry density. The k values used
in Eq. (7) are respectively equal to 0.25, 0.32 and 0.22 for UPS, COR
and DOS. These values are obtained in using Eq. (7) on each zone with
the corresponding means of the friction angle (listed in Table 4) and
means of the dry density (listed in Table 5). Fig. 8 shows an example of
a realization of the random field of the friction angle. In the developed
FE model, the autocorrelated points of the random fields correspond to
the centroid of each element constituting the mesh.

The sensitivity analysis (Fig. 6) shows the interest of modeling co-
hesion as a random field. However, no relation exits between dry
density and the effective cohesion of a soil, although a correlation can
be found in undrained condition [30]. In the case of the dam studied, it
was not possible to generate a random field of cohesion from the
available data. This parameter is represented as a random variable in
the probabilistic model.

3.3.4. Monte Carlo simulation results
MCS are used to assess the variability of the FoS by performing a

large series of runs of the deterministic FE model by considering the
probabilistic representation of the parameters of interest presented
before. MCS are implemented by coupling the FE code Cast3M with the
open-source reliability software OpenTURNS.

Three different probabilistic configurations are considered in the
probabilistic analysis (Table 6):

– Configuration no. 1: LEM (Spencer method with search for circular
slip surfaces) and random variable modeling with the commercial

Fig. 4. Comparison of LEM and FEM: (a) SLOPE/W, (b) Cast3M (maximal shear strain field).

Fig. 5. Validation of the deterministic analysis.
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software SLOPE/W;
– Configuration no. 2: FEM and random variable modeling with the FE
code Cast3M;

– Configuration no. 3: FEM and random field modeling (for dry den-
sity and friction angle) with the FE code Cast3M.

Fig. 6. Sensitivity analysis results.

Table 4
Probabilistic values of input parameters.

Soil type* Parameter Mean Standard
deviation

CoV (%) Min Max

UPS/DOS Dry unit weight γ
(kNm−3)

19.8 0.5 3 16.8 21.6

Friction angle ′φ (°) 34.8 1.3 4 25 45

Cohesion ′c (kPa) 8.9 8.1 91 0 30

COR Dry unit weight γ
(kNm−3)

17.9 0.6 3 16.2 19.4

Friction angle ′φ (°) 34.1 0.8 2 25 45

Cohesion ′c (kPa) 13.4 4.9 36 0 30

* UPS/DOS: Coarse sands (shoulders material); COR: Sandy silt (core mate-
rial).

Fig. 7. Experimental variograms of dry density in the horizontal (left) and vertical (right) directions for the downstream shoulder (DOS).

Table 5
Results of the geostatistical analysis of compaction control measurements (dry
density).

ρd (t/
m3)

Mean Variance Nugget effect Correlation
length X

Correlation
length Z

UPS 2.00 3.5× 10−3 1.6× 10−3 78.1 m 7.8 m
COR 1.83 3.6× 10−3 8.6× 10−4 13.0 m 1.5 m
DOS 2.05 2.8× 10−3 1.0× 10−3 4.9m 1.9 m
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The objectives are: (i) to compare increasingly complex approaches
(Configuration no. 1 to Configuration no. 3) and (ii) to compare more
particularly the use of random variables and random fields with FEM
(Configuration no. 2 vs. Configuration no. 3).

100.000 simulations were performed for Configuration no. 1, while
10,000 were performed for the two others because FEM demands more
computational effort. However, this number of simulations is sufficient to
obtain accurate statistical responses, as seen in Fig. 9(a and b) showing the
convergence of the mean and standard deviation of FoS. For each MC si-
mulation involving FE analysis with random fields, the spatially auto-
correlated soil property values are generated and assigned to each finite
element constituting the mesh. Each simulation of a random field thus
comprises a number of spatially autocorrelated values equal to the number
of finite elements of the model. The mean values of FoS are equal to 2.75,
2.65 and 2.71 respectively for the three configurations, with the corre-
sponding standard deviations equal to 0.17, 0.27 and 0.21. The probabilistic
responses for each configuration are finally described in Fig. 10. The center
of the box represents the second quartile Q2 of the sample whereas the box
itself symbolizes the interquartile range (IQR), being equal to the difference
between the 75th and 25th percentiles (resp. Q3 and Q1). The left and right
whiskers represent the range between Q1−1.5 IQR and Q3+1.5 IQR and
the points are outliers that fall outside this range.

Regarding the reliability index, Eq. (6) gives reliability indexes for
the three configurations equal to 10.3, 6.1 and 8.1, respectively.

4. Discussion

4.1. Discussion on the stochastic finite element approach implemented

The aim of this article is to perform a probabilistic stability analysis for
an existing earthfill dam using a Stochastic Finite Element Method and
considering the spatial variability of soil properties based on field data
(obtained from measurements made during the construction of the dam).
Indeed, although other research works have dealt with the issue of prob-
abilistic slope stability analysis, they generally consider arbitrary prob-
abilistic distributions to model the uncertainties on soil properties.

When spatial variability is considered through random fields, these
random fields are seldom determined from real data. This article shows
a probabilistic stability analysis for the case study of an existing
earthfill dam using precisely located compaction control data. This
geolocalization and the numerous available data allow the use of
geostatistics to directly represent the spatial variability of parameters
such as dry density. However, the spatial variability of other soil
properties could be investigated as a function of the dataset available,
as in Smith and Konrad [32] who considered the fines content of soil.

This article is focused on the uncertainty related to inherent soil spatial
variability because it is the most significant source of geotechnical un-
certainties, as mentioned in the introduction. Considering that empirical
and theoretical relationships are used in this article, it could be interesting
to consider the uncertainty of transformation in future works and the
measurement error on the available data. Indeed, these two sources of
uncertainty are known to be very difficult to quantify, although Phoon and
Kulhawy [5,6] have proposed guidelines to overcome this problem.

In the procedure used on the case study, several hypotheses could
have an influence on the results. For example, the choice of the ACF can
affect the autocorrelation lengths and therefore the simulation of the
random fields of the parameters. For the variograms plotted in Fig. 7, if
gaussian or spherical models are chosen as ACF instead of the ex-
ponential model, the vertical and horizontal autocorrelation lengths
will respectively be equal to lx =6.7m or 4.7m and lz =1.6m or 1.2m

Fig. 8. Example of a realization of the random field of the friction angle (°).

Table 6
Calculation configurations for probabilistic analysis.

Configuration
no. 1

Configuration
no. 2

Configuration
no. 3

Software SLOPE/W Cast3M Cast3M
Numerical

method
LEM FEM FEM

Uncertain parameters
Dry unit
weight γd

Random variable Random variable Random field

Friction angle
′φ

Random variable Random variable Random field

Cohesion ′c Random variable Random variable Random variable

Fig. 9. Convergence of statistical moments (mean and standard deviation) of
FoS. (a) Mean vs. number of runs. (b) Standard deviation vs. numbers of runs.
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instead to lx =4.9m and lz =1.9m in the exponential case. These
differences could have an influence on the computed FoS. Another
example could be cited with the hypothesis on the terms k in Eq. (7). In
this case study these parameters are estimated with the means of dry
density and friction angle for the three zones of the studied dam, but
another way could be used to obtain these values which are directly
involved in the random field generation. Further investigations are
necessary to quantify the influence of these hypotheses.

The question of SFEM and reliability methods can also been dis-
cussed. Direct MCS are performed in this case because they constitute a
non-biased method and they are the easiest means to obtain a re-
presentative sample for assessing the variability of FoS. However, ob-
taining converged results in terms of mean and standard deviation re-
quires performing a large number of simulations – 10 000 in the cases
presented – which involve considerable computational efforts. For a
more accurate assessment of the reliability index β or of the failure
probability Pf , more calculations are necessary (generally, for an ex-
pected failure probability of = −P 10f

n, +10n 2 simulations are needed),
which it is not operational in this case. Thus, other reliability methods
could be employed to quickly obtain the reliability index β or the
failure probability Pf , like FORM/SORM, enhanced Monte-Carlo
methods (Directional Simulations, Importance or Conditional
Samplings), and the response surface, as described in [30].

4.2. Discussion on the results

4.2.1. Comparison of variability of FoS for the different configurations
The mean values of FoS obtained in the three configurations ana-

lyzed are close to the deterministic values obtained with the LEM model
(i.e. 2.71) and the FEM model (i.e. 2.64). The distributions of FoS differ
however concerning their scattering, as can be seen in Fig. 10. The
computed FoS obtained in Configuration no. 1 is less scattered with a
standard deviation of 0.17, while the standard deviations are 0.27 and
0.21 for Configurations no. 2 and no. 3, respectively. This may be due to
the predefinition of the potential slip surfaces zone for the LEM model
in Configuration no. 1 (limited to circular and relatively deep surfaces),
whereas the FEM analysis can also lead to more superficial and/or not
necessarily circular sliding surfaces.

The reliability indexes computed for all the configurations are very
high, which means that the failure probability is close to zero. This
illustrates the good design of the dam for the situation analyzed (i.e.
normal operating level) which is generally not a risky situation. Lower
reliability indexes will be found when analyzing trickier situations like
earthquakes or the rapid drawdown of the dam reservoir. The normal
operating level situation was chosen here because it remains that most
representative of the structure’s lifecycle and also because modeling
this situation constitutes the base for all the others.

4.2.2. Comparison of random variables vs. random fields probabilistic
approaches

When comparing configurations 2 and 3 it can be seen that taking
spatial variability into account tends to reduce the main scattering of
the samples. IQR is indeed larger in Configuration no. 2 [2.47–2.80]
than in Configuration no. 3 [2.58–2.85]. This could be partly explained
from the friction angle which is modeled as a random variable and as a
random field in Configurations no. 2 and no. 3 respectively. Indeed, the
mean of the friction angle is globally identical along the sliding surface
from one simulation to another in Configuration no. 3, while the dif-
ference could be larger in the case of Configuration no. 2.

The mean values are also different between the two configurations.
This could be explained by the fact that the effective friction angle is
not modeled in the same way: on the one hand this parameter is
modeled on the basis of triaxial tests; on the other hand it relies on
measured dry density values. However, spatial variability modeling is
in this specific case has a beneficial impact on the probabilistic response
as it reduces the IQR and gives a higher reliability index than in random
variable modeling. This is due to the averaging effect inherent to the
random field representation: a low value of a parameter (e.g. of a
friction angle) will not only have an impact on the FoS because this
value is isolated and surrounded by other values that could be greater.
Hence, in the case of the dam studied, modeling spatial variability with
random fields is more representative of the physical reality and has a
positive influence on dam reliability. The differences in the results
obtained for configurations no. 2 and no. 3 remain overall low in terms
of mean and standard deviation of the FoS. As the values obtained are
high for the mean FoS and low for the standard deviation, the differ-
ences appear significant in terms of reliability index.

5. Conclusions

In this article, a stochastic finite element procedure based on pro-
ject-specific data was implemented to assess the slope stability analysis
of a case study of an earth dam. This procedure involved an evaluation
of the input parameters required in an SFEM model based on field data.
Furthermore, this evaluation was probabilistic concerning parameters
that have a strong influence on the FoS. This paper performs a prob-
abilistic stability analysis by SFEM for an existing earthfill dam, con-
sidering the spatial variability of soil properties based on field data.
Indeed, the localization of the compaction control measurements per-
formed during the earth dams’ construction is put to good use in this
approach thanks to the geostatistical analysis that allows modeling the
spatial variability of soil properties by random fields. Finally, MCS were
performed on the deterministic FEM model to give a probabilistic dis-
tribution of FoS, and thus a reliability evaluation from the reliability
index. Such an approach could be used as part of a global dam safety

Fig. 10. Results and reliability indexes computed for the three configurations.
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assessment combined with a risk analysis like that described in [45].
Based on the results obtained on the case study, the following

conclusions and statements can be presented:

(1) The probabilistic analysis performed in this article can be easily
applied to limited datasets generally available for earth dams. It
allows overcoming the small number of in-situ or laboratory geo-
technical tests by taking advantage of available data.

(2) Geostatistics provide a powerful tool for assessing the spatial
variability of soil properties, even in the particular case of em-
bankment dams. It is interesting to take this variability into account
because of its significant influence on FoS (and thus on the relia-
bility index) as it tends to reduce failure probability. The use of
geostatistical methods nonetheless requires a large sample of geo-
localized data, as with the compaction control measurements in the
case study. Nowadays, this geolocalization can be performed easily
with GPS technology. However, geostatistical analysis is in most
cases only possible on compaction control measurements, as in the
case studied with dry density.

(3) The use of empirical and theoretical relationships between geo-
technical properties is a simple way to obtain random fields of
geotechnical soil properties other than dry density (permeability,
friction angle, undrained cohesion). However, it is impossible in the
case of effective cohesion because no physical relation exists with
dry density. The use of relationships gives rise to another issue
which is the implementation of measurement and/or transforma-
tion uncertainties in the model. This issue is not dealt with in the
article and could be the subject of future research works.

(4) Comparing three configurations opposing increasingly complex
approaches on the one hand, and random variables and random
fields on the other, showed that, in the example of the dam studied,
FEM gives a more scattered distribution than LEM but incorporates
a better representation of the sliding mechanism. Modeling spatial

variability is also beneficial as it gives a better representation of
physical reality and has a positive impact on dam reliability.

This study also highlighted some possible improvements:

(1) For the sake of simplicity and consistency with other studies, only
stationary Gaussian random fields were considered in this article.
The effects of more complex random fields (non-stationary or non-
Gaussian) could be investigated in specific studies. Indeed, earth
dams are generally constructed with materials taken from several
borrow pits, leading to potential heterogeneity of the fill.

(2) This article presented a 2D FE analysis including input parameters
modeled by 2D random fields. The spatial variability of material
properties as well as the mechanical stability to sliding can be
further investigated by 3D analyses, which would better reflect that
the material properties may vary differently in the space and that
the sliding mechanism concerns more globally a volume.

(3) In this specific case of dam, very high reliability indexes, corre-
sponding to a very low failure probability, were obtained. This was
mainly due to the situation considered (i.e. normal operating level).
Other situations could be considered to assess slope stability with
such a probabilistic procedure, like earthquakes, rapid drawdowns,
and floods. The reliability method used should be adapted to the
situation studied according to the probabilistic output desired in
order to optimize computational efforts.
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Appendix

Figs. 11 and 12below show the measured values of the dry density (and the associated values of friction angle) against the elevation Z.

Fig. 11. Measured values of the dry density against the elevation Z.

A. Mouyeaux et al. Computers and Geotechnics 101 (2018) 34–47

45



References

[1] Christakos G. Modern statistical analysis and optimal estimation of geotechnical
data. Eng Geol 1985;22(2):175–200.

[2] Suchomel R, Mašı D. Comparison of different probabilistic methods for predicting
stability of a slope in spatially variable c–φ soil. Comput Geotech
2010;37(1):132–40.

[3] Liu LL, Cheng YM, Zhang SH. Conditional random field reliability analysis of a
cohesion-frictional slope. Comput Geotech 2017;82:173–86.

[4] Christian JT, Ladd CC, Baecher GB. Reliability applied to slope stability analysis. J
Geotech Eng 1994;120(12):2180–207.

[5] Phoon KK, Kulhawy FH. Characterization of geotechnical variability. Can Geotech J
1999;36(4):612–24.

[6] Phoon KK, Kulhawy FH. Evaluation of geotechnical property variability. Can
Geotech J 1999;36(4):625–39.

[7] Vanmarcke EH. Reliability of earth slopes. J Geotech Eng Divis
1977;103(11):1247–65.

[8] Fenton GA, Griffiths DV. Statistics of free surface flow through stochastic earth dam.
J Geotech Eng 1996;122(6):427–36.

[9] Fenton GA, Griffiths DV. Extreme hydraulic gradient statistics in stochastic earth
dam. J Geotech Geoenviron Eng 1997;123(11):995–1000.

[10] Griffiths DV, Fenton GA. Probabilistic analysis of exit gradients due to steady see-
page. J Geotech Geoenviron Eng 1998;124(9):789–97.

[11] Cho SE. Effects of spatial variability of soil properties on slope stability. Eng Geol
2007;92(3):97–109.

[12] Srivastava A, Babu GLS, Haldar S. Influence of spatial variability of permeability
property on steady state seepage flow and slope stability analysis. Eng Geol
2010;110(3–4):93–101. http://dx.doi.org/10.1016/j.enggeo.2009.11.006.

[13] Cho SE. Probabilistic assessment of slope stability that considers the spatial varia-
bility of soil properties. J Geotech Geoenviron Eng 2010;136(7):975–84.

[14] Jiang SH, Li DQ, Zhang LM, Zhou CB. Slope reliability analysis considering spatially
variable shear strength parameters using a non-intrusive stochastic finite element
method. Eng Geol 2014;168:120–8.

[15] Li DQ, Jiang SH, Cao ZJ, Zhou W, Zhou CB, Zhang LM. A multiple response-surface
method for slope reliability analysis considering spatial variability of soil proper-
ties. Eng Geol 2015;187:60–72.

[16] Liu LL, Cheng YM, Jiang SH, Zhang SH, Wang XM, Wu ZH. Effects of spatial au-
tocorrelation structure of permeability on seepage through an embankment on a
soil foundation. Comput Geotech 2017;87:62–75.

[17] Vanmarcke EH. Random Fields: Analysis and Synthesis. Cambridge, MA: MIT Press;
1983.

[18] Gaouar M, Fogli M, Bacconnet C. Reliability of earth dams: an approach based on
random fields models. In: International conference on applications of statistics and
probabilities in civil engineering, Sydney – Australia; 2000. pp. 355–61.

[19] Auvinet G, Gonzalez J. Three-dimensional reliability analysis of earth slopes.

Comput Geotech 2000;26(3):247–61.
[20] Griffiths DV, Huang J, Fenton GA. Influence of spatial variability on slope reliability

using 2-D random fields. J Geotech Geoenviron Eng 2009;135(10):1367–78.
[21] Duncan JM. State of the art: limit equilibrium and finite-element analysis of slopes.

J Geotech Eng 1996;122(7):577–96.
[22] Zienkiewicz OC, Humpheson C, Lewis R. Associated and non-associated visco-

plasticity in soils mechanics. Geotechnique 1975;25(5):671–89.
[23] Matsui T, San KC. Finite element slope stability analysis by shear strength reduction

technique. Soils Found 1992;32(1):59–70.
[24] Griffiths DV, Lane P. Slope stability analysis by finite elements. Geotechnique

1999;49(3):387–403.
[25] Cheng YM, Lansivaara T, Wei WB. Two-dimensional slope stability analysis by limit

equilibrium and strength reduction methods. Comput Geotech 2007;34(3):137–50.
[26] Huang M, Jia CQ. Strength reduction FEM in stability analysis of soil slopes sub-

jected to transient unsaturated seepage. Comput Geotech 2009;36(1–2):93–101.
[27] Liang R, Nusier BO, Malkawi AH. A reliability based approach for evaluating the

slope stability of embankment dams. Eng Geol 1999;54(3):271–85.
[28] Xu B, Low B. Probabilistic stability analyzes of embankments based on finite-ele-

ment method. J Geotech Geoenviron Eng 2006;132(11):1444–54.
[29] Degoutte G. Small dams: Guidelines for design, construction and monitoring.

Cemagref Editions; 2002. ISBN: 9782853625517.
[30] Mouyeaux A. Fiabilité des barrages en remblai au glissement par MEFS. Editions

Universitaire Européennes; 2017.
[31] Favre JL, Bekkouche A. Analyzes statistiques et modèles probabilistes pour les

barrages en terre - Etat actuel et perspectives. In: Colloque technique, Comité
Français des Grands Barrage, Paris; 1988.

[32] Smith M, Konrad JM. Assessing hydraulic conductivities of a compacted dam core
using geostatistical analysis of construction control data. Can Geotech J
2011;48(9):1314–27. http://dx.doi.org/10.1139/t11-038.

[33] Carvajal C, Peyras L, Bacconnet C, Bécue JP. Probability modelling of shear strength
parameters of RCC gravity dams for reliability analysis of structural safety. Eur J
Environ Civ Eng 2009;13(1):91–119.

[34] Zheng H, Tham LG, Liu D. On two definitions of the factor of safety commonly used
in the finite element slope stability analysis. Comput Geotech 2006;33(3):188–95.

[35] Abbo AJ, Sloan SW. A smooth hyperbolic approximation to the Mohr-Coulomb
yield criterion. Comput Struct 1995;54(3):427–41.

[36] Mestat P. Lois de comportement des géomatériaux et modélisation par la méthode
des éléments finis. In: Etudes et recherches des laboratoires des Ponts et Chaussées –
Série Géotechnique (GT52); 1993.

[37] Griffiths DV, Fenton GA. Probabilistic slope stability analysis by finite elements. J
Geotech Geoenviron Eng 2004;5:507–18.

[38] Huang J, Lyamin AV, Griffiths DV, Krabbenhoft K, Sloan SW. Quantitative risk
assessment of landslide by limit analysis and random fields. Comput Geotech
2013;53:60–7.

[39] Gui S, Zhang R, Turner JP, Xue X. Probabilistic slope stability analysis with sto-
chastic soil hydraulic conductivity. J Geotech Geoenviron Eng 2000;126(1):1–9.

Fig. 12. Results of friction angle against the elevation Z.

A. Mouyeaux et al. Computers and Geotechnics 101 (2018) 34–47

46

http://refhub.elsevier.com/S0266-352X(18)30113-7/h0005
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0005
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0010
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0010
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0010
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0015
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0015
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0020
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0020
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0025
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0025
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0030
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0030
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0035
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0035
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0040
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0040
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0045
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0045
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0050
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0050
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0055
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0055
http://dx.doi.org/10.1016/j.enggeo.2009.11.006
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0065
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0065
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0070
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0070
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0070
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0075
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0075
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0075
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0080
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0080
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0080
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0085
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0085
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0095
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0095
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0100
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0100
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0105
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0105
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0110
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0110
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0115
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0115
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0120
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0120
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0125
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0125
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0130
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0130
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0135
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0135
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0140
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0140
http://dx.doi.org/10.1139/t11-038
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0165
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0165
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0165
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0170
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0170
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0175
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0175
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0185
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0185
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0190
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0190
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0190
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0195
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0195


[40] Bergado DT, Anderson LR. Stochastic analysis of pore pressure uncertainty for the
probabilistic assessment of the safety of earth slopes. Soils Found
1985;25(2):87–105.

[41] Chowdhury RN, Xu DW. Geotechnical system reliability of slopes. Reliab Eng Syst
Safe 1995;47(3):141–51.

[42] Kulhawy FH, Mayne PW. Manual on estimating soil properties for foundation de-
sign. Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY
(USA). Geotechnical Engineering Group; 1990.

[43] Monnet J. Les essais in situ en géotechnique. ISTE Editions; 2016.
[44] Carvajal C, Peyras L, Arnaud P, Boissier D, Royet P. Probabilistic modelling of flood

water level for dam reservoirs. ASCE - J Hydrol Eng 2009;14(3):223–32.
[45] Peyras L, Carvajal C, Felix H, Bacconnet C, Royet P, Becue JP, et al. Probability-

based assessment of dam safety using combined risk analysis and reliability
methods – application to hazards studies. Eur J Environ Civ Eng
2012;16(7):795–817.

[46] Xiao T, Li D-Q, Cao Z-J, Au S-K, Phoon K-K. Three-dimensional slope reliability and
risk assessment using auxiliary random finite element method. Comput Geotech
2016;79:146–58.

[47] Nishimura S-I, Shibata T, Shuku T. Diagnosis of earth-fill dams by synthesized ap-
proach of sounding and surface wave method. Georisk: Assess Manage Risk Eng Syst
Geohazards 10.4: 312–9.

[48] Zheng D, Huang J, Li D-Q, Kelly R, Sloan S-W. Embankment prediction using testing
data and monitored behavior: a Bayesian updating approach. Comput Geotech
2018;93:150–62.

A. Mouyeaux et al. Computers and Geotechnics 101 (2018) 34–47

47

http://refhub.elsevier.com/S0266-352X(18)30113-7/h0200
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0200
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0200
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0205
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0205
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0235
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0235
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0240
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0240
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0240
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0240
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0245
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0245
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0245
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0255
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0255
http://refhub.elsevier.com/S0266-352X(18)30113-7/h0255

	Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data
	Introduction
	The stochastic finite element method for sliding stability analysis
	Factor of safety calculation by SRM in FEM
	Spatial variability modeling
	Reliability approach
	Dam studied and available data

	Probabilistic stability analysis of the case study
	Steps of the probabilistic FoS modeling
	Deterministic FE model for slope stability
	Soil elasto-plastic behavior and deterministic values of the parameters
	Validation of the FoS calculation
	Sensitivity analysis

	Probabilistic analysis with spatial variability modeling
	Probabilistic assessment of parameters of interest
	Geostatistical analysis of compaction control measurements
	Random field of shear strength parameters
	Monte Carlo simulation results


	Discussion
	Discussion on the stochastic finite element approach implemented
	Discussion on the results
	Comparison of variability of FoS for the different configurations
	Comparison of random variables vs. random fields probabilistic approaches


	Conclusions
	Acknowledgement
	Appendix
	References




