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Abstract
A novel density-based clustering algorithm named QCC is presented recently. Although the algorithm has proved its strong
robustness, it is still necessary to manually determine the two input parameters, including the number of neighbors (k) and the
similarity threshold value (α), which severely limits the promotion of the algorithm. In addition, the QCC does not perform
excellently when confronting the datasets with relatively high dimensions. To overcome these defects, firstly, we define a
new method for computing local density and introduce the strategy of potential entropy into the original algorithm. Based on
this idea, we propose a new QCC clustering algorithm (QCC-PE). QCC-PE can automatically extract optimal value of the
parameter k by optimizing potential entropy of data field. By this means, the optimized parameter can be calculated from the
datasets objectively rather than the empirical estimation accumulated from a large number of experiments. Then, t-distributed
stochastic neighbor embedding (tSNE) is applied to the model of QCC-PE and further brings forward a method based on
tSNE (QCC-PE-tSNE), which preprocesses high-dimensional datasets by dimensionality reduction technique. We compare
the performance of the proposed algorithms with QCC, DBSCAN, and DP in the synthetic datasets, Olivetti Face Database,
and real-world datasets respectively. Experimental results show that our algorithms are feasible and effective and can often
outperform the comparisons.

Keywords Data clustering · Quasi-cluster centers clustering · Potential entropy · Optimal parameter · t-distributed stochastic
neighbor embedding

1 Introduction

The purpose of clustering is that dividing the objects into
different clusters or classes according to the similarity of
sample data. Clustering technology has been widely used in
many fields: pattern recognition (Horn and Gottlieb 2002),
image processing (Liew and Yan 2003; Li and Shen 2010),
and machine learning (Wu 2014). The traditional clustering
methods could be roughly grouped into five categories: hier-
archical clustering, partition-based clustering, density-based
clustering, grid-based clustering, andmodel-based clustering
(Omran et al. 2007; Xu and Tian 2015).
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The basic idea of hierarchical clustering is to establish
a hierarchical relationship of all data points based on the
hierarchical tree structure, there are two ways to realize it:
bottom-up and top-down. The former supposes that each
object stands for an individual cluster at the beginning;
then, the most similar two clusters are merged into a new
cluster loops until the last one is left. The latter is the oppo-
site process. BIRCH (Zhang et al. 1996, 1997; Madan and
Dana 2015), ROCK (Guha et al. 1999; Dutta et al. 2005),
and Chameleon (Karypis et al. 1999) are the representa-
tives of this sort of method. Hierarchical clustering does not
require the number of clusters to be specified in advance
and can handle isolated and noise data well, but the com-
plexity of time and space is too high to be suitable for large
dataset. Partition-based clustering regards the center of data
points as the center of the corresponding cluster, and the
quality of clustering would be gradually improving through
attempting to move data objects from one cluster to others
employing iterative relocation technique. K -means (Mac-
queen 1967) and K -medoids (Park and Jun 2009) are the
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two most famous ways of this kind of clustering algorithm.
Partition-based clustering has relatively low time complex-
ity and high computing efficiency in general. However, it
does not suitable for non-convex datasets and sensitive to
the outliers. Except that, the number of clusters needs to
be preset. The core idea of density-based clustering is that
the data in the region with high density of the data space are
considered to belong to the same cluster. There are some rep-
resentatives: DBSCAN (Ester et al. 1996; Kumar and Reddy
2016), OPTICS (Ankerst et al. 1999), Mean-shift (Comani-
ciu and Meer 2002), and DP (Rodriguez and Laio 2014; Du
et al. 2016; Mehmood et al. 2016). Density-based cluster-
ing can correctly cluster the non-spherical-shape datasets,
but it always produces clustering results with low quality
when the density of data space is not even. Grid-based clus-
tering is based on the idea that the object space is quantized
into a finite number of cells, thereby forming a grid struc-
ture so that all the clustering operations are carried out in
this grid structure. STING (Wang et al. 1997) and CLIQUE
(Agrawal et al. 1998) are the well-known branches of such
clustering. The advantage of grid-based clustering can be
attributed to its great efficiency; namely, the algorithm per-
formance is independent of the number of objects and just
depends on the number of units on each dimension in the data
space. There are also many disadvantages, like being sensi-
tive to choosing parameters, unable to deal with irregularly
distributed data, and curse of dimensionality. Model-based
clustering assumes a model for each class and then looks for
the objects which conform to the model. It tries to get the
best fit between the given data and a mathematical model.
These models are divided into the model based on proba-
bilistic, which includesGMM(Rasmussen 2000), COBWEB
(Fisher 1987), and themodel based on neural network, which
includes SOM (Kohonen 1998), ART (Carpenter and Gross-
berg 1987, 1990). However, it is usually difficult to find the
model or distribution of real datasets before clustering.

All of the above clustering algorithms possess their own
strong points and applicable fields, but the inefficiency in
complex manifold datasets has becoming general character.
Aiming at clustering data with arbitrary shape excellently,
a novel density-based clustering algorithm was proposed,
called QCC (Huang et al. 2017). In comparison with the
performance of DP, DAAP, and DBCAN algorithms, the
efficiency and robustness of the algorithm is manifested.
However, QCC still has some defects, and we enumerate
the most significant two aspects.

First, two parameters of QCC need to be set on the basis of
one’s empirical experience. For the same datasets, different
users estimate the parameters and the results of evaluation
may be varied. Even the same user will also be subject to
inconsistent evaluation under different external conditions. It
therefore becomes a challenge for this clustering algorithm
to get optimal parameters. To solve this problem, we propose

a QCC-PE algorithm to automatically search for the optimal
QCC’s parameter k from the original datasets by using the
potential entropy.

Second, traditional clustering algorithms suffer two main
problems all the time when clustering in high-dimensional
datasets (Tomasev et al. 2014). On the one hand, the
high-dimensional datasets have a large number of irrele-
vant attributes, which makes the possibility of the existence
of clusters in all the dimensions becomes almost zero.
On the other hand, the distribution of the data in the
high-dimensional space is sparser than which in the low-
dimensional space, in which it is common phenomenon that
the distances between the data are almost equal. Thus, it is
not advisable to purely build clusters based on the distance
in high-dimensional space, while the traditional QCC calcu-
lates local density of each point relying entirely on the simple
Euclidean distance between points. To allow QCC algorithm
to apply in high-dimensional space data, we further bring
forward a method called QCC-PE-tSNE, which is based on
t-distributed stochastic neighbor embedding (tSNE).

We test the proposed algorithms in the synthetic datasets,
Olivetti Face Database, and real-world datasets compared
with QCC and some other outstanding clustering algorithms
including DBSCAN and DP. The experimental results show
that the proposed algorithms are very competitive with the
comparisons. The rest of this paper is organized as follows.
Section 2 introduces the related works including introduc-
ing principal concept of the QCC algorithm, the potential
entropy, and the tSNE. Section 3 presents QCC-PE and
QCC-PE-tSNE algorithms in detail. Section 4 gives the
experimental results and comparative analysis. Finally, con-
clusions are drawn in Sect. 5.

2 Related works

2.1 QCC clustering algorithm

QCC clustering algorithm mainly relies on the two ideas:
The density of a cluster center is the highest in its k nearest
neighborhood or reverse k nearest neighborhood, and clus-
ters are divided by sparse regions. This method requires two
important parameters to be manually set in advance: One is
the number of neighbors, denoted by k, and it plays the role of
computing local density and determining quasi-cluster cen-
ters; the other is the similarity threshold value, denoted by α,
and it is the threshold for merging similar classes. These two
parameters are determined in practice through the cumulative
experience of many experiments. Specifically, quasi-cluster
centers number inclines to decrease as the value of parameter
k increases, and larger values of parameter α often result in
more clustering results. In the following, wewill describe the
computation of the local density of each point ρi and the sim-
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ilarity between clusters sim(ci , c j ), which are closely related
by two corresponding parameters.

Suppose that there are point sets X = {x1, x2, . . . , xn}.
Most density-based clustering algorithms, such as DBSCAN
and DP, calculate ρi according to Eq. (1).

ρi =
n∑

j=1

χ(di j − dc) (1)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise; di j
denotes the Euclidean distance between the point xi and x j .
dc is a cutoff distance.

From the point of getting more precise neighborhoods
density distribution, QCC proposes to take both the k near-
est neighbor (KNN) and reverse k nearest neighbor (RKNN)
into account. Eq. (2) gives the calculation method of density
using KNN in QCC.

ρi = 1

Distk(xi )
(2)

where Distk(xi ) is the distance d(xi , o) between xi and
o in X , such that: At least k objects o′ ∈ X/{xi } satisfy
d(xi , o′) ≤ d(xi , o) and at most k-1 objects o′ ∈ X/{xi }
satisfy d(xi , o′) < d(xi , o). KNN and RKNN are used to
determine whether the definition of quasi-cluster center is
satisfied. The definition of KNN(xi ) and RKNN(xi ) is shown
as follows:

KNN(xi ) = {x j | (xi , x j ) ≤ Distk(xi )} (3)

RKNN(xi ) = {x j | (xi , x j ) ≤ Distk(x j )} (4)

When xi satisfies the following condition, xi is called a quasi-
cluster center.

∀x j ∈ KNN(xi ) or RKNN(xi ), ρ(i) ≥ ρ( j) (5)

The computation of sim(ci , c j ) is quite easy that is defined
as the radio of the number of points in ci

⋂
c j and the value

of k as follows:

sim(ci , c j ) = ci
⋂

c j
k

(6)

The following algorithm is a summary of the QCC.

2.2 Potential entropy

Objects in certain areas are usually interrelated and inter-
acting, and each object often has a propagation radius. In
physics, this argument is described by “field”. The physi-
cal volume which only has the size without the direction is
called scalar field, and the physical volume which have the

Algorithm 1 : QCC algorithm
Input: The dataset (X ), the number of neighbor of each point (k), and

the minimum similarity between cluster (α)
Output: The final cluster results C = {c1, c2, . . . , cM }
1: Calculate the density of each point xi according to Eq. (2)
2: Calculate the KNN(xi ) and RKNN(xi ) according to Eqs. (3–4)
3: Search quasi-clustering center according to Eq. (5)
4: Calculate the similarity matrix sim(ci , c j ) between the clusters

according to Eq. (6)
5: Merge all initial clusters those sim(ci , c j ) > α

6: Return C

both size and direction is called vector field. Potential field
is a scalar field and always described by potential function.
Obviously, each data object in the spatial domain contributes
to the potential function. The potential is relatively strong
in relatively intensive regions of data. In contrast, it is rela-
tively weak in the data sparse regions (Barbieri et al. 2014;
Wang et al. 2016; Zang et al. 2017). For the point sets X , the
potential field function is defined as Eq. (7)

ϕi =
n∑

j=1

m j · K
(
di j
σ

)
(7)

where σ is an impact factor which is used to control the
influence range, m j is the mass of x j , and K (x) is a unit
potential function.

The uncertainty of data (i.e., the degree of chaos in the
system) is represented by the topological potential entropy.
The greater the entropy is, the greater the uncertainty is. In
the data field, if the potential value of a data object is equal
to other data objects, the uncertainty of the original data dis-
tribution is the largest, that is, the entropy is the largest. If
the potential value on the data object position is extremely
asymmetric, the uncertainty is minimal, that is, the entropy
is minimal. Let the potential of every point in the field be
{ϕ1, ϕ2, . . . , ϕn} and the potential entropy H be:

H = −
n∑

i=1

ϕi

Z
log

(ϕi

Z

)
(8)

where Z = ∑n
i=1 ϕi is a normalization factor.

2.3 t-distributed stochastic neighbor embedding

As a classical dimensionality reduction algorithm, the tSNE
algorithmadopts a nonlinear dimensionality reductionmethod,
which is distinctly different from linear dimensionality
reduction algorithms such as principal component anal-
ysis (PCA) and linear discriminant analysis (LDA). The
tSNE algorithm (Van der Maaten and Hinton 2008; Van der
Maaten 2014; Gisbrecht et al. 2015) defines a probability
distribution model over pairs of high-dimensional objects
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Fig. 1 Four synthetic datasets
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in such a way that similar objects have a high probability
of being picked, while dissimilar points have an extremely
small probability of being picked. Let X = {x1, x2, . . . , xn}
denote the data points in the high-dimensional space and
Y = {y1, y2, . . . , yn} denote the corresponding embeddings
in the low-dimensional space; the similarity between xi and
x j meets the Gaussian distribution as follows:

pi j = exp(− ‖ xi − x j ‖2 /2δ2)∑
k �=l exp(− ‖ xk − xl ‖2 /2δ2)

(9)

where δ represents the variance of the Gauss distribution.
The tSNE also constructs a similar probability distribution

over the points in the low-dimensionalmap, and the similarity
between yi and y j is modeled by a student t-distribution with
one degree of freedom as follows:

qi j = (1+ ‖ yi − y j ‖2)−1
∑

k �=l(1+ ‖ yk − yl ‖2)−1 (10)

and it minimizes the Kullback–Leibler divergence between
the twodistributionswith respect to the locations of the points
in the map. The tSNE gets the optimal low-dimensional rep-

resentation C(Y ) by minimizing the following cost function
using the gradient descent method.

C(Y ) = K L(P ‖ Q) =
∑

i

∑

j

pi j log
pi j
qi j

(11)

In data preprocessing, tSNE can always simplify the high-
dimensional complex data into characteristic data with the
highest principal component. C(Y ) will represent several
feature vectors that map from a high-dimensional space to
a low-dimensional space, and it is also regarded as simpli-
fied data for clustering analysis.

3 The proposed algorithm

The proposed QCC-PE gives another option for the local
density computation so thatwe can find the optimized param-
eter according to the principle of potential energy. The new
method of computing local density is proposed taking all the
points scattered in space into account on the basis of QCC
that weakens the weight of the first k point to the result,
thereby reducing the consequences of local differences and
taking more attention to the connection between the global
points. The formula is as follows:
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Fig. 2 Clustering result of QCC-PE, QCC, DBSCAN, and DP on dataset Pathbased

ρi =
n∑

j=1

1/Distk(xi )

di j
, j �= i (12)

In Eq. (7), if K (x) is chosen as reciprocal function, namely
the function value K (x) is equal to the reciprocal of the argu-
ment x , and let m j = 1, then the potential ϕi of each point
is calculated as Eq. (13):

ϕi =
n∑

j=1

σi

di j
, j �= i (13)

Let

σi = 1/Distk(xi ), (14)

then Eq. (13) is same as Eq. (12), and the potential of data
field is same as the local density of each point in QCC. In
this case, 1/Distk(xi ) can be calculated in the same way that
is used to optimize the impact factor of data field, namely σ .
Optimal value of the parameter k can be easily obtained if σ

is solved. As for σ , the optimization problem becomes amin-
imization problem of the single variable function H(σ ), that
is, minH(σ ). In view of the time cost of the node topological

potential in the iterative computation, the optimization inter-
val can be approximately estimated, and the optimization
value is accurately searched. In space, the entropy of poten-
tial energy can be used to describe the degree of density and
sparsity of points. Data points with larger potential entropy
are located in the dense region and vice versa. So, through the
behavior of embarking on the potential entropy, the optimal
parameter can be extracted from raw datasets. The following
algorithm is a summary of the proposed QCC-PE.

Algorithm 2 : QCC-PE algorithm
Input: The dataset (X ), the minimum similarity between cluster (α)
Output: The final cluster results C = {c1, c2, . . . , cM }
1: Calculate the optimal value of σ with potential entropy according to

Eq. (13)
2: Obtain optimal value of the parameter k according to Eq. (14)
3: Calculate the density of each point xi according to Eq. (12)
4: Calculate the KNN(xi ) and RKNN(xi ) according to Eq. (3–4)
5: Search quasi-clustering center according to Eq. (5)
6: Calculate the similarity matrix sim(ci , c j ) between the clusters

according to Eq. (6)
7: Merge all initial clusters those sim(ci , c j ) > α

8: Return C
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Fig. 3 Clustering result of QCC-PE, QCC, DBSCAN, and DP on dataset Compound

With the aim of clustering high-dimensional datasets,
we bring forward QCC-PE-tSNE based on the proposed
QCC-PE, which embeds high-dimensional data into low-
dimensional space by using t-distributed stochastic neighbor
embedding (tSNE) in the first step of clustering. After reduc-
ing dimensionality of tSNE, complex datasets containing
multiple attributeswill be represented only by a small number
of attributes that best characterize the potential characteris-
tics of the data. The following algorithm is a summary of the
proposed QCC-PE-tSNE.

4 Experiments and results

The experiments contain three main parts: experiments on
synthetic datasets, experiments on Olivetti Face Database,
and experiments on real-world datasets. The first part is
conducted to verify the validity and power of the proposed
QCC-PE algorithm in two-dimensional space, while the sec-
ond part is conducted to further verify the performance
improvement of QCC-PE than the original algorithm. The
third part is conducted to prove the superiority of the pro-
posed QCC-PE-tSNE algorithm in high-dimensional space.

Algorithm 3 : QCC-PE-tSNE algorithm
Input: The dataset (X ), the minimum similarity between cluster (α)
Output: The final cluster results C = {c1, c2, . . . , cM }
1: Calculate joint probability distribution in high-dimensional space

according to Eq. (9)
2: Calculate joint probability distribution in low-dimensional space

according to Eq. (10)
3: Achieve the optimal low-dimensional representation C(Y ) optimiz-

ing Eq. (11)
4: Calculate the optimal value of σ with potential entropy according to

Eq. (13)
5: Obtain optimal value of the parameter k according to Eq. (14)
6: Calculate the density of each point xi according to Eq. (12)
7: Calculate the KNN(xi ) and RKNN(xi ) according to Eqs. (3–4)
8: Search quasi-clustering center according to Eq. (5)
9: Calculate the similarity matrix sim(ci , c j ) between the clusters

according to Eq. (6)
10: Merge all initial clusters those sim(ci , c j ) > α

11: Return C

4.1 Experiments on synthetic datasets

In order to verify the validity and power of the proposed
QCC-PE clustering algorithm, we first compare QCC-PE
with QCC, DBSCAN, and DP on synthetic datasets. We
conduct experiments on four representative datasets which
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Fig. 4 Clustering result of QCC-PE, QCC, DBSCAN, and DP on dataset S2

are illustrated in Fig. 1. The dataset Pathbased (Chang and
Yeung 2008) is generated by two nearly symmetric spherical
classes and a manifold class that surround them. The dataset
Compound (Zahn 1971) has different sizes, shapes, and den-
sities in terms of the six manifold classes. The dataset S2 (Du
et al. 2016) is composed of 15 spherical classes distributed
in space. The dataset T4.8k (Cassisi et al. 2013) consists of
six high-density manifold classes with some noise points.

Figures 2, 3, 4, and 5 show the clustering results of
QCC-PE on the dataset Pathbased, the dataset Compound,
the dataset S2, the dataset T4.8k, respectively. For the pur-
poses of comparison, the original QCC algorithm, DBSCAN
algorithm, and DP algorithm are used in experiments simul-
taneously, which are also based on the local density.

Figure 2 shows the clustering results of each approach
on the dataset Pathbased. For QCC-PE, the value of opti-
mum parameter σ is 0.261, which is obtained by adopting
the method of potential entropy. We also set many other
parameters manually relied on the experience after many
experiments, such as QCC-PE (α = 0.4), QCC (k = 6,
α = 0.4), DBSCAN (Eps = 1.8, MinPts = 4), DP (right
number of clusters: rn = 3). From Fig. 2, we can see that
QCC-PE produces lots of quasi-clustering centers. However,

aftermerging, thefinal number of clusters plummeted to three
and the clustering result is consistent with human eye obser-
vation to a certain extent. QCC is also successfully clustered
into three categories, but it is obvious that there are much
more errors on clustering points. Although DBSCAN is also
clustered into three classes, it divides a large amount of points
that should have belonged to one class into two classes, and
at the same time, a large number of points which are not
supposed to belong to a class are classified as same class.
In addition, some normal points are regarded as noise points
via this method. DP results in bad clustering results on the
premise that the correct number of clusters is set.

Figure 3 shows the clustering results of each approach
on the dataset Compound. For QCC-PE, the value of the
optimum parameter σ is 0.502, which is obtained by adopt-
ing the method of potential entropy. We also set many other
parameters manually relied on the experience after many
experiments, such as QCC-PE (α = 1.4), QCC (k = 9, α =
1.4), DBSCAN (Eps = 1, MinPts = 3), DP (right number
of clusters: rn = 6). From Fig. 3, we can see that the quasi-
clustering centers of QCC-PE algorithm are not too much.
After further merging, the final number of clusters is reduced
to six and there was no mistake at all. The clustering number
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of QCC is eight. DBSCAN clusters data into five categories
and treats many normal data as noise points. Although the
number of DP clusters is set into right six classes, the result
of clustering in manifold dataset is still unsatisfactory.

Figure 4 shows the clustering results of each approach on
the dataset S2. ForQCC-PE, the value of the optimumparam-
eter σ is 0.567, which is obtained by adopting the method of
potential entropy. We also set many other parameters man-
ually relied on the experience after many experiments, such
as QCC-PE (α = 5), QCC (k = 60, α = 5), DBSCAN
(Eps = 14000, MinPts = 10), DP (right number of
clusters: rn = 15). From Fig. 4, we can see that the quasi-
clustering center number of QCC-PE algorithm is 15, which
is equal to the actual number of clusters. After merging, the
final number of clusters did not change. The results show that
QCC-PEandDPperformbetter than the other two algorithms
whose number of clusters is incorrect.

Figure 5 shows the clustering results of each approach
on the dataset T4.8k. For QCC-PE, the value of the opti-
mum parameter σ is 0.448, which is obtained by adopting
the method of potential entropy. We also set many other
parameters manually relied on the experience after many
experiments, such as QCC-PE (α = 6), QCC (k = 80, α =
6), DBSCAN (Eps = 5, MinPts = 12), DP (right num-

ber of clusters: rn = 6). From Fig. 5, we can see that all
of four algorithms obtain the right number of clusters, that
is, six clusters. What needs to be pointed out here is that
QCC-PE need not to manually set parameter k but automati-
cally obtain that by the optimization algorithm. Even in this
case, its quality of clustering results is better than or equal to
that of QCC. DBSCAN can detect out the noise points, but
some normal points are treated as noise points. By DP, there
are four classes that are incorrectly clustered, and only two
classes can be considered correct.

From the analysis mentioned above and the contrast of the
pictures, we can draw the following conclusions: Although
DP does not need to set parameters and be implemented
easily, the number of clusters needs to be determined subjec-
tively according to the decision graph. For spherical datasets,
DP can achieve excellent clustering results. But the effect of
DP is unsatisfactory when dealing with manifold datasets.
DBSCAN has a strong ability to handle datasets with out-
liers or noises.However, it does not performwell onmanifold
datasets with various densities among clusters. Furthermore,
it also is not good in the complex manifold class having
deceptive characteristics. QCC, by contrast, outperforms
generally the previous two algorithms and can be better
applied to arbitrary shape cluster, and it requires two param-
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Fig. 5 Clustering result of QCC-PE, QCC, DBSCAN, and DP on dataset T4.8k
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Fig. 6 Olivetti Face Database

eters to be manually set yet. Therefore, the superiority of this
algorithm is still not fully embodied subject to the restriction
of the choice of optimal parameter. QCC-PE can make up
for this deficiency, and it is very effective in finding clusters
of arbitrary shape, density, distribution, and number. Obvi-
ously, the effect of QCC-PE algorithm is the best in all these
algorithms as a whole.

4.2 Experiments on Olivetti Face Database

Olivetti Face Database contains a series of face pictures,
which is the most important test data resources in the field
of machine learning and artificial intelligence. The database
has 400 existing pictures from 40 people with each of ten
pictures. The size of each picture is 92 × 112. Like Huang
et al. (2017), we also selected the 100 same pictures of them
as the sample of the experiment which includes ten classes,
the raw images as shown in Fig. 6.

Figure 7 shows the clustering results of the QCC-
PE, QCC, DBSCAN, and DP algorithms on Olivetti Face
Database, respectively. The gray image in the picture rep-
resents the noise points detected by various algorithms. We
can find through comparative research that seven of the ten
classes are successfully clustered by the QCC-PE. In the
rest three classes, there are two classes that both have an
image that is considered as noise, and there is one class that
is identified into two classes. QCC as well as QCC-PE has
the same class of identification, and it is eleven classes. In
general speaking, it treatsmore image as noise thanQCC-PE.
DBSCAN only detects eight clusters, and only three of eight
classes are absolutely right. There are a lot of noise spots that
are wrongly detected. For DP, we select ten points as cluster
centers through decision graph, but only one class conforms
to the facts.

Although it is revealed here that QCC-PE is the most
prominent followed by QCC, DBSCAN, and DP in turn, the
Olivetti Face Database should actually be ten classes rather
than 11 classes that are clustered by QCC-PE. QCC-PE, to

some extent, has improvement over QCC, but still remains a
lot of room to continue to enhance.

4.3 Experiments on real-world datasets

The UCI database is a resource library for the empirical
analysis of machine learning algorithms and is also the
most impactful means of testing the performance of clas-
sification algorithms and clustering algorithm. The material
used in the experiment is eight typical real-world datasets
come from the UCI repository, which include Iris, Seeds,
Heart, Image segmentation, Waveform, Parkinsons, Sonar,
and Libras movement. The details are shown in Table 1.

To quantitatively evaluate the performance of clustering
algorithms of QCC-PE-tSNE, QCC-PE, QCC, DBSCAN,
and DP, the following four indexes are introduced (Xie et al.
2016; Ding et al. 2017, 2018): Adjusted Rand Index (ARI),
Adjusted Mutual Information (AMI), Accuracy (Acc), and
F1 Score (F1). The range of ARI is [−1, 1], and the range of
AMI, Acc, and F1 is [0, 1]. The closer the value of the four
indexes is to 1, the closer the clustering result is to the real
class grouping.

Table 2 shows the ARI, AMI, Acc, and F1 of various
clustering algorithms on real-world datasets. The symbol “–
” means there is no value for that entry, and the best results
are portrayed in boldface. From Table 2, we can reach that
QCC-PE performs best in relatively low-dimensional spaces
such as datasets Iris and Seeds. With the growth of the num-
ber of dimensions, the performance of QCC-PE becomes
worse, and the clustering results cannot even be obtained
on the 60 dimensional spaces such as Sonar dataset. QCC-
PE-tSNE gives an overall highest performance compared
with others in relatively high-dimensional spaces such as
datasets Image segmentation, Waveform, Parkinsons, Sonar,
and Libras movement. DBSCAN own an best performance
on the Heart dataset, in which it is only a little better than
QCC-PE-tSNE in terms of F1.

123



X. Fang et al.

Fig. 7 Clustering results of QCC-PE, QCC, DBSCAN, and DP on Olivetti Face Database
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Table 1 Details of real-world datasets

Datasets Number Dimension Cluster

Iris 150 4 3

Seeds 210 7 3

Heart 270 13 2

Image segmentation 2310 19 7

Waveform 5000 21 3

Parkinsons 195 23 2

Sonar 208 60 2

Libras movement 360 91 15

The reasons about experiment results could be analyzed
as follows: Compared to QCC-PE-tSNE, QCC-PE does
not lose any essential information in the relatively low-
dimensional space, which causes the QCC-PE to grasp the
original features of the data, but QCC-PE-tSNE cannot. As

the dimensions of datasets increase, QCC-PE is difficult or
unable to deal with extremely complex datasets directly lim-
ited by the curse of dimensionality, whereas QCC-PE-tSNE
not only avoids this terrible situation, but also pulls useful
information as much as possible which leads to advantages
gradually appearing in high-dimensional space. DBSCAN
has acceptable stability and is especially suitable for small-
and medium-size datasets. DP fails to cluster on datasets of
Sonar and Heart, due to the fact that only one cluster center
was clearly distinguished by the decision graph and second
cluster center could not be found in those databases.

5 Conclusions

This paper proposes a QCC-PE clustering algorithm, which
focuses on the global relationship between all points on
the basis of QCC and weakens the weight of k nearest

Table 2 Performance
comparison of QCC-PE-tSNE,
QCC-PE, QCC, DBSCAN, and
DP on real-world datasets

Algorithms Iris Seeds

ARI AMI Acc F1 ARI AMI Acc F1

QCC-PE-tSNE 0.713 0.725 0.865 0.925 0.605 0.664 0.828 0.889

QCC-PE 0.938 0.954 0.977 0.963 0.934 0.922 0.933 0.909

QCC 0.907 0.903 0.921 0.914 0.852 0.885 0.915 0.817

DBSCAN 0.732 0.775 0.893 0.805 0.686 0.644 0.881 0.871

DP 0.720 0.767 0.887 0.824 0.734 0.717 0.900 0.807

Algorithms Heart Image segmentation

ARI AMI Acc F1 ARI AMI Acc F1

QCC-PE-tSNE 0.667 0.626 0.815 0.797 0.582 0.686 0.733 0.830

QCC-PE 0.591 0.534 0.626 0.754 0.372 0.412 0.422 0.688

QCC 0.584 0.568 0.624 0.659 – – – –

DBSCAN 0.724 0.682 0.834 0.803 0.227 0.435 0.441 0.534

DP – – – – 0.550 0.651 0.684 0.626

Algorithms Waveform Parkinsons

ARI AMI Acc F1 ARI AMI Acc F1

QCC-PE-tSNE 0.617 0.495 0.864 0.802 0.531 0.453 0.863 0.788

QCC-PE 0.241 0.498 0.674 0.593 0.012 0.118 0.323 0.547

QCC – – – – – – – –

DBSCAN – – – – 0.225 0.205 0.672 0.468

DP 0.268 0.318 0.568 0.487 0.027 0.201 0.610 0.509

Algorithms Sonar Libras movement

ARI AMI Acc F1 ARI AMI Acc F1

QCC-PE-tSNE 0.425 0.564 0.668 0.774 0.563 0.512 0.587 0.751

QCC-PE – – – – – – – –

QCC – – – – – – – –

DBSCAN 0.197 0.242 0.578 0.433 0.154 0.408 0.350 0.425

DP – – – – 0.214 0.390 0.361 0.496
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neighbor in computing local density. To this end, a new
method for calculating density is designed. QCC-PE can
automatically determine optimal parameter k using potential
entropy. Dedicated to applying to high-dimensional datasets,
we incorporate the idea of dimensionality reduction which is
based on t-distributed stochastic neighbor embedding and
further propose QCC-PE-tSNE to improve QCC-PE. The
experimental results on considerable amount of datasets
demonstrate that the proposed algorithms achieve gratifying
results and exhibit a promising performance advantage.
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