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ABSTRACT: Many aspects of maintenance are affected by uncertainty. Observa­
tions obtained through inspection and monitoring are often not more than proba­
bilistic indicators of the underlying complex deterioration processes. Therefore, 
analysis in support of maintenance must usually cope with incomplete information. 
Probabilistic methods are suggested for various aspects of maintenance analysis, 
such as inspection timing, flaw detection, failure rate prediction, reliability as­
sessment, benefit cost analysis, and evaluation of decision alternatives. Examples 
demonstrate the relationship between life span, failure rates and reliability, and the 
probabilistic evaluation of decision criteria and decision alternatives. The proba­
bilistic approach allows the inclusion of subjective experience and judgment in the 
quantitative analysis. This is shown to be especially important when analyzing 
risky decisions. 

INTRODUCTION 

All structures and their components are subject to aging, wear and tear in 
the performance of their functions, and deterioration by exposure to the op­
erating environment. Left to themselves, they will eventually become inef­
ficient, unreliable, and fail. Maintenance problems are ubiquitous in all areas 
of engineering and maintenance methods are rather generally applicable. Here, 
the probabilistic aspects of maintenance will be emphasized and some ap­
plications to hydraulic engineering works will be discussed. 

Maintenance of existing structures is of continuing concern to owners and 
operators for economic, reliability and safety reasons. According to the def­
initions of the U.S. Army Corps of Engineers' repair, evaluation, mainte­
nance, and rehabilitation (REMR) research program (Scanlon et al. 1983), 
maintenance is defined as action that prevents or delays damage or deteri­
oration, or corrects deficiencies that would otherwise lead to early repair or 
need for rehabilitation. Repair is restoration of damaged or deteriorated ele­
ments of a structure to continuing service, while rehabilitation is a major 
modification of an existing structure to bring it up to prevailing operation 
requirements and standards. Here the word maintenance is used sometimes 
in a wider sense that spans these different concepts. 

When a structure reaches a certain level of deterioration or obsolescence, 
economic or safety reasons may demand a slowdown, a halt, or reversal of 
the deterioration process. Maintenance usually can only reduce the deteri­
oration rate but cannot eliminate or reverse it, as a structure can usually not 
maintain, let alone improve itself. Only repair or reconstruction (rehabili­
tation) can bring the structure or equipment back to an improved state or 
the as-good-as-new state. The timing and extent of this intervention must 
often be decided with incomplete knowledge of the actual state of the struc­
ture or equipment, its remaining strength, the loads acting on it, the true 
costs and benefits of rehabilitation alternatives, and other factors. One can 
deal with this uncertainty by allowing inputs to vary over a certain range 
and by considering various paths the improvement or deterioration processes 
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can possibly take. This gives maintenance a probabilistic character, as suc­
cess or failure can be predicted only with some probability. A probabilistic 
process can never be fully controlled, it can only be influenced by decisions 
to intervene in some way, e.g., through maintenance, repair, and rehabili­
tation. 

THE MAINTENANCE PROBLEM 

Maintenance will increase in importance in the years to come. As struc­
tures and equipment reach or exceed their expected life, owners and oper­
ators will have to cope with an increasing incidence of wear-out problems. 
There is no letup in the services demanded from the existing water resources 
infrastructure. Actually, these demands will further increase and diversify, 
making water management all the more complex (Kelley 1990). Funds, as 
well as opportunities for major new construction, reconstruction, or expan­
sion, are scarce and there is public pressure to keep down rates for traditional 
as well as expanded services. This situation calls for cost-effective capital 
investments in the public and private infrastructure sector. The use of new 
technology and materials and of advanced analysis methods can make a sig­
nificant contribution here. 

The magnitude of the maintenance and rehabilitation problem in the water 
resources sector nationwide has been analyzed in a national infrastructure 
study that among others stressed the need for innovative approaches (Schill­
ing 1987). The U.S. Army Corps of Engineers estimates the number of ex­
isting dams in the United States at approximately 70,000. By the year 2000, 
some 20,000 of these dams will be 50-years old or older (New Perspectives 
1983). Of the Corps' 600 major navigation, power, and multipurpose proj­
ects, about 40% will be 50-years old and older by the year 2000 (Scanlon 
et al. 1983). This means that a sizable portion of the existing water resources 
infrastructure will have reached or exceeded its expected life. In response 
to these needs, the Corps' civil works appropriations began to exceed new 
construction appropriations for the first time by the mid-1980s (Markow et 
al. 1989). 

So far, outright failures of major dams, power plants, dikes, etc., have 
been rare, but the incidence of sudden failure is definitely not zero, as re­
ported examples show (Lessons from 1988; Re-assessing the 1990; Jansen 
1988). Keeping down or even reducing the relatively small probability of 
major failures can have an enormous effect, however, on the lives and prop­
erty of many people. But even if the failure rate just stayed constant, reli­
ability will decline, as will be shown herein. This trend must be addressed 
by an appropriate maintenance, repair, and rehabilitation program. Aside 
from keeping major failures in check, maintenance can contribute effectively 
to upholding efficiency in the day-to-day operation of existing projects. In 
the following paragraphs, some probabilistic concepts and methods will be 
presented that exemplify the probabilistic approach to maintenance. 

PROBABILISTIC APPROACH TO MAINTENANCE 

The probabilistic approach is advocated here as a method that can bring 
logic and order to problems whose inputs and underlying processes are un­
certain or incompletely known. Examples are the likely effect of mainte­
nance on the future performance of a structure, the effect of an inspection 
program on unexpected failures, flaw detection in the field, flaw growth 
prediction, assessing the loads and remaining strength of structures, field 
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data interpretation, maintenance scheduling, the choice among maintenance 
alternatives, and benefit-cost analysis. When confronted with incomplete or 
missing information, the practitioner may decide to abandon quantitative 
analysis altogether and resort to an unstructured approach based on experi­
ence, or he may decide to continue the analysis by substituting subjective 
information (assumptions) for the missing information. This latter approach 
is advocated here. 

FLAW DETECTION 

From time to time, structures are reported to have failed just hours, days, 
or weeks after they were inspected. Sometimes this occurs in the aftermath 
of an event, such as a flood or earthquake, but it also happens without any 
unusual exposure. Obviously, the inspection performed was inadequate, as 
it did not or could not recognize the impending failure. Such incidents are 
symptomatic of the uncertainty an inspection must deal with when it comes 
to recognizing design flaws, incipient deterioration symptoms, and the un­
derlying deterioration process. Fig. 1 illustrates crack growth and its sur­
veillance by occasional inspections. After several inspections, here at six-
months intervals, a growth trend seems to emerge that keeps crack growth 
below the critical level of crack depth/wall thickness = 0.8 for some time 
to come. Nevertheless, sudden unexpected failure occurs within the next 
inspection interval. Obviously, the nature of the underlying deterioration 
process was not recognized by the previous inspections or not properly dealt 
with. 

Successful inspection and monitoring depend on adequacy of flaw detec­
tion. Incipient flaws may be below detectable size for the technique used, 
so that their detection probability is zero. Fig. 1 can be interpreted as illus­
trating crack growth below the detection limit, e.g., 0.17, only to assume 
critical size almost as soon as it becomes detectable. Detection probability 
as function of flaw size is shown in Fig. 2 [Davidson (1973) and Rodrigues 
and Provan (1989)]. A good detection method is characterized by a low 
detection threshold and a rapid increase in detection probability, as soon as 
a flaw exceeds detectable size, while a poor detection method may have a 
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FIG. 2. Detection Probability as Function of Pit Depth. Detection Probability Is 
Good if it Has Low Detection Limit and Increases Rapidly with Pit Depth, and Poor 
if it Increases Slowly [Davison (1973) and Rodrigues and Provan (1989)] 

high detection threshold and slow increase in detection capability with flaw 
size. Graham and Kahl (1989) report an incident where water leaking from 
a hydropower penstock revealed pinholes that had perforated the wall. While 
this corrosion damage did not fail the structure, further increase in pinhole 
size and the development of critical pinhole patterns, as well as secondary 
effects, such as undermining of foundations, could eventually lead to failure. 
The failure process is usually complex and makes the detected damage noth­
ing more than a probabilistic symptom of a developing failure sequence. 

INSPECTION INTERVAL 

Successful inspection depends on several factors, such as accessibility 
(frequency of inspection may be low if extended shutdowns are required), 
observation environment (dangerous work .area may make obtaining high-
quality data difficult), flaw detection capability (inadequacy of tools), inter­
pretation of observations (experience), observation error (oversight and mis-
judgment), and performance (observer's skill and reliability) (Meister 1982). 
Modern robotic techniques can overcome some of the inspection problems 
(Heffron 1990). But the layout of surveillance programs, data interpretation, 
and maintenance decisions remain dependent on human experience and judg­
ment. The typically human functions can be supported, however, by the type 
of methods discussed here. Probabilistic inspection guidelines are presently 
under development with the support of various industries (Balkey, personal 
communication, 1989). 

An inspection program's objective is to eliminate unexpected outages by 
preventive maintenance. There are usually many factors that influence the 
timing of inspections. A spillway inspection schedule will probably avoid 
the flood season and a hydropower inspection schedule will avoid the peak 
power demand period. While these considerations can serve as general 
guidelines, the inspection schedule must be related to the underlying dete­
rioration processes. Suppose an indication of such a process is flaw growth. 
If the inspection interval is too short, the flaw is nondetectable, and the 
inspection is superfluous. If the inspection interval is too long, the flaw may 
reach failure size before the next inspection, as illustrated in Fig. 1. The 
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optimal inspection interval is one that meets a stated objective, subject to 
stated constraints. For example, suppose the economic objective aims at 
minimum total cost. The corresponding inspection interval is the one for 
which the incremental failure cost increase is equal to the incremental in­
spection cost decrease. The interval at which the cost minimum occurs is 
the economic optimal interval, as illustrated in Fig. 3. An added safety re­
quirement may, however, restrict the range in which economic optimality is 
acceptable. This is illustrated in Fig. 3 by a limit on the failure rate. As a 
result, the safety-constrained optimal interval is shown to be shorter and 
more expensive than the purely economic optimal interval. 

LIFETIME FAILURE RATES 

The failure rate of a structure or component at any time of its life can be 
estimated as the sum of failure rates from various causes. At the initiation 
of service and in the early years, a structure is exposed to failures from 
design and construction defects and operation errors. If they can be elimi­
nated by repair and learning, the structure or equipment survives the break-
in period. During the subsequent normal service life, the failure rate usually 
drops to a relatively low and constant background level that accounts for 
failures by major random external events, such as extraordinary earthquakes 
or floods, which are rare. As the structure ages, the total failure rate starts 
again to grow because of wear failures. The resulting total lifetime failure 
rate function is known for its characteristic shape as "bathtub curve," and 
is illustrated in Fig. 4 (Harr 1987). 

The Teton Dam failure in 1976 (Arthur 1977) was a typical design defect 
failure. The dam failed by piping along the right abutment, as the reservoir 
was filled for the first time. Eleven persons lost their lives and the damage 
was estimated at some 400,000,000 dollars. The Johnstown dam disaster of 
1889 (Jansen, 1988) was a combined design and wear failure. An inadequate 
dam structure, with a spillway too small and inadequately maintained, was 
overtopped. The subsequent rapid breaching of the 36-year-old dam caused 
a flood that swept into Johnstown, killing 2,209 people. The sudden collapse 
of Malpasset arch dam in France by failure of the left abutment on first 

2069 



FIG. 4. Instantaneous Failure Rates over Project's Life. Sum of Design Defect 
Failure Rates, External Event Failure Rates, and Wear Failure Rates Produces 
"Bathtub Curve" 

impoundment in 1959 (Bellier 1977) was another spectacular example of a 
design failure. Other examples of actual- and near-failure incidents have been 
reported (Lessons from 1983; Jansen 1988). 

Wear failures that develop over time are of primary concern for mainte­
nance. If the criterion for a structure's useful life is a permissible total failure 
rate, then maintenance can prolong the useful life by holding down the wear 
failure rate. Suppose fit) is the probability density function (PDF) of useful 
life, T, a random variable. Then the integral over fit) from zero to a time 
t, F(t), is the probability that life will be less than or just equal to t, or P(T 
^ t). Hence, R(t) = 1 - F(t) is the probability that the equipment will 
survive time t, or its reliability, P(T > t). By definition, dF(t) = f(t)dt, 
where dF(t) is the probability that equipment life will last until t but not 
until t + dt. Thus, f(t)dt is the probability of life to end during the interval 
dt. Now suppose the conditional probability that the equipment will fail, 
given it has not failed up to now, is h(t)dt. Then the probability that the 
equipment will fail in the upcoming time increment dt can be written as 
f(t)dt = h(t)dtR{t) or 

A(0 = 
Rit) 

(1) 

hit) = an instantaneous failure rate at time t, also called "hazard function" 
(Sidall 1972; Moan 1982). 

To illustrate the use of hit), suppose/(r) is a normal PDF of equipment 
life with mean m = 50 years and standard deviation s = 10 years. The 
normalized variate of this PDF is t = (T - m)/s. Then, the useful life, T 
= 50 years, is represented by t = (50 - 50)/10 = 0. The normal PDF is 

fit) = exp (-t2/2)/(sV2v) = 0.0399, F(t) = 0.5 (according to definition), 
and Rit) = 0.5. The failure rate in the 51st year is then h(t) = f(t)/R(t) = 
0.0399/0.5 = 0.08 incidences per year. After 10 more years, T = 60 years, 
t = I, fit) = 0.0242, Fit) = 0.841, Rit) = 0.159, and hit) = 0.0242/ 
0.159 = 0.15 incidences per year. This means that the instantaneous failure 
rate in the 61st year has about doubled from what it was in the 51st year. 
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It continues to increase with increasing age, but not unlimited, as /(f) ul­
timately approaches zero. An illustration of/(f), 7?(f), and hit) is given in 
Fig. 5. The figure also shows that with rising failure rate the equipment 
reliability drops sharply. 

The failure rate function, (1), provides a useful relationship between prob­
ability measures. If/(f) can be estimated from data, h(t) can be found, and 
vice versa, if h(t) can be estimated, /(f) or R(t) can be found. For example, 
if the failure rate for a certain period is known or predictable, the corre­
sponding reliability during this period can be calculated. From (1) and dR(t) 
= -dF{t) = -f{t)dt follows h(t)dt = -dR(t)/R(t). Integrating this latter 
expression yields 

R(h) = R(h) exp h{t)dt (2) 

R(ti) and /f(f2) are the reliabilities at the start and end of the considered 
period, respectively. Suppose the failure rate of equipment over the 50-year 
expected life is estimated to be on the average one failure in a lifetime, h{t) 
= h = l/m. Then, for R(t{) = 1, f2 = m and f] = 0, one obtains R(t2) = 
exp [-(ht2 — hti)] = exp (—1) = 0.368. If maintenance over the expected 
life can reduce the failure rate to half, then R(t2) = exp (—0.5) = 0.6. The 
reliability for a constant failure rate, i?,(f) = exp (—ht), with h = 1/50, is 
shown in Fig. 5. It declines exponentially, even without any increase in the 
failure rate, but at a much smaller rate than the reliability associated with 
the increasing failure rate, h(t). 

RELIABILITY ASSESSMENT 

The evaluation of the decision of whether or not to embark on major main­
tenance may require an assessment of the actual loads on the structure, the 
remaining resistance or strength of the structure, and the costs and benefits 
of alternative maintenance or rehabilitation options. Both load (or total cost) 
and resistance (or total benefit) estimates are usually based on assumptions. 
The true load and resistance (or costs and benefits) will most likely never 
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be known. The conventional allowable stress design (ASD) recognizes this 
problem and uses a safety factor (SF), the ratio of a representative resistance 
and load that is specified to be a certain number greater than one. The load 
and resistance factor design method (LRFD) does not just use one safety 
factor but multiple load factors, one for each type of load, and a separate 
resistance factor (Galambos 1981). 

The probabilistic approach goes a step further and establishes both load 
and resistance effects as probabilistic variables, represented by their PDFs, 
as shown in Fig. 6. For example, the load may be a probabilistic sum of 
subloads sampled from subload PDFs. If loads and resistances are indepen­
dent of each other, a high load may occur with a low resistance and a low 
load with a high resistance, and so forth. The ratio or difference of two 
random variables is again a random variable. Arbitrarily specifying one safety 
factor amounts to selecting one out of many random realizations of possible 
safety factors. The probabilistic approach can actually test the reliability of 
an arbitrarily selected safety factor by answering the following question: Is 
the chosen safety factor (say SF = 1.5) sufficiently reliable? If yes it can 
possibly be lowered; if no, it needs to be raised (Yen 1986). 

Fig. 6 illustrates the possible event of a load L occurring and the proba­
bility that it is exceeded by the resistance. The probability of a load L oc­
curring is f(L)dL, with f(L) the load PDF and dL a load increment, say 1 
MPa. The probability of this load being exceeded by the resistance is 

G'(L) = J g(R)dR , (3) 

with G'(L) = 1 - G(L); and G(L) = the integral over the resistance PDF, 
g(R), from —a> to L. The probability of one event R > L is the product 
G'(L)f(L)dL. The sum of the probabilities of all (mutually exclusive) events 
(only one of them can actually occur at a time) can be expressed by the 
integral 

• 
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P(R > L) = î: G'{L)f{L)dL (4) 

where P(R > L) = the probability that R exceeds L, or the reliability of the 
structure, which can also be written as P(Z > 0), with Z = R — L being 
the limit state equation. The limit state is the state that separates success 
from failure. Here, success is defined as Z > 0. In the numerical example 
of Fig. 6, the areas under/(L) and g(R) are 1 by definition. The area under 
G'{L)f(L), as calculated by (4), is 0.89. This means that for the case ex­
amined, P(Z > 0) = 0.89. The difference in the areas/(L) and G'(L)f(L), 
as illustrated by the departure between the two respective curves, is the de­
parture of the reliability from 1, here P(Z S 0) = 0.11, which is the failure 
probability. 

If the PDFs of the variables are unknown, reasonable assumptions on their 
ranges and frequency distributions can usually be made. A Monte Carlo method 
can be used to sample these distributions and construct the function Z (Ham-
mersley and Handscomb 1967; Sidall 1972; White and Ayyub 1985). The 
analysis in Fig. 6 assumes a crack of 50% wall depth has reduced the stressed 
area to half. Similarly, the reliability for various other crack depths can be 
determined. Thus, the reliability as a function of crack depth can be derived. 
Furthermore, if crack growth can be related to time, the reliability decline 
versus time can be derived and the time when maintenance or rehabilitation 
should be initiated can be calculated. A reliability assessment to determine 
the maintenance need of corroding vertical lift gate members was described 
by Bryant and Mlakar (1987). 

PROBABILISTIC BENEFIT-COST ANALYSIS 

A similar analysis can be used to assess the reliability of a positive net 
benefit. The limit state equation is again the difference of two random vari­
ables, benefit and cost, Z = B — C. Fig. 7 shows the PDFs for benefit and 
cost and for Z, directly derived by the Monte Carlo technique (Taylor and 

FIG. 7. Economic Reliability as Probability of Net Benefit Exceeding Zero. All 
PDFs Are Obtained by Monte Carlo Sampling. Straight Lines Connect Empirical 
Class Frequencies. Crosses Indicate Class Frequencies of Normal PDF Using Means 
and Standard Deviations of Samples [after Taylor and North (1975)] 
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North 1975). The data points represent frequencies of class intervals based 
on 400 evaluations. Both benefits and costs are sums of random variables 
and, according to the central limit theorem (Moan 1982), they approach nor­
mal distributions with increasing sample size, whatever their original distri­
bution, and so does the PDF of Z. The normal PDFs, calculated for the same 
class intervals using the sample means and standard deviations (+ symbols 
in Fig. 7) confirm this useful property of random variables. 

In contrast to Fig. 6, the PDFs of B and C in Fig. 7 do not intersect. 
Numerically this means that G'(L) of (3) (with L representing C) is 1 for all 
L. Thus, also (4) (with R representing B) yields 1 because the area under 
the PDF of/(L) is 1 by definition. Hence, P(B > C) = P{Z > 0) = 1, in 
other words, the probability of a positive economic safety margin is 100%. 
Furthermore, the empirical PDF of B-C shows, that also the threshold value 
of $2,000,000 has 100% probability of being exceeded. This result hinges, 
of course, on the assumptions made for the input variable ranges. 

MAINTENANCE SCHEDULING 

Because of the probabilistic nature of the deterioration process, one never 
knows precisely in what state a structure or component will be found at the 
next inspection. It may have stayed the same, it may have deteriorated some­
what or severely, or it may have failed. If the transition to a new state be­
tween now and the next inspection only depends on the present state and 
the transition probabilities can be influenced by repair decisions, then the 
process can be construed as a Markov decision process (Hastings 1973; Hil-
lier and Lieberman 1974). The possible transitions from the present state to 
possible future states at the end of the considered inspection interval are 
represented by the paths in Fig. 8. Each path has a probability attached to 
it. Now consider two decisions that can be made in the present state: decision 
1, no repair; and decision 2, repair. Without repair, the structure can at best 
remain the same or further deteriorate, but usually it cannot improve itself. 
The possible paths under these decisions are depicted by the solid lines. With 
repair, it is assumed that the structure is restored to the "new" state, from 
where the deterioration process can again take its course. If the maintenance 
period is short compared to the inspection interval, this can be depicted by 
a path that first accesses the "new" state with a delay zero, and from there 
it can access all other possible states. These paths are depicted by the dashed 
lines. The probabilities that highly deteriorated states will again be accessed 
are assumed to be smaller, as a consequence of the repair. 

The probabilities associated with the possible process paths may be ob­
tainable from data, but often they have to be made up by judgement of 
experienced maintenance personnel. In other words, they may represent 
"quantified reasoning" of a maintenance supervisor or a group of experts. 
Benefits and costs are usually associated with each path, such as operation 
revenues, repair costs, replacement costs for lost production, and failure costs 
of an unplanned breakdown (on the path to the failure state). Benefits and 
costs may also be associated with the accessed states. For each decision, an 
expected net return is calculated as the probability-weighed returns of all 
paths. The decision that offers the maximum net return is the economically 
optimal decision. If several inspection intervals need to be considered, the 
procedure can be applied recursively backward in time, starting with the last 
interval. 

The described probabilistic decision process can be expressed by a dy-
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namic programming formulation. Following the notations of Hastings (1973), 
the return of one transition can be expressed by 

f(n,i) = max sum {j = 1, N){p(n,iJ,k)[r(n,i,j,k) + c(n)f(n - l,j, k)]} . . . (5) 

where f(n,i) = the maximum net return picked from the net returns of the 
^-decisions that can be made when the system is in state i at the start of 
stage n (with n — 1 additional stages left to the end of the planning period); 
K = the total number of alternative decisions in state (n,i), for example, k 
= 1 no repair, k — 2 repair, K = 2; p(n,i,j,k) = the probability that the 
process will take path {i,j) during stage n under decisions k; r(n,i,j,k) = 
the net return associated with path (i,j) in stage n under decision k\ f(n — 
1, j , k) = the 7th state accessed at the end of stage n under decision k; c(n) 
= a discount factor for stage n. The sum is taken over the j = 1, . . . , N 
paths out of state (»,«)> weighed by the path probabilities p(n,i,j,k). The 
maximization is performed by picking the largest of the K returns, f(n,i). 
The optimal decision sequence (over several stages) thus found is only valid, 
of course, for stage n. As new information becomes available, usually by 
the begin of the next stage, n — 1, the evaluation must be repeated. A 
spreadsheet implementation of (4) is described in Mays (1989). 

COST EFFECTIVENESS UNDER RISK 

The initial capital outlay is a primary hurdle for major maintenance and 
rehabilitation work. New construction techniques and materials offer ways 
to overcome it. Roller-compacted concrete spillways, rubber dams, and pre-
stressed concrete pipes are examples of new techniques that have been used 
for drastically cutting initial capital investments ("RCC Saves" 1990; Post 
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and Stussman 1989; Boyle 1990). But the use of new techniques and ma­
terials can also make the lifecycle costs of innovative designs highly prob­
abilistic, in other words, the variances for individual cost items, such as 
maintenance costs, (premature) replacementn costs, outage costs, service re­
placement costs, and investment (construction) cost, may be large. The vari­
ance of the total cost, being the sum of all individual cost variances, is also 
increased, e.g., by the factor 2 if a cost of the same variance is added to a 
previous cost. It is readily seen from Fig. 7 that a widened range of the 
total-cost PDF will increase the intersection with the benefit PDF, unless the 
average cost is reduced so that the total-cost PDF is shifted significantly to 
the left. As soon as any intersection occurs, the reliability of B — C > 0, 
R = P(Z > 0), drops below 100%. Thus, the reliability of the design could 
turn out to be unacceptably low while the average net benefit remains pos­
itive. This result supports the intuitive rule that the riskier a design the cheaper 
it must be on the average to achieve the same reliability level of an economic 
criterion, e.g., P(Z > 0) = 100%. 

The probabilistic analysis can, in an implicit way, also include the risk 
attitude of the decision maker through the choice of input variable and sys­
tem parameter ranges and associated PDFs. For example, a very risk-averse 
decision maker may feel more comfortable with wider variable ranges than 
a less risk-averse one. In this way, the probabilistic approach allows a sen­
sitivity analysis of assumptions that are characteristic of the decision maker's 
attitude toward risk. One important aspect of probabilistic analysis must al­
ways be kept in mind: While a value in the vicinity of the expected value 
has the highest probability of being realized, there is always the possibility 
of an extreme outcome actually happening and those responsible must be 
prepared to face it. 

SUMMARY 

Probabilistic methods are suggested as tools for addressing various aspects 
of maintenance, such as inspection timing, flaw detection, reliability anal­
ysis, benefit-cost analysis, and decision analysis. There is no single answer 
to many of the problems encountered. The probabilistic approach can re­
spond by producing multiple answers that cover the range of possible an­
swers, with the most likely answer being the expected value. A typical ex­
ample of a probabilistic approach is the calculation of the probability of 
exceedance of a specified limit state, which may be defined as net benefit 
being greater than zero, or as structural strength exceeding load stress. A 
probabilistic analysis is especially appropriate for analyzing risky designs, 
as it can include subjective variable ranges and probability density functions 
that are representative of the decision maker's risk perception. Omission of 
the fact that benefits and costs are probabilistic can actually lead to non-
conservative results and wrong decisions. Also amenable to this type of anal­
ysis are deterioration processes that cannot be completely controlled but can 
be influenced by decisions that affect the transitions from one deterioration 
state to another. It is concluded that probabilistic methods have the potential 
of significantly contributing to the ultimate goal of maintenance, namely, 
minimizing failures and maintaining satisfactory operational efficiency, ser­
vice reliability, and structural safety. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

B = total benefit of maintenance alternative; 
C = total cost of maintenance alternative; 

c(n) = discount factor for inspection interval n; 
dt = increment of variable r; 

exp (.) = exponential function; 
F(r) = probability distribution of t, P(J § 0; 

f(L) = probability density function of load effect; 
f(n,i) = net return for state / at begin of stage n; 

f(n — 1, j , k) = return associated withy'th state that can be accessed from 
state i during stage n under decision k; 

f(f) = probability density function of variable t, has unit of 
1/standard deviation; 

G(L) = P(R < L), probability distribution of L; 
G'(L) = P(R > L); 
g(R) = probability density function of resistance; 
h(t) = failure rate, unit of 1/time, e.g., 1/year; 

i = structure or system state at start of stage n; 
j = structure or system state at end of stage n; 

K = total number of decisions that are possible when system 
is in state i; 

k = decision number; 
L = load stress on structure or component, computed as 

force/area, in MPa (1 MPa = 145 psi); 
m = sample mean; 

max sum = "find the largest of K sums;" 
kmK 

N = total number of possible paths from state i to new 
state j ; 

n = stage, time interval between inspections or decisions, 
also time instant: start of stage n; 

P(.) = probability; 
p(n,i,j,k) = probability associated with process path (i,j), stage n 

and decision k; 
R = resistance, computed as force/area, in MPa; 

R(t) = reliability of system at time f; 
^?1(0 = reliability calculated for assumed failure rate; 

r(n,i,j,k) = return (net benefit) associated with path (i,j), stage n 
and decision k; 

s = sample standard deviation, has same dimension as mean; 
T = random variable representing project age at breakdown; 
t = realization of random variable T, normalized as t = (T 

— m)/s also period of time for exponential PDF; 
f,,r2 = integration limits, here starting and ending time; and 

Z = limit state variable, random variable. 
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