
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
Published online 23 February 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3736
Performance evaluation of job schedulers on Hadoop YARN
Jia-Chun Lin and Ming-Chang Lee*,†

Department of Informatics, University of Oslo, Oslo, Norway
SUMMARY

To solve the limitation of Hadoop on scalability, resource sharing, and application support, the open-
source community proposes the next generation of Hadoop’s compute platform called Yet Another
Resource Negotiator (YARN) by separating resource management functions from the programming model.
This separation enables various application types to run on YARN in parallel. To achieve fair resource
sharing and high resource utilization, YARN provides the capacity scheduler and the fair scheduler.
However, the performance impacts of the two schedulers are not clear when mixed applications run on
a YARN cluster. Therefore, in this paper, we study four scheduling-policy combinations (SPCs for short)
derived from the two schedulers and then evaluate the four SPCs in extensive scenarios, which consider
not only four application types, but also three different queue structures for organizing applications. The
experimental results enable YARN managers to comprehend the influences of different SPCs and different
queue structures on mixed applications. The results also help them to select a proper SPC and an
appropriate queue structure to achieve better application execution performance. Copyright © 2016 John
Wiley & Sons, Ltd.

Received 7 April 2015; Revised 2 November 2015; Accepted 11 November 2015

KEYWORDS: Hadoop; YARN; capacity scheduler; fair scheduler; queue structure; performance
evaluation
1. INTRODUCTION

Hadoop [1] is an open-source software framework supported by Apache to process high volume of
datasets on a cluster comprising a large number of commodity machines. Because of its simplicity,
cost efficiency, scalability, and fault tolerance, a wide variety of organizations and companies, such
as Google, Yahoo!, Facebook, and Amazon, have used Hadoop for both research and production
[2]. However, the original Hadoop has several limitations [3]. One example is that the slot-based
resource allocation for map tasks and reduce tasks bottlenecks the resource of an entire Hadoop
cluster and results in low resource utilization [3]. Another example is that the original Hadoop
supports only one type of programming model, i.e., MapReduce [4], which is not suitable for
processing all kinds of large-scale computations [3, 5, 6].

To solve these limitations, the open-source community introduced the next generation of Hadoop’s
compute platform called YARN (which is short for Yet Another Resource Negotiator) [3]. Other
names are MapReduce 2.0 and MRv2. YARN allows individual applications to utilize the resources
of a cluster in a shared and multi-tenant manner. Different from the original Hadoop (i.e., all
versions before MRv2), YARN separates resource management functions from the programming
model, and therefore can support not only MapReduce but also other programming models,
including Spark [5], Storm [7], Tez [8], and REEF [9]. In other words, this separation enables
various types of applications to execute on YARN in parallel.
*Correspondence to: Ming-Chang Lee, Department of Informatics, University of Oslo, Oslo, Norway.
†E-mail: mingchang1109@gmail.com

Copyright © 2016 John Wiley & Sons, Ltd.



2712 J.-C. LIN AND M.-C. LEE
To enable a shared compute environment, YARN provides two schedulers to schedule resources to
applications. One is the capacity scheduler (the default scheduler on YARN) [10], and the other is the
fair scheduler [11]. Both of them can organize application submissions into a queue hierarchy.
However, the former guarantees a minimum amount of resources for each queue and uses FIFO
(which stands for first-in first-out) to schedule applications within a leaf queue. The latter fairly
shares resources among all queues and offers three policies, including FIFO, Fair, and Dominant
Resource Fairness (DRF for short) [12], to share resources for all running applications within a
queue. All of the aforementioned scheduling approaches form the following four scheduling-policy
combinations (SPCs for short) and provide great flexibility for YARN managers to achieve their
goals, such as fair resource sharing and high resource utilization.

1. Cap-FIFO, which is the capacity scheduler with the FIFO scheduling policy.
2. Fair-FIFO, which is the fair scheduler with the FIFO scheduling policy.
3. Fair-Fair, which is the fair scheduler with the fair scheduling policy.
4. Fair-DRF, which is the fair scheduler with the DRF scheduling policy.

Although YARN supports the four SPCs and diverse application types, it is unclear how these SPCs
perform when they are individually used to schedule mixed applications. Besides, their performances
are also unknown when different queue structures are utilized. Hence, in this paper, we survey the four
SPCs and all programming models supported by YARN, and then classify all applications into several
types. After that, we conduct extensive experiments to evaluate and compare the performance impacts
of the four SPCs on diverse metrics by considering not only a workload consisting of mixed
application types, but also the following three scenarios. The purpose is to study whether queue
structures influence the performances of the four SPCs or not.

1. One-queue scenario: In this scenario, there is only one queue in our YARN cluster. Hence, all
application submissions must wait in this queue before they are executed.

2. Separated-queue scenario: In this scenario, each type of applications is individually put into a
separate queue.

3. Merged-queue scenario: In this scenario, there are two queues. One is for applications that will
eventually stop by themselves. The other queue is for the rest of the applications.

The experimental results show that (1) all SPCs suffer from a resource fragmentation problem, which
will be explained later. This problem causes that none of the SPCs could successfully complete a
workload consisting of mixed applications; (2) none of the four SPCs always has the best application
execution performance in all scenarios; and (3) among the three scenarios, employing the merged-
queue scenario is the most appropriate for all SPCs since they can achieve a higher workload
completion rate and a shorter workload turnaround time than they are in the other two scenarios.

The contributions of this paper are as follows. (1) This paper provides a comprehensive survey on
current schedulers, SPCs, programming models, and application types supported by YARN; (2) We
extensively evaluate and compare the four SPCs by considering not only mixed application types, but
also diverse queue-structure scenarios; and (3) Based on our experimental results, YARN managers can
choose an appropriate SPC and queue structure to achieve a better application performance for their
YARN clusters.

The rest of this paper is organized as follows. Section 2 describes the related work. Section 3 surveys
the origin of YARN. Section 4 introduces the two schedulers supported by YARN and the four SPCs
derived from the two schedulers. Section 5 describes the programming models supported by YARN
and applications that each programming model can best express and process. In section 6, extensive
experiments are conducted and experimental results are discussed. Section 7 concludes this paper and
outlines our future work.
2. RELATED WORK

There have been several survey articles on job scheduling in Hadoop. Rao and Reddy [13] studied various
Hadoop schedulers, including the default FIFO scheduler [4], the fair scheduler, the capacity scheduler,
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2713
and the delay scheduling [14] etc., by summarizing the advantages and disadvantages of these schedulers.
However, the authors only introduced those schedulers without conducting any experiments to evaluate
and compare their performances. Kulkarni and Khandewal [15] also surveyed several job-scheduling
algorithms in Hadoop. But similar to [13], no performance evaluation was presented in [15]. Another
related survey paper can be found in [16].

In order to improve Hadoop scheduling in terms of job completion time, data locality, or other
performance metrics, many researchers have introduced their scheduling algorithms for Hadoop and
performed experiments to compare their algorithms with those used by Hadoop, such as FIFO, the
capacity scheduler, and the fair scheduler. For example, Zaharia et al. [14] proposed the delay-
scheduling algorithm to improve data locality while maintaining fairness. The authors evaluated their
algorithm with the default FIFO scheduler and the fair scheduler, and demonstrated that their
algorithm outperforms the others in terms of data locality and job response time. The context-aware
scheduler proposed by Kumar et al. [17] and the ThroughputScheduler presented by Gupta et al. [18]
are two examples for improving performance on heterogeneous Hadoop clusters. Both of them were
designed to assign tasks to the most capable nodes such that the resource requirements of the tasks
can be satisfied. They also evaluated their schedulers with those used by Hadoop. However, the
evaluation in [17] is based on a simulation, rather than a real experiment carried out in [18]. Lee
et al. [19] improved data locality for both map and reduce tasks, avoid job starvation, and improve
job execution performance by introducing JoSS (which stands for hybrid job-driven scheduling
scheme). Two variations of JoSS were further introduced to separately achieve a better map-data
locality and a faster task assignment. The authors conduct extensive experiments to evaluate and
compare the two variations with current scheduling algorithms supported by Hadoop. Different from
all aforementioned studies, in this paper, we focus on studying the performance impacts of different
scheduling-policy combinations supported by YARN on mixed applications.

Other studies have been presented to study the performance of Hadoop from different perspectives.
Gu and Li in [20] evaluated the performances of Hadoop and Spark in terms of time and memory cost
when running iterative operations. Their results show that Spark performs faster than Hadoop, but it
consumes more memory than Hadoop. Hence, if memory is insufficient at a moment, the speed
advantage of Spark will reduce. Xavier et al. [21] presented performance comparison between the
current container-based systems, including Linux VServer, OpenVZ, and Linux Containers (LXC), for
MapReduce clusters. Lin et al. [22] studied the impact of various MapReduce policies on job
completion reliability and job energy consumption. To our best knowledge, the study presented in
this paper is the first one that comprehensively studies the impact of current scheduling-policy
combinations supported by YARN on various applications types and meanwhile takes different
queue structures into account.
3. THE ORIGIN OF YARN

In this section, we briefly describe the original Hadoop and its limitations, and then introduce how
YARN solves these limitations.

3.1. Hadoop

Hadoop [1] mainly consists of two key components: Hadoop distributed file system (HDFS) and
MapReduce. The former is designed to reliably store large files across machines in a large cluster by
splitting each file into several blocks and replicating each block to several machines. The latter is a
distributed programming model for users to simply specify their jobs as two primitive functions
(i.e., Map and Reduce) without requiring to handle resource management, job scheduling, and fault
tolerance [4]. Figure 1 illustrates the execution flow of a MapReduce job on Hadoop. First, a client
submits a job to JobTracker, which is a master server responsible to coordinate and schedule the
execution of all jobs. Next, JobTracker schedules each task of the job to an available slave node
called TaskTracker. Each TaskTracker provides a fixed number of map slots and reduce slots to
respectively execute map tasks and reduce tasks assigned by JobTracker. During the execution of the
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 1. The execution flow of a MapReduce job on Hadoop.

2714 J.-C. LIN AND M.-C. LEE
job, JobTracker not only monitors task progress, but also provides fault tolerance for each failed task.
When all tasks of the job are completed, JobTracker informs the client about the completion.

The design of Hadoop leads to several limitations on availability, scalability, resource utilization,
and application support [3]. First, JobTracker is a single point of failure. If it crashes, all jobs cannot
proceed and must restart. Second, Hadoop only supports one single type of programming model,
i.e., MapReduce. Although MapReduce can express and process many applications, it is unsuitable
for iterative applications, streaming applications, interactive data-mining applications, and graph
applications [3]. Third, limiting a slot to execute only one type of task (i.e., either a map task or a
reduce task) might cause low cluster utilization since map slots might be fully utilized while reduce
slots are empty (and vice versa).
3.2. YARN

To solve the aforementioned limitations, YARN separates resource management functions from the
programming model and introduces the following components/roles:

• A global Resource Manager (RM for short): It acts as a center authority in a YARN cluster and
focuses on tracking resource usage and allocating available resources to applications based on
the resource requirements of the applications. Unlike JobTracker, RM does not monitor applica-
tions’ statuses and restart any failed tasks. This responsibility separation enables RM to improve
YARN’s scalability.

• A per-slave Node Manager (NM for short): It is an agent in a slave node to report the node’s
health to RM, wait for instructions from RM, manage containers running on the node, launch con-
tainers for applications, and monitor resource usage of individual containers.

• A per-application Application Master (AM for short): It is the head of a job, which requests con-
tainers from RM and works with NM to execute and manage the execution flow of the job.

• A per-application container: It is a logical bundle of resources (e.g., 1GB of memory and 1 CPU)
on a slave node [3]. Unlike map slots and reduce slots used in the original Hadoop, a container can
run any type of task. This allows YARN to properly allocate resources to applications and im-
prove resource utilization.

With the aforementioned improvements, YARN supports diverse programing models and allows
various application types to coexist on YARN. Figure 2 illustrates the execution flow of an
application on YARN. In step 1, a client submits an application to RM. Then RM in step 2
negotiates with a specified container so as to launch the AM of the application on the container.
After the AM starts, it registers with RM and starts requesting containers from RM (see step 3). Once
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 2. The execution flow of an application on YARN.

PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2715
receiving a container from RM, the AM in steps 4 and 5 provides the container launch specification to
the corresponding NM and executes the application code on the container. During the application
execution, the client can directly communicate with the AM to know current progress and status
(see step 6). When the application completes, the AM deregisters with RM and releases all containers it
uses in step 7. Finally, the AM informs the client about the completion.
4. JOB SCHEDULERS SUPPORTED BY YARN

In this section, we describe the main concepts of the capacity scheduler and the fair scheduler, and then
introduce four SPCs derived from the two schedulers.

4.1. The capacity scheduler

The capacity scheduler [10] is designed for multiple tenants to share a large cluster such that their
applications can be allocated resources under constraints of allocated capacities. The capacity
scheduler supports hierarchical queues to reflect the structure of organizations/groups that utilize
cluster resources. In general, a queue hierarchy contains three types of queues: root, parent, and leaf.
Only leaf queues accept application submission. In fact, the root queue represents the cluster itself,
rather than any organization/group, whereas a parent queue represents for an organization/group or a
sub-organization/sub-group.

The capacity scheduler provides capacity guarantee by allocating a fraction of the cluster resources
to each queue. YARN managers can also limit the maximum capacity for each queue. For example, if
the minimum and maximum capacity allocations of a queue are, respectively, 40% and 60%, it means
that this queue can use at least 40% and at most 60% of the cluster resources. To provide elasticity, the
capacity scheduler allows a queue to use more resource than its capacity allocation if the capacity
allocated to the other queues is not fully utilized.

When cluster resource is available, the capacity scheduler works as follows:

Step 1. It calculates the current capacity used by each leaf queue, i.e., the total amount of resources
used by all applications in each leaf queue. Then, the scheduler picks up the most under-
served queue, i.e., the one with the lowest used capacity among all leaf queues.

Step 2. The scheduler selects an application from the most under-served queue in a FIFO order,
i.e., the application that is submitted to the queue first will be allocated resource first.

Step 3. Upon an application is chosen, the resource is further scheduled to a task of the application
based on the priorities of resource requests assigned by the application.
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



2716 J.-C. LIN AND M.-C. LEE
In this paper, we use the term ‘inter-queue scheduling’ to represent the process of choosing a leaf
queue from all leaf queues, and the term ‘intra-queue scheduling’ to indicate the process of choosing
an application from a leaf queue. Hence, we can see that the capacity scheduler only provides only
one SPC, i.e., Cap-FIFO.

4.2. The fair scheduler

The fair scheduler [11] aims to assign resources to applications such that these applications obtain fair
resources over time. Similar to the capacity scheduler, the fair scheduler supports hierarchical queues
to reflect the structure of an organization/group sharing a cluster, enables each queue to receive its
guaranteed minimum capacity, and limits the maximum capacity for each queue. However, different
from the capacity scheduler, the fair scheduler offers three policies for YARN managers to flexibly
share resources to applications within a queue:

1. FIFO: When this is applied to a leaf queue, available resource will be assigned to an application
that arrives at this queue first.

2. Fair: When this is applied to a leaf queue, available resource will be allocated to an application
that currently uses the least amount of memory among all applications within the queue.

3. Dominant resource fairness: DRF is a fair resource-sharing model introduced by Ghodsi et al.
[12] to generalize max-min fairness to multiple resource types. For each user, DRF calculates
the share of each resource allocated to the user and considers the maximum one among all the
shares as the user’s dominant share. The resource corresponding to the dominant share is the
user’s dominant resource. For example, user U has been allocated <1 CPU, 5000MB> and
the entire capacity of a cluster is <4 CPUs, 8000MB>, implying that U’s current CPU share
and memory share are 1/4 and 5/8, respectively. Hence, U’s dominant share is 5/8, and U’s dom-
inant resource is memory. The goal of DRF is to equalize the dominant shares of all users. When
DRF is applied to a leaf queue, available resource will be preferentially allocated to an applica-
tion that has the smallest dominant share in the queue.

With the aforementioned three scheduling policies, the fair scheduler provides three available SPCs,
i.e., Fair-FIFO, Fair-Fair, and Fair-DRF. Whenever cluster resource is available, the fair scheduler
works as follows:

Step 1. The fair scheduler picks up a leaf queue based on the scheduling policies set for each level of
the queue hierarchy. First, it chooses a sub-queue of the root queue, say queue X, based on the
designated scheduling policy. Next, it chooses a sub-queue of queue X based on the desig-
nated scheduling policy. Then it repeats the same procedure until a leaf queue is reached.

Step 2. The scheduler picks up an application from the chosen leaf queue based on the scheduling
policy set for the leaf queue.

Step 3. Upon an application is chosen, the resource is further scheduled to a task of the application
based on the priorities of resource requests assigned by the application.
5. PROGRAMMING MODELS AND APPLICATION TYPES

In this section, we introduce programming models supported by YARN and classify applications run
on YARN based on their properties.

5.1. Programming models

5.1.1. MapReduce. MapReduce [4] allows a programmer to express his/her computation as a map
function and a reduce function. The former takes an input key/value pair and generates intermediate
key/value pairs. The latter merges all intermediate key/value pairs associated with the same key and
produces final results. Because of the two functions, the execution of a MapReduce job comprises a
map stage and a reduce stage. In the map stage, each map task runs the user-defined map function to
process an input-data block and generate intermediate key/value data. In the reduce stage, each
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2717
reduce task runs the user-defined reduce function to process the intermediate key/value data and
produce the final result. It is well known that MapReduce is designed and suitable for batch
applications [23], such as log analysis and text processing.

5.1.2. Apache Tez. Apache Tez was designed to generalize the MapReduce paradigm. By modeling data
processing as a directed acyclic graph (DAG) with vertices representing application logic and edges
representing movement of data, Apache Tez allows users to express complex data-processing tasks.
When a Tez job executes, it starts at the root vertices of the DAG and continues down the directed edges
till reaching the leaf vertices. Only when all the vertices in the DAG are completed, the job is complete.

5.1.3. Spark. Spark is an open-source computing framework developed to support applications that
cannot be efficiently processed by MapReduce, i.e., the applications that reuse a set of data across
multiple parallel operations. Typical examples include iterative machine-learning applications and
interactive data-analysis applications. Spark employs an abstraction called a resilient distributed
dataset (RDD for short) [5], which is a read-only collection of objects split across multiple
machines/nodes. Users can cache a RDD in memory across multiple Spark workers and reuse it by
using parallel operations, rather than keep retrieving it from HDFS.

With an advanced DAG engine of Spark, a Spark application can have any number of stages.
Furthermore, Spark provides Spark Streaming [24] and GraphX [25]. The former allows users to
process live data streams in a high-throughput and fault-tolerant manner, whereas the latter enables
users to deal with large-scale graph-parallel computation.

5.1.4. Storm. Storm [7] is an open-source distributed computation system for processing large
streams of data in real time. In Storm, a stream is an unbounded sequence of tuples. Each tuple is an
ordered list of elements. For example, (3, 2, 5) is a three-tuple. Each Storm application is defined as
a topology to process incoming streams of data. More specifically, a topology is a directed graph
with a set of vertices and edges. The vertices could be either spout or blot. A spout reads tuples
from an external source and emits them into the topology. A blot processes input streams and
generates output streams. A Storm topology does not eventually finish by itself. Instead, it keeps
processing incoming streams until it is killed.

5.2. Application types

Based on Section 5.1, we learn that YARN supports various applications, and these applications can be
further classified into four types:

1. Two-stage: This type refers to all application expressed by MapReduce.
2. DAG: The type refers to all applications that can be expressed as a DAG, regardless of its struc-

ture and the number of its stages, vertices, and edges.
3. Directed cycle graph (DCG): This type refers to all graph-parallel computations, except for the

applications belonging to the DAG type.
4. Streaming: This type includes all applications for processing streams of data.
6. PERFORMANCE EVALUATION AND COMPARISON

In this section, we evaluate and analyze the performances of the four abovementioned SPCs (i.e., Cap-FIFO,
Fair-Fair, Fair-FIFO, and Fair-DRF). To this end, we established a real YARN cluster by renting 31 virtual
private servers (VPSs) from Linode [26], which is a virtual-private-server provider based in New Jersey,
USA. All the VPSs were located at a same datacenter in Dallas, USA. One VPS acted as RM, and the
other VPSs acted as slave nodes. Each VPS ran Ubuntu 12.04.3 LTS with 2 CPU Cores, 2GB RAM,
48GB SSD Storage, 3TB Transfer, 40 Gbps Network In, and 250 Mbps Network Out [27]. Hence, total
CPU capacity and total memory capacity of the YARN cluster were 60 CPU Cores and 60GB,
respectively. All the experiments were conducted on Hadoop 2.2.0 [28] with Spark 1.0.2 [29].
Table I lists all the parameter settings in our experiments. Other unmentioned parameters follow
the default settings of YARN [28].
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Table I. The parameter setting of our YARN cluster.

Parameter Value

yarn.scheduler.minimum-allocation-mb
(i.e., the minimum memory allocation for every container request at RM.)

1024MB

yarn.scheduler.maximum-allocation-mb
(i.e., the maximum memory allocation for every container request at RM.)

2048MB

yarn.scheduler.minimum-allocation-vcores
(i.e., the minimum virtual-CPU-core allocation for every container request.)

1

yarn.scheduler.maximum-allocation-vcores
(i.e., the maximum virtual-CPU-core allocation for every container request.)

2

yarn.nodemanager.resource.cpu-vcores
(i.e., number of vCores that can be allocated by a node for containers.)

2

yarn.nodemanager.resource.memory-mb
(i.e., amount of memory that can be allocated by a node for containers.)

2048MB

2718 J.-C. LIN AND M.-C. LEE
Without losing the generality, we created a mixed workload to evaluate the four SPCs. Table II
summarizes the details of the workload. Note that the number of each type of application (except for
the streaming type) and the submission order of all the applications in the workload were randomly
determined. The total number of applications is 94, which includes 37 two-stage applications, 28 DAG
applications, 28 DCG applications, and one streaming application. The benchmarks of the two-stage
applications were from [30], and the benchmarks of the other types of applications that are executed in
the YARN-client mode can be found in [31]. Although there is only one streaming application in the
workload, its continuous running property consumes a certain amount of resources, which will be
shown later. The streaming application was the first job in the workload, and it processed streams that
were generated approximately every five seconds. The arrivals of the rest applications followed a
Poisson distribution with the average interval of 32.11 seconds and standard deviation of 27.63 seconds.
Regardless of application types, each of them requires one container to run their AM. Each two-stage
application needs data size

128 MB containers to execute its tasks, but each of the other application types only
needs two containers to run their tasks because each of them was divided into two tasks. Table III lists
the container resource requirement for each application type of the mixed workload.

As mentioned in the Introduction, we consider the following three scenarios to evaluate each SPC.
The purpose is to determine the most appropriate SPC for each queue structure and find out which
queue structure is the most suitable one for mixed applications.

1. One-queue scenario: In this scenario, our YARN cluster has only one leaf queue, implying that
all applications in the mixed workload will be inserted into this queue and wait for execution.
It also means that this queue can use the whole resource of the cluster.
Table II. The details of the mixed workload.

Application type Number Benchmark description Note

Two-stage 37 5 wordcount applications
3 sort applications
8 grep applications
6 wordmean applications
15 wordstandarddeviation applications

Data size:
1GB: 64.86%;
5GB: 29.73%;
10GB: 5.40%

DAG 28 9 JavaHdfsLR applications 192.5KB of input size
9 JavaKMeans applications 17.31MB of input size
10 JavaPageRank applications 14.83MB of input size

DCG 28 28 LiveJournalPageRank applications 32 bytes of input size

Streaming 1 1 JavaQueueStream application Data stream interval: 5 s

The total number of applications is 94 with the average arrival interval 32.11 s and standard deviation 27.63 s.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Table III. The container resource requirement for each application type of the mixed workload.

Application type
Container resource
requirement for AM

Container resource requirement
for each task

Two-stage vCore: 1, Memory: 2048MB vCore: 1, memory: 1024MB
DAG vCore: 1, Memory: 1024MB vCore: 1, memory: 2048MB
DCG vCore: 1, Memory: 1024MB vCore: 1, memory: 2048MB
Streaming vCore: 1, Memory: 1024MB vCore: 1, memory: 2048MB

PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2719
2. Separate-queue scenario: In this scenario, our YARN cluster has four leaf queues. Each queue is
for a different type of application. Hence, applications belonging to a same type will be put into a
same leaf queue. The minimum and maximum capacities of each queue are 25% and 30% of the
cluster resources, respectively.

3. Merged-queue scenario: Two leaf queues are in this scenario. One queue is for streaming appli-
cations with the minimum capacity of 20% and the maximum capacity of 30%. The other queue
is used to put the other types of applications. Its minimum capacity and maximum capacity are
80% and 90%, respectively.

In addition, to comprehensively evaluate and compare the four SPCs, the following six metrics are
used:

1. Workload completion rate: It shows the percentages of the workload that can be successfully
completed. Note that in this paper, if an application can be successfully finished, this application
is considered as complete. Otherwise, it is considered as failed. In addition, if the streaming ap-
plication can continue processing streams during the entire workload execution, it is also consid-
ered as complete.

2. Cumulative workload completion rate: This metric shows the cumulative workload completion
rate during the workload execution.

3. Workload turnaround time: It is the time period starting when the first application of the workload
is submitted to our YARN cluster and ending when the execution of the entire workload ends
(except for the streaming application), no matter if some of them are failed or not.

4. Average system load: It shows the average number of containers launched by our YARN cluster
during the workload execution.

5. Streaming throughput: It is the amount of data stream that the YARN cluster can process per
minute.

6. Total delay: It is the time required by the YARN cluster to schedule and process a stream of data.

To achieve a fair performance comparison, each of the four SPCs was carefully tested and evaluated
for five times, no matter which scenario was employed.
6.1. The one-queue scenario

In this subsection, we show the execution performances of the four SPCs in the one-queue scenario.
Figure 3 shows that when the four SPCs were individually employed to run the workload, some
applications of the workload could not finish because of failing to obtain containers. None of them
can achieve 100% of completion rate. The key reason is that the container-based resource allocation
utilized by YARN causes that no slave at the same moment has sufficient available resources to
launch a desired container for an application. We call this a resource fragmentation problem. In our
experiment, some containers request 1024MB of memory, and some other request 2048MB of
memory. Hence, if an application needs a container with 2048MB of memory but no slave can
afford it at the moment, this application cannot be executed.

Although all SPCs suffer from the resource fragmentation problem, Cap-FIFO provided the highest
workload completion rate (about 98.09%). This is because Cap-FIFO tends to launch a new container
from a used slave as long as the remaining resource of the slave is sufficient to create the container.
This property can be seen by comparing Figure 4a with Figures 4b–d. Figure 4a shows that when
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 3. The average workload completion rates and average workload turnaround time of the four SPCs in
the one-queue scenario.

Figure 4. The available memory of all slaves at the first three minutes of the workload execution.

2720 J.-C. LIN AND M.-C. LEE
Cap-FIFO was tested, five slaves had no memory available and four slaves had 1GB of memory
available at the first minute of the workload execution. However, Figures 4b–d illustrate that when
the other three SPCs were tested, more than four slaves had 1GB of memory available at the first
minute, meaning that these slaves cannot create a container for any applications that need a
container with 2GB of memory. Based on the above results, we can see that the container launch
manner used by Cap-FIFO is more gentle, which mitigates the resource fragmentation problem and
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2721
therefore improves workload completion rate. Due to the same reason and the resource fragmentation
problem, both Fair-FIFO and Fair-Fair had lower completion rates than Cap-FIFO. However, we
found that the workload completion rate of Fair-DRF was not significantly impacted, implying that
the DRF policy used by Fair-DRF can also mitigate the aforementioned problems.

Figure 3 also depicts the average workload turnaround time of the four SPCs. Although Fair-Fair led
to the shortest average workload turnaround time, it is not a good SPC for the one-queue scenario since
its completion rate was lower than those of Cap-FIFO and Fair-DRF. Based on the average workload
completion rate, average workload turnaround time, and standard deviation shown in Figure 3, we can
see that Fair-DRF performs the best, whereas Fair-FIFO performs the worst.

Figure 5 illustrates the average cumulative workload completion rates of the four SPCs during the
workload execution. We can see that the four curves are almost overlapped, implying that all SPCs
have similar workload execution speeds. Figure 6 illustrates the average system load of the four
SPCs. When Cap-FIFO was tested, the cluster in average launched 1112 containers to perform the
workload. This value is lower than those of the other three SPCs, implying that Cap-FIFO saves
more containers than the other SPCs.

Figure 7 shows the average streaming throughput of the four SPCs. At the beginning of the
workload execution, all SPCs could process more than 12 streams of data per minute. However, as
more applications of the workload were submitted to the cluster, all SPCs’ streaming throughputs
reduced. Nevertheless, we still can see that Fair-DRF provides a slightly higher throughput than the
others. Figure 8 illustrates the average total delays of the four SPCs. No matter which SPC was
utilized, the differences among their average total delays at the first quartile, median, and the third
quartile were insignificant, and their standard deviations were similar to each other, implying that
these four SPCs have indistinguishable performance in terms of total delay.
Figure 5. The average cumulative workload completion rates of the four SPCs in the one-queue scenario.

Figure 6. The average system load when the four SPCs were individually employed in the one-queue
scenario.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 7. The average streaming throughputs of the four SPCs in the one-queue scenario.

Figure 8. The average total delays of the four SPCs in the one-queue scenario.

2722 J.-C. LIN AND M.-C. LEE
Based on the results shown in Figures 3 to 8, we draw the following conclusions: If applications’
execution performance is the most important concern, Fair-DRF is the most recommended SPC for
the one-queue scenario because of its good performance in terms of workload completion rate,
workload turnaround time, and streaming throughput. However, if we only consider resource-usage
efficiency, Cap-FIFO is suggested since it uses less containers than the other SPCs.

6.2. The separate-queue scenario

In this subsection, we evaluate how the four SPCs perform in the separate-queue scenario. Note that all
SPCs had close cumulative workload completion rates during the workload execution, so the results
were not depicted to save paper space.

Figure 9 shows that Cap-FIFO provided the highest workload completion rate and the smallest
standard deviation among all SPCs. However, Cap-FIFO in this scenario could not complete as
many applications as it could in the one-queue scenario (please compare Figure 9 with Figure 3).
The main reasons are two. First, each queue in the separate-queue scenario can use at most 30% of
the cluster resources. Second, the streaming application always occupies 5 vCores and 5120MB,
i.e., 8.3% of the cluster resources. Hence, the other three queues for the two-stage, DAG, and
DCG applications can only utilize at most 30% of the cluster resources individually, no matter
that they need more. Compared with the one-queue scenario, the resources available for the two-stage,
DAG, and DCG applications in the separate-queue scenario reduced, and hence caused more
application faults.

The above phenomenon not only occurs when Cap-FIFO was utilized, but also happens when the
other three SPCs were tested. By comparing Figure 9 with Figure 3, we can see that the workload
completion rates of Fair-FIFO, Fair-Fair, and Fair-DRF in the separate-queue scenario were not as
high as those in the one-queue scenario. The situation is even worse for Fair-DRF since its average
completion rate dropped to 95.96% with a very large standard deviation, implying that Fair-DRF is
inappropriate for the separate-queue scenario.
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 9. The average workload completion rates and average workload turnaround time of the four SPCs in
the separate-queue scenario.

PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2723
Figure 9 also reveals that the average workload turnaround time of Cap-FIFO was longer than those
of the three SPCs, and its corresponding standard deviation was the largest despite its high workload
completion rate. On the other hand, even though Fair-FIFO’s workload completion rate was the
second best (see Figure 9), its workload turnaround time was shorter than Cap-FIFO’s. Hence, from
the perspective of both workload completion rate and workload turnaround time, Fair-FIFO is more
suitable for the separate-queue scenario. By comparing Figure 9 with Figure 3, we see that the four
SPCs in the separate-queue scenario led to a slightly longer workload turnaround time than they did
in the one-queue scenario, implying that employing four leaf queues is no better than employing one
leaf queue.

Figure 10 shows the average system load caused by the four SPCs. By comparing Figure 10 with
Figure 6, we find that all SPCs in the separate-queue scenario led to a lower average system load
than they did in the one-queue scenario. This is because the resource fragmentation problem and the
capacity limit for each queue disallow these SPCs to launch more containers to run the workload,
which therefore impacts workload completion rate.

Figure 11 illustrates the average streaming throughput of the four SPCs in the separate-queue
scenario. We can see that the streaming throughputs of Fair-Fair and Fair-DRF were both less
than 12 streams per minute. The key reason is that when these two SPCs were employed in the
separate-queue scenario, the resources allocated to the streaming queue were mostly occupied by
the other applications. More clearly, each queue for the two-stage, DAG, and DCG applications
used 30% of the cluster resources, and the streaming queue only used 10%. Because of such
resource competition in Fair-Fair and Fair-DRF, the streaming application was unable to provide
a good throughput.
Figure 10. The average system load when the four SPCs are individually employed in the separate-queue
scenario.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 11. The average streaming throughputs of the four SPCs in the separate-queue scenario.

Figure 12. The average total delays of the four SPCs in the separate-queue scenario.

2724 J.-C. LIN AND M.-C. LEE

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe
Figure 12 shows the average total delays of the four SPCs. Since Fair-Fair and Fair-DRF had low
streaming throughput, we can see that their average total delays at the median and third quartiles
were slightly longer than those of Cap-FIFO and Fair-FIFO.

Based on the results shown in Figures 9 to 12, we conclude that Fair-FIFO is the best in the separate-
queue scenario from the perspective of applications execution performance. In addition, if we compare
the performances of the four SPCs in the separate-queue scenario with those in the one-queue scenario,
we found that all SPCs have better performance in the one-queue scenario since they did not suffer
from the resource shortage problem caused by the capacity limitation of each leaf queue in the
separate-queue scenario. Hence, using one queue to organize the mixed applications is better than
using four queues.

6.3. The merged-queue scenario

In order to study whether these SPCs can perform better than they do in the previous scenarios, in
this subsection we evaluate them in the merged-queue scenario. Figure 13 illustrates that both
Cap-FIFO and Fair-DRF achieved the highest completion rate (about 97.87%), and both Fair-FIFO
and Fair-Fair provided the second best completion rate (about 97.52%). By comparing Figure 13
with Figure 3, we can see that the workload completion rates of all SPCs (except for Cap-FIFO)
increased in the merged-queue scenario, implying that for these SPCs, separating the streaming
application and the other three types of applications into two different queues enables more
applications of the workload to be successfully completed. The key reason is that the resource
used by the streaming application was at most 8.3% of the entire cluster resources. Hence, the rest
of the resources allocated to the streaming queue could be freely competed by the other types of
applications.

Although Cap-FIFO performed as good as Fair-DRF in terms of workload completion rate, its
workload turnaround time was slightly longer than that of Fair-DRF (please see Figure 13).
Similarly, even though Fair-FIFO had the same completion rate as Fair-Fair, its workload
turnaround time was slightly longer than that of Fair-Fair. By comparing Figure 13 with Figure 3, it



Figure 13. The average workload completion rates and average workload turnaround time of the four SPCs
in the merged-queue scenario.

PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2725
is clear that all SPCs led to a slightly shorter workload turnaround time in the merged-queue scenario.
Hence, we can conclude that the merged-queue scenario not only improves the workload completion
rates for almost all SPCs, but also shortens their workload turnaround time.

Figure 14 illustrates that Cap-FIFO has the lowest average system load among all SPCs, and it was
not affected by all the three scenarios, implying that Cap-FIFO is the most efficient in terms of
container usage. However, the same situation does not occur when the other SPCs were tested. We
can see that the average system loads of Fair-Fair and Fiar-DRF slightly increased in the merged-
queue scenario (please compare Figure 14 with Figure 6). This is because in the merged-queue
scenario, these SPCs could complete more applications of the workload, and hence, the total number
of containers used to run the workload increased.

Figure 15 illustrates the streaming throughput of all SPCs. We can see that only Fair-DRF has the
streaming throughput less than 12 streams per minute since the resources allocated to the streaming
queue under this SPC were mostly used by other applications. However, the same problem was
mitigated when Fair-Fair was utilized. By comparing Figure 15 with Figure 11, it is clear that the
streaming throughput of Fair-Fair improved when the merged-queue scenario was employed.
Figure 16 illustrates the average total delays of the four SPCs. Since Fair-DRF’s streaming
throughput was not good during most time of the workload execution, its average total delays and
standard deviation were slightly higher than those of the other SPCs.

Based on the experiment results shown in Figures 13 to 16, we conclude that Cap-FIFO and Fair-DRF
are both recommended for the merged-queue scenario since they can achieve high workload completion
rate. However, if workload turnaround time is further considered, Fair-DRF performs slightly better than
Cap-FIFO. On the other hand, if streaming throughput is considered, Cap-FIFO is slightly better than
Fair-DRF. But from the viewpoint of resource-usage efficiency, Cap-FIFO is still the best.
Figure 14. The average system load when the four SPCs are individually employed in the merged-queue
scenario.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



Figure 15. The average streaming throughputs of the four SPCs in the merged-queue scenario.

Figure 16. The average total delays of the four SPCs in the merged-queue scenario.

2726 J.-C. LIN AND M.-C. LEE
Table IV. The most recommended SPC when different metrics and different queue-structure scenarios are
considered.
7. CONCLUSIONS AND FUTURE WORK

In this paper, we have surveyed the four SPCs and four application types supported by YARN. To fully
understand the performance impacts of the four SPCs on mixed application types, we conducted
extensive experiments by considering not only a workload comprising mixed application types, but
also three different queue-structure scenarios (i.e., one-queue scenario, separate-queue scenario, and
merged-queue scenario). Based on the experimental results, we draw the following conclusions and
summarize our suggestions in Table IV.

1. Fair-DRF is the best choice for the one-queue scenario since it leads to a higher workload
completion rate and shorter workload turnaround time as compared with the other three SPCs.

2. Fair-FIFO is the most recommended SPC for the separate-queue scenario due to its good
performance in terms of both workload completion rate and workload turnaround time.

3. Cap-FIFO and Fair-DRF are both appropriate for the merged-queue scenario. However, Cap-
FIFO is slightly better than Fair-DRF in streaming throughput and resource-usage efficiency,
whereas Fair-DRF is slightly better than Cap-FIFO in workload turnaround time.
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe



PERFORMANCE EVALUATION OF JOB SCHEDULERS ON HADOOP YARN 2727
4. From the viewpoint of resource-usage efficiency, Cap-FIFO performs the best in the one-queue
and merged-queue scenarios since the total number of containers launched by Cap-FIFO to
execute the workload is less that those launched by the other three SPCs.

If we take the experimental results of all the scenarios into consideration, it is apparent that
employing the merged-queue scenario is the best choice for all SPCs since it enables almost all
SPCs to achieve high workload completion rate and shorten workload turnaround time. On the
contrary, utilizing the separate-queue scenario is not recommended because it worsens workload
completion rates and prolongs workload turnaround time for almost all SPCs.

Our future work is study how various combinations of applications of a workload impact the
aforementioned SPCs and further to propose a new scheduler for YARN such that the resource
fragmentation problem can be mitigated and workload completion rate can be improved.
ACKNOWLEDGEMENTS

The work was supported by the scholarship of the Sandwich Programme supported by the Ministry of
Science and Technology, Taiwan and Deutscher Akademischer Austausch Dienst (DAAD) under Grants
NSC 102-2911-I-100-524 and NSC 101-2911-I-009-020-2. The authors also want to thank the anonymous
reviewers for their reviews and suggestions to this paper.

REFERENCES

1. Hadoop, http://hadoop.apache.org (October 30, 2015)
2. Hadoop Wiki, PoweredBy, http://wiki.apache.org/hadoop/PoweredBy (October 30, 2015)
3. Vavilapalli VK et al. (2013). Apache Hadoop Yarn: Yet Another Resource Negotiator, in: Proceedings of the 4th

ACM annual Symposium on Cloud Computing (SOCC’13).
4. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM 2008;

51(1):107–113.
5. Zaharia M et al. (2012). Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing,

in: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation.
6. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. (2010). Spark: cluster computing with working sets, in:

Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing.
7. Toshniwal A et al. (2014). Storm@ twitter, in: Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, pp.147–156.
8. Apache Tez. http://tez.apache.org (October 30, 2015)
9. Chun B-G et al. (2013). REEF: retainable evaluator execution framework, in: Proceedings of the VLDB Endowment,

6(12), pp. 1370–1373.
10. Hadoop MapReduce next generation - capacity scheduler, http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/

hadoop-yarn-site/CapacityScheduler.html (October 30, 2015)
11. Hadoop MapReduce next generation - fair scheduler, http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-

yarn-site/FairScheduler.html (October 30, 2015)
12. Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker S, Stoica I. Dominant resource fairness: fair allocation of

multiple resource types. NSDI 2011; 11:24–24.
13. Rao BT, Reddy LSS. Survey on improved scheduling in Hadoop MapReduce in cloud environments. International

Journal of Computer Applications 2011; 34(9):29–33.
14. Zaharia M, Borthakur D, Sarma JS, Elmeleegy K, Shenker S Stoica I. (2010). Delay scheduling: a simple technique

for achieving locality and fairness in cluster scheduling, in: Proceedings of the 5th European Conference on
Computer Systems, pp. 265–278.

15. Kulkarni AP, Khandewal M. Survey on Hadoop and introduction to YARN. International Journal of Emerging
Technology and Advanced Engineering 2014; 4(5):82–87.

16. Pakize SR. A comprehensive view of Hadoop MapReduce scheduling algorithms. International Journal of Computer
Networks & Communications Security 2014; 2(9):308–317.

17. Kumar KA, Konishetty VK, Voruganti K, Rao GV. (2012). CASH: context aware scheduler for Hadoop, in:
Proceedings of the International Conference on Advances in Computing, Communications and Informatics,
pp. 52–61.

18. Gupta S, Fritz C, Price B, Hoover R, de Kleer J, Witteveen C. ThroughputScheduler: learning to schedule on hetero-
geneous Hadoop clusters. In ICAC. ACM: San Jose, CA 2013; 159–165.

19. Lee M-C, Lin J-C, Yahyapour R. “Hybrid job-driven scheduling for Virtual MapReduce clusters”, accepted by IEEE
Transactions on Parallel and Distributed Systems (TPDS), 2015. DOI: 10.1109/TPDS.2015.2463817

20. Gu L, Li H. (2013). Memory or time: performance evaluation for iterative operation on Hadoop and Spark, in: 2013
IEEE 10th International Conference on High Performance Computing and Communications and 2013 IEEE Inter-
national Conference on Embedded and Ubiquitous Computing, pp. 721–727.
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe

http://hadoop.apache.org
http://wiki.apache.org/hadoop/PoweredBy
http://tez.apache.org
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html


2728 J.-C. LIN AND M.-C. LEE
21. Xavier MG, Neves MV, Rose CAFD. (2014). A performance comparison of container-based virtualization systems
for MapReduce clusters, in: 22nd Euromicro International Conference on Parallel, Distributed and Network-based
Processing, pp. 299–306.

22. Lin J-C, Leu F-Y, Chen Y-p. Impact of MapReduce policies on job completion reliability and job energy
consumption, IEEE Transactions on Parallel and Distributed Systems 2015; 26(5):1364–1378.

23. Zhang Y, Gao Q, Gao L, Wang C. iMapReduce: a distributed computing framework for iterative computation.
Journal of Grid Computing 2012; 10(1):47–68.

24. Spark Streaming Programming Guide, http://spark.apache.org/docs/1.0.2/streaming-programming-guide.html
(October 30, 2015)

25. GraphX Programming Guide, https://spark.apache.org/docs/latest/graphx-programming-guide.html (October 30,
2015)

26. Linode, https://www.linode.com (October 30, 2015)
27. Linode/pricing, https://www.linode.com/pricing (October 30, 2015)
28. Apache Hadoop 2.2.0, http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.

html (October 30, 2015)
29. Spark 1.0.2 Documentation, http://spark.apache.org/docs/1.0.2/ (October 30, 2015)
30. Running MapReduce examples on Hadoop YARN, http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-

2.1.3/bk_using-apache-hadoop/content/running_mapreduce_examples_on_yarn.html (October 30, 2015)
31. Basic Spark: Java examples, https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/

examples (October 30, 2015)
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2711–2728
DOI: 10.1002/cpe

http://spark.apache.org/docs/1.0.2/streaming-programming-guide.html
https://spark.apache.org/docs/latest/graphx-programming-guide.html
https://www.linode.com
https://www.linode.com/pricing
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
http://spark.apache.org/docs/1.0.2/
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_using-apache-hadoop/content/running_mapreduce_examples_on_yarn.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_using-apache-hadoop/content/running_mapreduce_examples_on_yarn.html
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples

