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Abstract The study of dam-break analysis is considered important to predict the peak
discharge during dam failure. This is essential to assess economic, social and environ-
mental impacts downstream and to prepare the emergency response plan. Dam breach
parameters such as breach width, breach height and breach formation time are the key
variables to estimate the peak discharge during dam break. This study presents the eval-
uation of existing methods for estimation of dam breach parameters. Since all of these
methods adopt regression analysis, uncertainty analysis of these methods becomes nec-
essary to assess their performance. Uncertainty was performed using the data of more than
140 case studies of past recorded failures of dams, collected from different sources in the
literature. The accuracy of the existing methods was tested, and the values of mean
absolute relative error were found to be ranging from 0.39 to 1.05 for dam breach width
estimation and from 0.6 to 0.8 for dam failure time estimation. In this study, artificial
neural network (ANN) was recommended as an alternate method for estimation of dam
breach parameters. The ANN method is proposed due to its accurate prediction when it was
applied to similar other cases in water resources.
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Nat Hazards

1 Introduction

Dams are multipurpose structures that are constructed to improve human life. It is built for
the production of hydroelectric power, economic improvement, providing water for irri-
gation and water supply and flood control (Hooshyaripor et al. 2014). Therefore, dams are
essential element of infrastructure for any country (Wahl 2010; Razad et al. 2013). There
are currently over 45,000 large dams being used throughout the world (DHI Water &
Environment, 2009), and 800,000 dams have been constructed up to date (Zagonjolli
2007). Dams are usually classified under two different groups: earthen/rock and gravity.
Figure 1 indicates the ratio of four dam types which are constructed in Europe and USA
from 1900 to 1969. Most of the dams that are built during this period are earthfill and
rockfill which is about 60% of the total number of dams. The second type is gravity dams
that represent 25%, whereas the buttress and arch dams form the remaining 15%.
Embankment (earthfill and rockfill) dams consist of compacted impermeable material
(core) combined with coarse material (earth or rock) to return the water.

The huge water volume that is retained in the reservoir can cause a serious flood to the
properties and population in the downstream area if a sudden release from the stored water
occurs (Razad et al. 2013). Dam failures are very rare, but they do occur. When dams do fail,
usually it contributes to the catastrophic consequences. This is often because local com-
munities are not sufficiently prepared. The amount of life or property loss that can occur
from a dam breach has increased to a larger number during the past few decades. This is
because there has been a lot of development in these areas that would be affected if a dam
breach occurs (DHI Water & Environment 2009). Janson (1980) summarized some well-
known dam failures around the world. He found that about 2000 constructed dams were
failed around the world since the twelfth century. There are approximately 200 dams that
were failed during the last century which resulted in the death of more than 11,100 people.
Johnstown dam in USA, Vajont dam in Italy and Machhu dam in India are the worst three
dam failures which nearly caused 6800 of the deaths alone. Table 1 shows the examples of
destructive dam failure throughout the world which collected from literature review.

Dam breach analysis is an important element in the dam failure assessment. There are
many existing approaches for estimation of dam breach parameters. But most of these
approaches included many uncertainties which affect the accuracy of their predictions. In
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Fig. 1 Types of built dam present in Western Europe and USA
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Table 1 Loss of life and property damage from notable dam failures

Dam name and location Failure No. of live ~ Economic losses
date lost

Mohegan Park, Conn 1963 6 $3 million

Little Deer Greek, Utah 1963 1 Many summer cabins damaged

Baldwin Hills, Calif. 1963 5 1027 houses and 100 apartments
destroyed and damaged

Swift, Mont. 1964 19 Unknown

Lower Two Medicine, Mont. 1964 9 Unknown

Lee Lake, Mass 1968 2 26 houses destroyed and damaged

One manufacturing plant destroyed or

damaged

Buffalo Creek, West Va. 1972 125 1084 houses destroyed or damaged

Lake “O” Hills, Ark. 1972 1 Unknown

Canyon Lake, South Dakota 1972 33* Unable to separate the damage
because the failure caused by
natural flooding

Bangiao and Shimantan 1975 85,000

Beer Wallow, North Carol. 1976 4 One house destroyed

Teton, Idaho 1976 11 1300 cattle died, and 80% of the city
were destroyed (which resulted in
over $2 billion in damages)

Laurel Run, Penn. 1977 39 25 houses destroyed and damaged

Sunday Run and 5 others, Penn. 1977 5 Unknown

Kelly Barnes, Georgia 1979 39 33 houses and trailers are damaged,
and 7 college building destroyed
and damaged

Swimming Pool, NY 1979 4 Unknown

About 20 dams in Conn. 1982 0 Unknown

Lawn Lake, Colo. 1982 18 bridges destroyed, 117 businesses
damaged, 108 houses damaged,
and campground, fisheries, power
plant damaged

DMAD, Utah 1983 1 Unknown

Val di Stava, Italy 1985 268 Destroyed 63 buildings and
demolished eight bridges

Kantale, Sri Lanka 1986 120-180 Destroyed over 1600 houses and
2000 acres of paddy, affecting over
8000 families

Meadow Pond, USA 1996 1 damaged some homes and many
vehicles

Opuha, New Zealand 1997 0 Unknown

Shihgang, Taiwan 1999 - Unknown

Zeyzoun, Syria 2002 22 Unknown

Hope Mills, USA 2003 0 $2.1 million

Big Bay, USA 2004 0 27 homes were destroyed, and 21
homes had major damage

Gusau, Nigeria 2006 40 500 homes were destroyed

Situ Gintung, Indonesia 2009 98 250 homes were damaged
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Table 1 continued

Dam name and location Failure No. of live Economic losses
date lost
Kyzyl-Agash, Kazakhstan 2010 43 Unknown
Fujinuma, Japan 2011 8 Five homes were damaged, disabling
a bridge and blocked roads

Koprii, Turkey 2012 10 Unknown

Tokwe Mukorsi, Zimbabwe 2014 0 Unknown

Bento Rodrigues, Brazil 2015 17 Unknown

* Lives that would not have been lost if the dam had not failed

this study, historical records of more than 140 failed dams around the world were used to
assess the accuracy of these approaches and suggest a new approach in order to improve
the accuracy of predicting dam breach parameters.

2 Causes of dam failure

Many researches have identified the reasons that have caused a dam failure. A survey of
about 1620 failed dams was introduced by the Spanish publication in 1961 (Gruner 1963).
About 308 dams which include 57% earth dams, 23% gravity dams, 3% arch dams and
17% of other types were failed during the period from 1799 to 1944. Biswas and Chatterjee
(1971) investigated 300 failed dams around the world, and it was concluded that about 35%
of these dams were failed by overtopping due to the insufficient capacity of the spillway,
25% by seepage and settlement and remaining 40% due to the results from different causes
such as inaccurate design, poor maintenance and other reasons (Fig. 2).

Based on literature survey, causes of dam failure can be classified into three types:
overtopping, seepage or piping and foundation problems. In the case of concrete dams,
failure mainly occurred due to the foundation problems which formed about 53%, while
the main sources of embankment dam failure are seepage or piping that represents 38%.
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Fig. 2 Models of breach development (Froehlich 2008)
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Table 2 Causes of dam failure

during the period of 1975-2011 Causes of dam failure Number of failure  Percentage (%)
Flood or overtopping 465 70.9
Piping or seepage 94 14.3
Structural 12 1.8
Human related 4 0.6
Animal activities 7 1.1
Spillway 11 1.7
Erosion/slide/instability 13 2.0
Unknown 32 4.9
Other 18 2.7
Total number of dam failures 656 100
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Fig. 3 Schematic of piping hole (State of Colorado Department of Natural Resources Division of Water
Resources 2010)

Generally for all types of dam, about 34% of dam failures were caused by overtopping,
30% by foundation problems and about 28% by piping. The updated statistics of the causes
of dams are given in Table 2.

The incidence of the causes of dam failures as a function of the dam’s age during the
time of failure is shown in Fig. 3. Foundation failure occurs early in the dam’s history,
whereas other causes take a relatively longer time to develop. A very large percentage of
all dam failures occurs during the initial filling since this is the time when the design or
construction flaws or latent site defects will appear.

3 Breach mechanisms for embankment dams

The breach is the opening which develops during the occurrence of dam failure. The actual
mechanism of dam failure can be described partially for the embankment dams and lesser
for the concrete dams. Before 1970, many researchers adopted the mechanism of complete
and instantaneous dam failure to forecast the flooding in downstream, which results from
dam failure (Ritter 1892; Schocklitch 1917; Re 1946; Dressler 1954; Stoker 1957; Su and
Barnes 1970; Sakkas and Strelkoff 1973). There are several factors that affect the shape of
breach in the embankment dam such as embankment dimensions, material used in con-
struction, method of construction, slope protection cover, reservoir geometry and flow
entering the reservoir during failure and failure mode. There are many sources of
embankment dam breaches, but the most breach modeled is the overlapping or piping.
Therefore, only these two mechanisms are described in this study.
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3.1 Overtopping failure

Overtopping or flooding considers the commonest type of embankment dam failure. This
type of failure may occur differently according to the composition of the embankment. There
are three different models that are widely used to classify the failure of embankment dam as
shown in Fig. 2. All of these models consider first stage of breach which happens at the top of
embankment dam and expands in the form of triangle shape or is trapezoid with time.

The breach geometry can be represented by width, height and side slope of the final
form of breach. In model A which is shown in Fig. 4, at the beginning the breach will start
with a triangle form until the breach reaches its lowest elevation at the bottom. Then, the
breach starts to grow laterally, and the shape of the breach becomes trapezoidal. In model
B, the breach will continuously expand in both height and width until it reaches the final
height and width. In model C, the breach bottom width is considered constant. Therefore, it
is recommended from the previous survey and experimental research of dam failures that
model A is considered as the most realistic model to describe the breach formation process.
Ralston (1987); Powledge et al. (1989a, 1989b) have provided a useful description of the
dam erosion mechanism that is caused by overlapping, whereas Miller and Ralston (1987)
illustrated lots of past dam failures, but Hanson et al. (2005) explained the stages of breach
formation and divided into four stages:

1. Development of a head cut on the slope of downstream side.

2. Head cut expansion through the crest of embankment dam.

3. Breach development as the head cut enters the reservoir.

4. And lateral expansion of the breach during reservoir drawdown.

3.2 Piping/internal erosion failure

Piping or seepage is the second commonest type of embankment failure. Piping can take
place through the movement of water or concentrated seepage which will occur inside the
dam. The embankment eroded by the seepage gradually, and large voids were taking place
in the embankment. Generally, downstream toe is considered as a first place of piping
initiation and continues toward the upstream side. The erosion of soil becomes fast when
the voids are larger. The damage of the embankment crest may happen when the piping
holes expand. Figure 3 shows the formation of piping hole.

In Fig. 3, D is piping hole width/height (assumed as a square), L is length of pipe, Hp is
breach depth for piping, Z is the horizontal slope of the embankment, and C is dam top
width. Piping failures can be divided into two stages. First stage occurs before dam crest
damage, and the second stage occurs after the dam crest is damaged. Water flowing is
modeled as orifice flow during the first stage and weir flow in the second stage. The
reservoir may be completely released in the first stage for the small dams (State of Col-
orado Department of Natural Resources Division of Water Resources 2010).

4 Existing methods with its uncertainty
Embankment dams have considered the widely constructed type of dams around the world,

and it fails with different mechanisms (Elmazoghi 2013). Their failures produce serious
flood to the properties and population in the flooded or inundation regions and may put the
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infrastructures in these regions out of service. In order to study the failure of embankment
dam failure, the breach parameters are considered as key variables and should be estimated
accurately due to their effect on degree of failure risk and amount of peak outflow. The
configuration of breach in embankment dams was assumed to grow from triangular to
trapezoidal through the breach formation procedure (Wahl 1998).

There are two methods being adopted to estimate the dam breach parameters. The first
method is a case study method which is based on the information from previous dam
failures. The method is considered not accurate due to its small database. However, the
method includes three submethods. The first submethod is parametric method which uses
the hydraulic principles to estimate failure time, breach parameters and peak outflow. Also,
this submethod can be used to route the flood hydrograph at downstream. The second
submethod is empirical which based on the statistical analysis of past recorded dam failure.
Table 3 shows empirical methods for breach parameter estimation. Comparative analysis
method is the third submethod and considered as the simplest one. In this submethod, the
parameters of the dam under study (height, width, side slope) and reservoir characteristics
(area and volume) are compared with the dams that have similar characteristics and then the
breach parameters and peak outflow for the most similar dam used for the dam under study.
The second method is called physical, and it depends on the physical principles to construct
the model. This model tries to determine the relationship between the inputs. This is a
generally clear concept, but it may be more complex if the parameters change with time. In
embankment breach analysis, the parameters change with time as the embankment erodes
and the water in the reservoir is released. At this time, the models depend on geotechnical
and sediment transport relationships. Despite many physical models presented for research
purpose, the National Weather Service’s BREACH program (NWS BREACH OR
BREACH) is the most used model. This model (BREACH) provides broader information,
but it is not considered to be accurate (Wahl 2010). Additionally, there are many physical

Table 3 List of existing methods for dam breach parameters estimation

Investigator No. of case Equation Equation no.
studies

Breach width equations

Johnson and Illes (1976) - 0.5Hy < By > 3Hy (1)
Singh and Snorrason (1982) 20 2H4 < Bayg > 5Hy 2)
USBR (1988) - B, = 3H,, 3)
Von Thun and Gillette (1990) 78 Bave = 2.5HW + G, 4)
Froehlich (1995a, b) 63 B = 0.1803K,,. V%32 B0 5)
Froehlich (2008) Byve = 0.27K,** (V) 13 (6)

0.789
Xu and Zhang (2009) Bue/Hy — 5.543 (Vév/Hw) (ec‘) 7

Failure time equation

Von Thun and Gillette (1990) 36 Tt = 0.15H,, (for high erodible) 8)
Ty = 0.15H,, + 0.25 (for erosion
resistance)

Froehlich (1995a) 34 T; = 0.00254(V,,)*>*(Hy)~%° 9)
Froehlich (2008) T¢ = 0.0176[(Vo/ (gHp)1*? (10)
Xu and Zhang (2009) Tr = 0.304 B T(HH)HVIRIH )% (1)

@ Springer



Nat Hazards

models for dam-break analysis, such as DAMBRK, HEC-RAS and MIKE 11 (Atallah
2002). Commonly, these models suffer from inadequate recognize of the breach progress
and depend on sediment transport and water discharge equation. Practically, most common
methods used regression analysis to estimate the dam breach parameters (U. S. Bureau of
Reclamation 1988; Von Thun and Gillette 1990; Froehlich 1995b).

Where B, is average breach width (m), Hq is height of dam (m), H, is height of breach
(m), V,, is volume of water in reservoir at failure time (m>), H,, is height of water in
reservoir at failure time (m), K, is factor which is 1.4 for overtopping and 1 for piping, C;
is coefficient related to failure mode and dam erodibility, B is factor related to dam type,
erodibility and failure mode, and C, is factor depends on V,, as shown below:-

V, = 10° <1.23 1.23-6.17 6.17-12.3 >12.3
Cp 6.1 18.3 42.7 54.9

The regression analysis equations are beneficial, especially for the variables that have
linear relationships (Costa 1985). In the regression analysis method, it is assumed that all
points have equal value of variance and the distribution of them around the best fit line is
almost followed Gaussian distribution. When this assumption is violated, the regression
analysis will produce inaccurate results. Several existing regression methods proposed the
linear relationship between the breach parameters and one or more parameters that are
related to the dam and/or reservoir. This supposition may be true when applied to small
dams that have similar dimensions and materials. Higher degree of uncertainty will result
in the breaching process when the erodibility material changes. (Hanson et al. 2005).

Wahl (2004) assessed several of existing relationships that were presented to determine the
dam breach parameters. He used 108 recorded dam failures and found the percentage error
between predicted and actual values. He found that most of the estimated dam failure time was
under-predicted compared with the recorded data. Also, Wahl (2004) explains the uncertainties
in the predicted breach parameters and their effect on the risk evaluation when these methods
were used. According to his analysis, the uncertainty of breach width was found to be around
+1/3 order of magnitude, while for failure time it is about &1 order of magnitude. For peak
outflow, the uncertainty was about £0.5 to &1 order of magnitude, but when Froehlich peak
flow equation was used, the uncertainty was about &=1/3 order of magnitude (Wahl 2004). Also,
Pierce et al. (2010) described the uncertainty analysis of breach parameters.

Based on the above-mentioned facts, most of the methods used to estimate the dam
breach parameters have some uncertainties. The sources of these uncertainties are the
limited data that related to small dams and the nonlinear relationships between dam breach
parameters. Therefore, it is very necessary to find out a more accurate method to estimate
the dam breach parameters.

5 Performance evaluation of existing methods

Analysis of dam risk is considered very important and essential to prevent dam failure and
to reduce their consequences. Hence, to evaluate the dam risk, quantitative analysis of dam
breach development is considered necessary, and it can be represented by geometrical and
hydrological parameters of breach (Xu and Zhang 2009). Also, routing the flood hydrol-
ogy, estimation of inundated area and determining the available time for warning in the
downstream region are more affected by breach parameters. Therefore, to simulate the
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flood wave and its effects on the downstream region the dam breach geometrically must be
well described (Gee2009).

On the other hand, most of the analysis resulted from dam break has been carried out
by using generated flood input data (Atallah 2002). In some cases, sensitivity analyses
have also been adopted in which a range of input estimates are used to assess the
robustness of decision justifications based on risk assessment outcomes. However, the
approach of sensitivity analysis is considered limited because it does not provide the
estimation of output distribution that would result from the joint distribution of input
uncertainties. Therefore, sensitivity analysis provides little, if any, idea of the relative
likelihood associated with the outputs that are obtained from a particular combination
of inputs. In contrast, uncertainty analysis does provide any additional information
(Atallah 2002).

In this study, analysis of uncertainties was performed using the database of more than
140 case studies of past recorded failures of dams, collected from different sources in the
literature. The existing equations for breach parameters prediction were applied to the
recorded database, and the plots of the predicted values against the observed values were
performed. Table 4 and 5 show the results obtained from applying the existing
approaches for predicting the average breach width and failure time. The nonlinear
nature of the relationships between dam breach parameters makes the task of estimating
these parameters or finding these relationships difficult. The most commonly used
approach in the predicting dam breach parameters is the regression analysis. From the
analysis of the results, it was noted that the prediction obtained from these methods is
not accurate compared with the data of failed dams. The accuracy of the prediction was
assessed using statistical indices such as mean absolute relative error (MARE) and root
mean square error (RMSE). Table 4 shows the values of MARE and RMSE for
approaches used for predicting the average breach width. Values of MARE are ranging
from 0.39 to 0.72, while values of RMSE are ranging from 41.4 to 70.79 where the
recorded values were ranging from 2.29 to 367 m. The lowest value of MARE was
obtained by testing Eq. (7), while the highest value was obtained by testing Eq. (1).
Table 5 shows the values of MARE and RMSE for approaches used for predicting
failure time. Values of MARE are ranging from 0.69 to 0.72, while values of RMSE are
ranging from 0.36 to 2.32 where the recorded values were ranging from 0.17 to 7.3 h.
The lowest value of MARE was obtained by testing Eq. (9), while the highest value was

Table 4 Assessment of various approaches for predicting of dam breach width

Method Equation Equation no.  Statistical parameters
MARE RMSE
Johnson and Tlles (1976) 0.5hy < B < 3hq 6} 1.05 70.79
Singh and Snorrason (1982) 2hy < B < 5hy 2) 0.88 37.18
USBR (1988) B = 3hy, 3) 0.51 49.63
Von Thun and Gillette (1990) B,y = 2.5k, + Cp* “) 0.47 44.57
Froehlich (1995a, b) Baye = 0.01803K, (VO (HY')  (5) 0.40 4279
Froehlich (2008) Baye = 0.27K,%* (V,,) ' (6) 0.41 4137
Xu and Zhang (2009) 1 0739 Q) 0.39 48.50

B —5543( 1) (e9)

C3 = b4 + bj***
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Table 5 Assessment of various approaches for predicting of dam failure time

Method Equation Equation no. Statistical
parameters
MAPE RMSE
Von Thun and Gillette Ty = 0.015(h,,) for highly erodible dams (8) 0.80 2.32
(1990) Tr = 0.015(hy,) + 0.25 for erosion-resistant
dams
Froehlich (1995a, b) Ty = 0.00254(V2:33)(hy ) 9) 0.6 15
Froehlich (2008) Ty = 0.0176[(Vi)/(gh$)]*? (10) 0.6 15
Xu and Zhang (2009) TdT, = 0.304(ha/h)* " (V3In,) 228 B (11) 0.7 1.84
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Fig. 4 Performance of Eq. (3) for dam breach width estimation

obtained by testing Eq. (8). The performances of Eqs. 3, 4, 5, 6 and 7 in predicting the
average breach width are shown in Figs. 4,5,6,7 and 8. The highest accuracy in pre-
dicting the average breach width was obtained by applying Eq. (7) since most of the
predictions obtained by applying this equation were located within +20% from the line
of perfect agreement. The performances of Eqs. 8, 9, 10 and 11 in predicting the failure
time are shown in Figs. 9,10,11 and 12. Although the performance of Froehlich method
in 2008 (Eq. 5) and (Eq. 10) is relatively better than the other tested methods for the
dam breach width and dam failure time estimation, respectively, the prediction MARE
from these two equations found more than 20% which is considered not acceptable for

accurate prediction.

Nowadays, a new approach has been presented as an alternative to the conventional
statistical approach in several fields. Artificial neural networks (ANNs) which are
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considered as the alternative technique having usefulness exceed traditional statistical
models such as a free pattern of forecasting model, toleration to data inaccuracy and their
data-driven nature (Azmatullah et al. 2005). ANN is considered as massively parallel
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distributed data processing technique which has specific achievement aspects like bio-
logical neural networks of the human brain (Haykin1994).

6 Concept, approach and application of ANN

Design and management of water resource projects involve studying and analysis of
hydrology, hydrogeology, hydraulic and environment concepts. There are many challenges
related to modeling, forecasting and estimation of parameters such as precipitation, flood
discharge, stream flow, water level and others that are facing water resource engineers.
These challenges or difficulties are caused by the nonlinear nature of these parameters
which make their accurate estimation difficult and uncertain. However, many attempts
have been made to solve theses problems. One of the most effective solutions is using
artificial neural network (ANN) in planning, design and management of water resource
projects. ANN is one of the most effective artificial intelligence tools that have magnificent
attributes that can recognize the pattern or relationship between variables without any more
explanation. ANN has ability to extract the relationships between inputs and outputs, even
if the data are little and have some noise. From all the above capabilities of ANN, it is
recommended to apply this technique in water resource simulation and modeling.

McCulloch and Pitts (1943) were the first to introduce the concept of how the brain
could produce complex patterns by using basic cells called neurons that are connected to
each other. McCulloch and Pitts (1943) presented an artificial neuron model with binary
input and output and an activation threshold. Neural networks are commonly thought as
black boxes trained to a particular function on a substantial number of data tests. It is made
out of countless interconnected handling components (neurons) working as one unit to
solve different problems. Neural systems have impressive capability to get signed from
confounding or lose information, and they can be utilized to concentrate designs and
recognize patterns that are too complicated to be in any way observed by either people or
other computer strategies. The general architecture of the neural network has three layers
of neurons, including input, hidden and output layers, as shown in Fig. 13. The perceptron
is a type of artificial neural network invented in 1957 by Rosenblatt (1958). The perceptron
that shown in Fig. 14 takes a vector of real-valued inputs, calculates a linear combination
of these inputs and then outputs results based on some activation function (Zagonjolli
2007). Numerous hypothetical and laboratory researches were explained that the ANN
with one hidden layer or a single hidden layer is adequate to approximate the function
which has a complex nonlinearity. It is likewise proposed that a furthest point for the
numbers of neurons in the hidden layer be lesser than 2n + 1, where n is the input neuron
number (Hecht-Nielsen 1987).

Feed-forward back-propagation (FFBP) algorithm is considered a widely adopted
algorithm in research accomplished using neural network and used more than back-
propagation algorithm the second algorithm that has many problems such as the low speed
in training convergence and entanglement and difficultly in a local minimum (Hay-
kin1994). In later years, many attempts have carried out by researchers to solve or reduce
these problems and enhance the artificial neural network efficiency. Ramirez et al. (2005)
developed the back-propagation algorithm resilient for training the network to using ANN
to forecast the rainfall in Brazil, and they find that the results can enhance when adopting
of back propagation. In addition, Levenberg—Marquardt algorithm (LMA) has been sug-
gested by other researchers. Noori et al. (2010) used artificial neural network to forecast
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Fig. 13 Artificial neural network architecture (Gibbs et al. 2006)
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Fig. 14 A perceptron (Zagonjolli 2007)

weekly solid waste. Chau (2006) adopted particle swarm optimization to find the optimum
weights and biases of the network to predict the Shing Mun river water level. He used the
results and compared it with the standard back-propagation algorithm results, and he
showed his model superiority. Rogers et al. (1995) proposed genetic algorithm (GA)
instead of SBPA.

In addition to its simplicity and capability, the use of artificial neural network (ANN) in
prediction, forecasting, modeling and estimation of the variables in water resources
engineering is being increasing rapidly. Table 6 summarizes the application of ANN in
water resources in recent years. From Table 6, it can be noted that ANN is widely used in
various disciplines of water resources engineering and showed reasonable accuracy.
Among those, it is recommended to use ANN for dam breach parameters prediction.
Additionally, new parameters such as dam characteristics or reservoir characteristics will
be used as input data to find new models which represent a new relationship for estimation
of breach parameters.
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7 Conclusion

This study presents a review of the previous studies that covered dam breach parameters
estimation and discussed their accuracy. There are many existing approaches to estimate
the dam breach parameters. It found that these approaches were based on regression
analysis. These approaches were derived using limited data, and this affects the accuracy of
the prediction obtained from these approaches. Moreover, the relationships used for
determining the dam breach parameters are complex, and any simplification of these
relationships will also affect their accuracy.

The prediction from the existing approaches (regression analysis) was validated using
data of more than 140 failed dams around the world. The values of the computed MARE
for the existing approaches confirm that linear approaches are less accurate than the
nonlinear ones. Also, the results confirm the need for a more accurate approach.

The artificial neural network approach is widely applied for solving various types of
problems of water resources. Although it is not specifically applied for dam-break analysis,
it is possible to use it for such problems. ANN technique can be used instead of regression
analysis to estimate the dam breach parameters due to the fact that this technique has
ability to simulate the nonlinearity of variables and give accurate results.
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