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Abstract The study of dam-break analysis is considered important to predict the peak

discharge during dam failure. This is essential to assess economic, social and environ-

mental impacts downstream and to prepare the emergency response plan. Dam breach

parameters such as breach width, breach height and breach formation time are the key

variables to estimate the peak discharge during dam break. This study presents the eval-

uation of existing methods for estimation of dam breach parameters. Since all of these

methods adopt regression analysis, uncertainty analysis of these methods becomes nec-

essary to assess their performance. Uncertainty was performed using the data of more than

140 case studies of past recorded failures of dams, collected from different sources in the

literature. The accuracy of the existing methods was tested, and the values of mean

absolute relative error were found to be ranging from 0.39 to 1.05 for dam breach width

estimation and from 0.6 to 0.8 for dam failure time estimation. In this study, artificial

neural network (ANN) was recommended as an alternate method for estimation of dam

breach parameters. The ANN method is proposed due to its accurate prediction when it was

applied to similar other cases in water resources.
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1 Introduction

Dams are multipurpose structures that are constructed to improve human life. It is built for

the production of hydroelectric power, economic improvement, providing water for irri-

gation and water supply and flood control (Hooshyaripor et al. 2014). Therefore, dams are

essential element of infrastructure for any country (Wahl 2010; Razad et al. 2013). There

are currently over 45,000 large dams being used throughout the world (DHI Water &

Environment, 2009), and 800,000 dams have been constructed up to date (Zagonjolli

2007). Dams are usually classified under two different groups: earthen/rock and gravity.

Figure 1 indicates the ratio of four dam types which are constructed in Europe and USA

from 1900 to 1969. Most of the dams that are built during this period are earthfill and

rockfill which is about 60% of the total number of dams. The second type is gravity dams

that represent 25%, whereas the buttress and arch dams form the remaining 15%.

Embankment (earthfill and rockfill) dams consist of compacted impermeable material

(core) combined with coarse material (earth or rock) to return the water.

The huge water volume that is retained in the reservoir can cause a serious flood to the

properties and population in the downstream area if a sudden release from the stored water

occurs (Razad et al. 2013). Dam failures are very rare, but they do occur. When dams do fail,

usually it contributes to the catastrophic consequences. This is often because local com-

munities are not sufficiently prepared. The amount of life or property loss that can occur

from a dam breach has increased to a larger number during the past few decades. This is

because there has been a lot of development in these areas that would be affected if a dam

breach occurs (DHI Water & Environment 2009). Janson (1980) summarized some well-

known dam failures around the world. He found that about 2000 constructed dams were

failed around the world since the twelfth century. There are approximately 200 dams that

were failed during the last century which resulted in the death of more than 11,100 people.

Johnstown dam in USA, Vajont dam in Italy and Machhu dam in India are the worst three

dam failures which nearly caused 6800 of the deaths alone. Table 1 shows the examples of

destructive dam failure throughout the world which collected from literature review.

Dam breach analysis is an important element in the dam failure assessment. There are

many existing approaches for estimation of dam breach parameters. But most of these

approaches included many uncertainties which affect the accuracy of their predictions. In

Fig. 1 Types of built dam present in Western Europe and USA
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Table 1 Loss of life and property damage from notable dam failures

Dam name and location Failure
date

No. of live
lost

Economic losses

Mohegan Park, Conn 1963 6 $3 million

Little Deer Greek, Utah 1963 1 Many summer cabins damaged

Baldwin Hills, Calif. 1963 5 1027 houses and 100 apartments
destroyed and damaged

Swift, Mont. 1964 19 Unknown

Lower Two Medicine, Mont. 1964 9 Unknown

Lee Lake, Mass 1968 2 26 houses destroyed and damaged

One manufacturing plant destroyed or
damaged

Buffalo Creek, West Va. 1972 125 1084 houses destroyed or damaged

Lake ‘‘O’’ Hills, Ark. 1972 1 Unknown

Canyon Lake, South Dakota 1972 33* Unable to separate the damage
because the failure caused by
natural flooding

Banqiao and Shimantan 1975 85,000

Beer Wallow, North Carol. 1976 4 One house destroyed

Teton, Idaho 1976 11 1300 cattle died, and 80% of the city
were destroyed (which resulted in
over $2 billion in damages)

Laurel Run, Penn. 1977 39 25 houses destroyed and damaged

Sunday Run and 5 others, Penn. 1977 5 Unknown

Kelly Barnes, Georgia 1979 39 33 houses and trailers are damaged,
and 7 college building destroyed
and damaged

Swimming Pool, NY 1979 4 Unknown

About 20 dams in Conn. 1982 0 Unknown

Lawn Lake, Colo. 1982 3 18 bridges destroyed, 117 businesses
damaged, 108 houses damaged,
and campground, fisheries, power
plant damaged

DMAD, Utah 1983 1 Unknown

Val di Stava, Italy 1985 268 Destroyed 63 buildings and
demolished eight bridges

Kantale, Sri Lanka 1986 120–180 Destroyed over 1600 houses and
2000 acres of paddy, affecting over
8000 families

Meadow Pond, USA 1996 1 damaged some homes and many
vehicles

Opuha, New Zealand 1997 0 Unknown

Shihgang, Taiwan 1999 – Unknown

Zeyzoun, Syria 2002 22 Unknown

Hope Mills, USA 2003 0 $2.1 million

Big Bay, USA 2004 0 27 homes were destroyed, and 21
homes had major damage

Gusau, Nigeria 2006 40 500 homes were destroyed

Situ Gintung, Indonesia 2009 98 250 homes were damaged
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this study, historical records of more than 140 failed dams around the world were used to

assess the accuracy of these approaches and suggest a new approach in order to improve

the accuracy of predicting dam breach parameters.

2 Causes of dam failure

Many researches have identified the reasons that have caused a dam failure. A survey of

about 1620 failed dams was introduced by the Spanish publication in 1961 (Gruner 1963).

About 308 dams which include 57% earth dams, 23% gravity dams, 3% arch dams and

17% of other types were failed during the period from 1799 to 1944. Biswas and Chatterjee

(1971) investigated 300 failed dams around the world, and it was concluded that about 35%

of these dams were failed by overtopping due to the insufficient capacity of the spillway,

25% by seepage and settlement and remaining 40% due to the results from different causes

such as inaccurate design, poor maintenance and other reasons (Fig. 2).

Based on literature survey, causes of dam failure can be classified into three types:

overtopping, seepage or piping and foundation problems. In the case of concrete dams,

failure mainly occurred due to the foundation problems which formed about 53%, while

the main sources of embankment dam failure are seepage or piping that represents 38%.

Table 1 continued

Dam name and location Failure
date

No. of live
lost

Economic losses

Kyzyl-Agash, Kazakhstan 2010 43 Unknown

Fujinuma, Japan 2011 8 Five homes were damaged, disabling
a bridge and blocked roads

Köprü, Turkey 2012 10 Unknown

Tokwe Mukorsi, Zimbabwe 2014 0 Unknown

Bento Rodrigues, Brazil 2015 17 Unknown

* Lives that would not have been lost if the dam had not failed

Fig. 2 Models of breach development (Froehlich 2008)
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Generally for all types of dam, about 34% of dam failures were caused by overtopping,

30% by foundation problems and about 28% by piping. The updated statistics of the causes

of dams are given in Table 2.

The incidence of the causes of dam failures as a function of the dam’s age during the

time of failure is shown in Fig. 3. Foundation failure occurs early in the dam’s history,

whereas other causes take a relatively longer time to develop. A very large percentage of

all dam failures occurs during the initial filling since this is the time when the design or

construction flaws or latent site defects will appear.

3 Breach mechanisms for embankment dams

The breach is the opening which develops during the occurrence of dam failure. The actual

mechanism of dam failure can be described partially for the embankment dams and lesser

for the concrete dams. Before 1970, many researchers adopted the mechanism of complete

and instantaneous dam failure to forecast the flooding in downstream, which results from

dam failure (Ritter 1892; Schocklitch 1917; Re 1946; Dressler 1954; Stoker 1957; Su and

Barnes 1970; Sakkas and Strelkoff 1973). There are several factors that affect the shape of

breach in the embankment dam such as embankment dimensions, material used in con-

struction, method of construction, slope protection cover, reservoir geometry and flow

entering the reservoir during failure and failure mode. There are many sources of

embankment dam breaches, but the most breach modeled is the overlapping or piping.

Therefore, only these two mechanisms are described in this study.

Table 2 Causes of dam failure
during the period of 1975–2011

Causes of dam failure Number of failure Percentage (%)

Flood or overtopping 465 70.9

Piping or seepage 94 14.3

Structural 12 1.8

Human related 4 0.6

Animal activities 7 1.1

Spillway 11 1.7

Erosion/slide/instability 13 2.0

Unknown 32 4.9

Other 18 2.7

Total number of dam failures 656 100

ZdZu

1

C (m)

D (m)

D (m)

Hp (m)

L (m)

1

Fig. 3 Schematic of piping hole (State of Colorado Department of Natural Resources Division of Water
Resources 2010)
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3.1 Overtopping failure

Overtopping or flooding considers the commonest type of embankment dam failure. This

type of failure may occur differently according to the composition of the embankment. There

are three different models that are widely used to classify the failure of embankment dam as

shown in Fig. 2. All of these models consider first stage of breach which happens at the top of

embankment dam and expands in the form of triangle shape or is trapezoid with time.

The breach geometry can be represented by width, height and side slope of the final

form of breach. In model A which is shown in Fig. 4, at the beginning the breach will start

with a triangle form until the breach reaches its lowest elevation at the bottom. Then, the

breach starts to grow laterally, and the shape of the breach becomes trapezoidal. In model

B, the breach will continuously expand in both height and width until it reaches the final

height and width. In model C, the breach bottom width is considered constant. Therefore, it

is recommended from the previous survey and experimental research of dam failures that

model A is considered as the most realistic model to describe the breach formation process.

Ralston (1987); Powledge et al. (1989a, 1989b) have provided a useful description of the

dam erosion mechanism that is caused by overlapping, whereas Miller and Ralston (1987)

illustrated lots of past dam failures, but Hanson et al. (2005) explained the stages of breach

formation and divided into four stages:

1. Development of a head cut on the slope of downstream side.

2. Head cut expansion through the crest of embankment dam.

3. Breach development as the head cut enters the reservoir.

4. And lateral expansion of the breach during reservoir drawdown.

3.2 Piping/internal erosion failure

Piping or seepage is the second commonest type of embankment failure. Piping can take

place through the movement of water or concentrated seepage which will occur inside the

dam. The embankment eroded by the seepage gradually, and large voids were taking place

in the embankment. Generally, downstream toe is considered as a first place of piping

initiation and continues toward the upstream side. The erosion of soil becomes fast when

the voids are larger. The damage of the embankment crest may happen when the piping

holes expand. Figure 3 shows the formation of piping hole.

In Fig. 3, D is piping hole width/height (assumed as a square), L is length of pipe, HP is

breach depth for piping, Z is the horizontal slope of the embankment, and C is dam top

width. Piping failures can be divided into two stages. First stage occurs before dam crest

damage, and the second stage occurs after the dam crest is damaged. Water flowing is

modeled as orifice flow during the first stage and weir flow in the second stage. The

reservoir may be completely released in the first stage for the small dams (State of Col-

orado Department of Natural Resources Division of Water Resources 2010).

4 Existing methods with its uncertainty

Embankment dams have considered the widely constructed type of dams around the world,

and it fails with different mechanisms (Elmazoghi 2013). Their failures produce serious

flood to the properties and population in the flooded or inundation regions and may put the

Nat Hazards

123



infrastructures in these regions out of service. In order to study the failure of embankment

dam failure, the breach parameters are considered as key variables and should be estimated

accurately due to their effect on degree of failure risk and amount of peak outflow. The

configuration of breach in embankment dams was assumed to grow from triangular to

trapezoidal through the breach formation procedure (Wahl 1998).

There are two methods being adopted to estimate the dam breach parameters. The first

method is a case study method which is based on the information from previous dam

failures. The method is considered not accurate due to its small database. However, the

method includes three submethods. The first submethod is parametric method which uses

the hydraulic principles to estimate failure time, breach parameters and peak outflow. Also,

this submethod can be used to route the flood hydrograph at downstream. The second

submethod is empirical which based on the statistical analysis of past recorded dam failure.

Table 3 shows empirical methods for breach parameter estimation. Comparative analysis

method is the third submethod and considered as the simplest one. In this submethod, the

parameters of the dam under study (height, width, side slope) and reservoir characteristics

(area and volume) are compared with the dams that have similar characteristics and then the

breach parameters and peak outflow for the most similar dam used for the dam under study.

The second method is called physical, and it depends on the physical principles to construct

the model. This model tries to determine the relationship between the inputs. This is a

generally clear concept, but it may be more complex if the parameters change with time. In

embankment breach analysis, the parameters change with time as the embankment erodes

and the water in the reservoir is released. At this time, the models depend on geotechnical

and sediment transport relationships. Despite many physical models presented for research

purpose, the National Weather Service’s BREACH program (NWS BREACH OR

BREACH) is the most used model. This model (BREACH) provides broader information,

but it is not considered to be accurate (Wahl 2010). Additionally, there are many physical

Table 3 List of existing methods for dam breach parameters estimation

Investigator No. of case
studies

Equation Equation no.

Breach width equations

Johnson and Illes (1976) – 0.5Hd\Bavg[ 3Hd (1)

Singh and Snorrason (1982) 20 2Hd\Bavg[ 5Hd (2)

USBR (1988) – Bavg = 3Hw (3)

Von Thun and Gillette (1990) 78 Bave = 2.5Hw ? Cb (4)

Froehlich (1995a, b) 63 B = 0.1803Ko.Vw
0.32.Hb

0.19 (5)

Froehlich (2008) Bavg = 0.27Ko** (Vw)
1/3 (6)

Xu and Zhang (2009)
Bave=Hb ¼ 5:543 V

1
3
w=Hw

� �0:789

eC3ð Þ (7)

Failure time equation

Von Thun and Gillette (1990) 36 Tf = 0.15Hw (for high erodible)
Tf = 0.15Hw ? 0.25 (for erosion
resistance)

(8)

Froehlich (1995a) 34 Tf = 0.00254(Vw)
0.53(Hb)

-0.9 (9)

Froehlich (2008) Tf = 0.0176[(Vw/(gHb
2)]0.5 (10)

Xu and Zhang (2009) Tf = 0.304 eB Tr(Hd/Hr)
0.654(Vw

1/3/Hw)
1.246 (11)
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models for dam-break analysis, such as DAMBRK, HEC-RAS and MIKE 11 (Atallah

2002). Commonly, these models suffer from inadequate recognize of the breach progress

and depend on sediment transport and water discharge equation. Practically, most common

methods used regression analysis to estimate the dam breach parameters (U. S. Bureau of

Reclamation 1988; Von Thun and Gillette 1990; Froehlich 1995b).

Where Bavg is average breach width (m), Hd is height of dam (m), Hb is height of breach

(m), Vw is volume of water in reservoir at failure time (m3), Hw is height of water in

reservoir at failure time (m), Ko is factor which is 1.4 for overtopping and 1 for piping, C3

is coefficient related to failure mode and dam erodibility, B is factor related to dam type,

erodibility and failure mode, and Cb is factor depends on Vw as shown below:-

Vw 7 106 \1.23 1.23–6.17 6.17–12.3 [12.3

Cb 6.1 18.3 42.7 54.9

The regression analysis equations are beneficial, especially for the variables that have

linear relationships (Costa 1985). In the regression analysis method, it is assumed that all

points have equal value of variance and the distribution of them around the best fit line is

almost followed Gaussian distribution. When this assumption is violated, the regression

analysis will produce inaccurate results. Several existing regression methods proposed the

linear relationship between the breach parameters and one or more parameters that are

related to the dam and/or reservoir. This supposition may be true when applied to small

dams that have similar dimensions and materials. Higher degree of uncertainty will result

in the breaching process when the erodibility material changes. (Hanson et al. 2005).

Wahl (2004) assessed several of existing relationships that were presented to determine the

dam breach parameters. He used 108 recorded dam failures and found the percentage error

between predicted and actual values. He found that most of the estimated dam failure timewas

under-predicted comparedwith the recorded data. Also,Wahl (2004) explains the uncertainties

in the predicted breach parameters and their effect on the risk evaluation when these methods

were used. According to his analysis, the uncertainty of breach width was found to be around

±1/3 order of magnitude, while for failure time it is about ±1 order of magnitude. For peak

outflow, the uncertainty was about ±0.5 to ±1 order of magnitude, but when Froehlich peak

flow equationwas used, the uncertaintywas about±1/3 order ofmagnitude (Wahl 2004).Also,

Pierce et al. (2010) described the uncertainty analysis of breach parameters.

Based on the above-mentioned facts, most of the methods used to estimate the dam

breach parameters have some uncertainties. The sources of these uncertainties are the

limited data that related to small dams and the nonlinear relationships between dam breach

parameters. Therefore, it is very necessary to find out a more accurate method to estimate

the dam breach parameters.

5 Performance evaluation of existing methods

Analysis of dam risk is considered very important and essential to prevent dam failure and

to reduce their consequences. Hence, to evaluate the dam risk, quantitative analysis of dam

breach development is considered necessary, and it can be represented by geometrical and

hydrological parameters of breach (Xu and Zhang 2009). Also, routing the flood hydrol-

ogy, estimation of inundated area and determining the available time for warning in the

downstream region are more affected by breach parameters. Therefore, to simulate the
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flood wave and its effects on the downstream region the dam breach geometrically must be

well described (Gee2009).

On the other hand, most of the analysis resulted from dam break has been carried out

by using generated flood input data (Atallah 2002). In some cases, sensitivity analyses

have also been adopted in which a range of input estimates are used to assess the

robustness of decision justifications based on risk assessment outcomes. However, the

approach of sensitivity analysis is considered limited because it does not provide the

estimation of output distribution that would result from the joint distribution of input

uncertainties. Therefore, sensitivity analysis provides little, if any, idea of the relative

likelihood associated with the outputs that are obtained from a particular combination

of inputs. In contrast, uncertainty analysis does provide any additional information

(Atallah 2002).

In this study, analysis of uncertainties was performed using the database of more than

140 case studies of past recorded failures of dams, collected from different sources in the

literature. The existing equations for breach parameters prediction were applied to the

recorded database, and the plots of the predicted values against the observed values were

performed. Table 4 and 5 show the results obtained from applying the existing

approaches for predicting the average breach width and failure time. The nonlinear

nature of the relationships between dam breach parameters makes the task of estimating

these parameters or finding these relationships difficult. The most commonly used

approach in the predicting dam breach parameters is the regression analysis. From the

analysis of the results, it was noted that the prediction obtained from these methods is

not accurate compared with the data of failed dams. The accuracy of the prediction was

assessed using statistical indices such as mean absolute relative error (MARE) and root

mean square error (RMSE). Table 4 shows the values of MARE and RMSE for

approaches used for predicting the average breach width. Values of MARE are ranging

from 0.39 to 0.72, while values of RMSE are ranging from 41.4 to 70.79 where the

recorded values were ranging from 2.29 to 367 m. The lowest value of MARE was

obtained by testing Eq. (7), while the highest value was obtained by testing Eq. (1).

Table 5 shows the values of MARE and RMSE for approaches used for predicting

failure time. Values of MARE are ranging from 0.69 to 0.72, while values of RMSE are

ranging from 0.36 to 2.32 where the recorded values were ranging from 0.17 to 7.3 h.

The lowest value of MARE was obtained by testing Eq. (9), while the highest value was

Table 4 Assessment of various approaches for predicting of dam breach width

Method Equation Equation no. Statistical parameters

MARE RMSE

Johnson and Illes (1976) 0.5hd\B\ 3hd (1) 1.05 70.79

Singh and Snorrason (1982) 2hd\B\ 5hd (2) 0.88 37.18

USBR (1988) B = 3hw (3) 0.51 49.63

Von Thun and Gillette (1990) Bavg = 2.5hw ? Cb* (4) 0.47 44.57

Froehlich (1995a, b) Bavg = 0.01803Ko(Vw
0.32)(Hb

0.19) (5) 0.40 42.79

Froehlich (2008) Bavg = 0.27Ko** (Vw)
1/3 (6) 0.41 41.37

Xu and Zhang (2009)
Bave

Hb
¼ 5:543 V

1
3
w

Hw

� �0:739

eC3ð Þ

C3 = b4 ? b5***

(7) 0.39 48.50
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obtained by testing Eq. (8). The performances of Eqs. 3, 4, 5, 6 and 7 in predicting the

average breach width are shown in Figs. 4,5,6,7 and 8. The highest accuracy in pre-

dicting the average breach width was obtained by applying Eq. (7) since most of the

predictions obtained by applying this equation were located within ±20% from the line

of perfect agreement. The performances of Eqs. 8, 9, 10 and 11 in predicting the failure

time are shown in Figs. 9,10,11 and 12. Although the performance of Froehlich method

in 2008 (Eq. 5) and (Eq. 10) is relatively better than the other tested methods for the

dam breach width and dam failure time estimation, respectively, the prediction MARE

from these two equations found more than 20% which is considered not acceptable for

accurate prediction.

Nowadays, a new approach has been presented as an alternative to the conventional

statistical approach in several fields. Artificial neural networks (ANNs) which are

Table 5 Assessment of various approaches for predicting of dam failure time

Method Equation Equation no. Statistical
parameters

MAPE RMSE

Von Thun and Gillette
(1990)

Tf = 0.015(hw) for highly erodible dams
Tf = 0.015(hw) ? 0.25 for erosion-resistant
dams

(8) 0.80 2.32

Froehlich (1995a, b) Tf = 0.00254(Vw
0.53)(hb

-0.9) (9) 0.6 1.5

Froehlich (2008) Tf = 0.0176[(Vw)/(ghb
2)]0.5 (10) 0.6 1.5

Xu and Zhang (2009) Tf/Tr = 0.304(hd/hr)
0.777(Vw

1/3/hw)
1.228 eB5 (11) 0.7 1.84

Fig. 4 Performance of Eq. (3) for dam breach width estimation
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considered as the alternative technique having usefulness exceed traditional statistical

models such as a free pattern of forecasting model, toleration to data inaccuracy and their

data-driven nature (Azmatullah et al. 2005). ANN is considered as massively parallel

Fig. 5 Performance of Eq. (4) for dam breach width estimation

Fig. 6 Performance of Eq. (5) for dam breach width estimation
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Fig. 7 Performance of Eq. (6) for dam breach width estimation

Fig. 8 Performance of Eq. (7) for dam breach width estimation
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Fig. 9 Performance of Eq. (8) for dam failure time estimation

Fig. 10 Performance of Eq. (9) for dam failure time estimation
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Fig. 11 Performance of Eq. (10) for dam failure time estimation

Fig. 12 Performance of Eq. (11) for dam failure time estimation
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distributed data processing technique which has specific achievement aspects like bio-

logical neural networks of the human brain (Haykin1994).

6 Concept, approach and application of ANN

Design and management of water resource projects involve studying and analysis of

hydrology, hydrogeology, hydraulic and environment concepts. There are many challenges

related to modeling, forecasting and estimation of parameters such as precipitation, flood

discharge, stream flow, water level and others that are facing water resource engineers.

These challenges or difficulties are caused by the nonlinear nature of these parameters

which make their accurate estimation difficult and uncertain. However, many attempts

have been made to solve theses problems. One of the most effective solutions is using

artificial neural network (ANN) in planning, design and management of water resource

projects. ANN is one of the most effective artificial intelligence tools that have magnificent

attributes that can recognize the pattern or relationship between variables without any more

explanation. ANN has ability to extract the relationships between inputs and outputs, even

if the data are little and have some noise. From all the above capabilities of ANN, it is

recommended to apply this technique in water resource simulation and modeling.

McCulloch and Pitts (1943) were the first to introduce the concept of how the brain

could produce complex patterns by using basic cells called neurons that are connected to

each other. McCulloch and Pitts (1943) presented an artificial neuron model with binary

input and output and an activation threshold. Neural networks are commonly thought as

black boxes trained to a particular function on a substantial number of data tests. It is made

out of countless interconnected handling components (neurons) working as one unit to

solve different problems. Neural systems have impressive capability to get signed from

confounding or lose information, and they can be utilized to concentrate designs and

recognize patterns that are too complicated to be in any way observed by either people or

other computer strategies. The general architecture of the neural network has three layers

of neurons, including input, hidden and output layers, as shown in Fig. 13. The perceptron

is a type of artificial neural network invented in 1957 by Rosenblatt (1958). The perceptron

that shown in Fig. 14 takes a vector of real-valued inputs, calculates a linear combination

of these inputs and then outputs results based on some activation function (Zagonjolli

2007). Numerous hypothetical and laboratory researches were explained that the ANN

with one hidden layer or a single hidden layer is adequate to approximate the function

which has a complex nonlinearity. It is likewise proposed that a furthest point for the

numbers of neurons in the hidden layer be lesser than 2n ? 1, where n is the input neuron

number (Hecht-Nielsen 1987).

Feed-forward back-propagation (FFBP) algorithm is considered a widely adopted

algorithm in research accomplished using neural network and used more than back-

propagation algorithm the second algorithm that has many problems such as the low speed

in training convergence and entanglement and difficultly in a local minimum (Hay-

kin1994). In later years, many attempts have carried out by researchers to solve or reduce

these problems and enhance the artificial neural network efficiency. Ramirez et al. (2005)

developed the back-propagation algorithm resilient for training the network to using ANN

to forecast the rainfall in Brazil, and they find that the results can enhance when adopting

of back propagation. In addition, Levenberg–Marquardt algorithm (LMA) has been sug-

gested by other researchers. Noori et al. (2010) used artificial neural network to forecast
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weekly solid waste. Chau (2006) adopted particle swarm optimization to find the optimum

weights and biases of the network to predict the Shing Mun river water level. He used the

results and compared it with the standard back-propagation algorithm results, and he

showed his model superiority. Rogers et al. (1995) proposed genetic algorithm (GA)

instead of SBPA.

In addition to its simplicity and capability, the use of artificial neural network (ANN) in

prediction, forecasting, modeling and estimation of the variables in water resources

engineering is being increasing rapidly. Table 6 summarizes the application of ANN in

water resources in recent years. From Table 6, it can be noted that ANN is widely used in

various disciplines of water resources engineering and showed reasonable accuracy.

Among those, it is recommended to use ANN for dam breach parameters prediction.

Additionally, new parameters such as dam characteristics or reservoir characteristics will

be used as input data to find new models which represent a new relationship for estimation

of breach parameters.

Fig. 13 Artificial neural network architecture (Gibbs et al. 2006)

Fig. 14 A perceptron (Zagonjolli 2007)
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7 Conclusion

This study presents a review of the previous studies that covered dam breach parameters

estimation and discussed their accuracy. There are many existing approaches to estimate

the dam breach parameters. It found that these approaches were based on regression

analysis. These approaches were derived using limited data, and this affects the accuracy of

the prediction obtained from these approaches. Moreover, the relationships used for

determining the dam breach parameters are complex, and any simplification of these

relationships will also affect their accuracy.

The prediction from the existing approaches (regression analysis) was validated using

data of more than 140 failed dams around the world. The values of the computed MARE

for the existing approaches confirm that linear approaches are less accurate than the

nonlinear ones. Also, the results confirm the need for a more accurate approach.

The artificial neural network approach is widely applied for solving various types of

problems of water resources. Although it is not specifically applied for dam-break analysis,

it is possible to use it for such problems. ANN technique can be used instead of regression

analysis to estimate the dam breach parameters due to the fact that this technique has

ability to simulate the nonlinearity of variables and give accurate results.
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