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We provide a class of positive definite kernels that allow to solve certain evolution equa-
tions of parabolic type for scattered initial data by kernel-based interpolation or
approximation, avoiding time intergation completely. Some numerical illustrations are
given.
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1. Introduction

There are plenty of application papers in which kernels or radial basis functions are successfully used for solving partial
differential equations by meshless methods. The usage of kernels is typically based on spatial interpolation at scattered loca-
tions, writing the trial functions ‘‘entirely in terms of nodes’’[2]. For stationary partial differential equations, the discretization
can take pointwise analytic derivatives of the trial functions to end up with a linear system of equations. This started in [6]
and was pursued in the following years, including a convergence theory in [8]. There are also variations that use weak data,
like the Meshless Local Petrov–Galerkin method [1] with a convergence theory in [10]. For the potential equation, there are
special kernels that allow the use of trial functions that satisfy the differential equation exactly [9,5]. This is a variation of the
general idea of Trefftz [13] to use trial functions that satisfy the PDE exactly.

For time-dependent partial differential equations, meshless kernel-based methods were similarly based on a fixed spatial
interpolation, but now the coefficients are time-dependent, and one obtains a system of ordinary differential equations for
these. This is the well-known Method of Lines, sometimes also called differential quadrature, and it turned to be experimen-
tally useful in various cases (see e.g. [14,7,4,12]). But we follow the Trefftz philosophy here and use special kernels that sat-
isfy a linear evolution-type PDE

utðx; tÞ ¼ Luðx; tÞ ð1:1Þ

with a purely spatial and elliptic operator L exactly. This will eliminate time integration, but at the expense of using
time-dependent kernels that consists expansions into eigenfunctions of the spatial differential operator L with
time-dependent coefficients. Of course, this is a special case of a spectral method, conveniently stated in terms of a
time-dependent positive definite kernel.

We give a rigid error analysis of this technique and provide a few numerical examples.
Instead of using trial functions that satisfy the boundary conditions but violate the differential equation, we approximate

the solution by selecting functions that violate the boundary conditions but satisfy the differential equation.
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2. Linear elliptic equations

We take a spatial domain X � Rd and some kind of homogeneous boundary condition on @X. Then, for a linear self-adjoint
elliptic differential operator L, we assume to have eigenfunctions un on X for the associated boundary value problem, i.e.

Lun ¼ knun in X; n 2 N ð2:1Þ

with a countable index set N. Our running example will be L ¼ D on X ¼ ½0;p�d with homogeneous Dirichlet boundary
conditions, leading to

ukðxÞ ¼
Yd

i¼1

sinðkixiÞ; kk ¼ �kkk2
2; k 2 N :¼ Nd

0 n f0g ð2:2Þ

in standard multi-index notation.
A solution of the problem

Lu ¼ f

with homogeneous boundary conditions can then be written formally by expanding f into the eigenfunctions as

f ¼
X

n2N

anun

and then writing the solution u as

u ¼
X

n2N

an

kn
un:

This needs a discussion of convergence of the series. We shall do this in a way that is closely linked to reproducing kernel
Hilbert spaces.

3. Expansion kernels

We now fix positive real numbers ln for all n 2 N to let an expansion kernel

Klðx; yÞ :¼
X

n2N

lnunðxÞunðyÞ ð3:1Þ

satisfy the summability condition

Klðx; xÞ ¼
X

n2N

lnunðxÞ2 6 C2 <1 for all x 2 X:

This kernel is positive semidefinite on X, i.e. for all selections of finite point sets X ¼ fx1; . . . ; xMg � X, the M �M kernel matri-
ces A ¼ AðXÞ with entries Klðxj; xkÞ; 1 6 j; k 6 M are symmetric and positive semidefinite.

By well-known results [3], such a kernel is reproducing in the Hilbert space Hl of all functions of the form

f cðxÞ :¼
X

n2N

cnunðxÞ; x 2 X

under the condition

kf ck
2
l :¼

X

n2N

c2
n

ln
<1

related to the inner product

ðf c; f dÞl :¼
X

n2N

cndn

ln

letting the reproduction follow the formula

f cðxÞ ¼ ðf c;Klðx; �ÞÞl for all x 2 X; f c 2 Hl:

Note that this gives us a variety of Hilbert spaces that are isomorphic to weight ‘2 spaces [3], and we shall check now how L
maps functions between these spaces. Taking u 2 Hl with coefficients cn, we get that Lu has coefficients kncn, and thus

L : Hl ! Hl=k2

allows to look at solutions of Lu ¼ f for various regularity assumptions. Here, we denote the sequence with values ln

k2
n

by l=k2

for short.
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We require the initial function u0 to be in H so that, by definition of the Hilbert space H, it necessarily has an expansion

u0ðxÞ ¼
X

n2N

cnunðxÞ

with

ku0k2
H ¼

X

n2N

c2
n

ln
<1:

The basic idea now is to construct a time-dependent kernel K satisfying the differential equation exactly. We do this by
defining

Kðx; y; tÞ :¼
X

n2N

lnðtÞunðxÞunðyÞ; x; y 2 X; t P 0

with initial conditions

lnð0Þ ¼ ln; n 2 N

leading to

Kðx; y;0Þ ¼ K0ðx; yÞ for all x; y 2 X:

To let the differential equation be satisfied in the sense

Ktðx; y; tÞ ¼ L xKðx; y; tÞ for all x; y 2 X; t P 0

where the superscript x indicates that L acts on the variable x, we have to satisfy
X

n2N

l0nðtÞunðxÞunðyÞ ¼
X

n2N

lnðtÞL
xunðxÞunðyÞ ¼

X

n2N

lnðtÞknunðxÞunðyÞ

and this leads to the ordinary differential equations

ln0ðtÞ ¼ lnðtÞkn

with the solution

lnðtÞ ¼ ln expðkntÞ; t P 0; n 2 N:

Thus our kernel is

Kðx; y; tÞ ¼
X

n2N

ln expðkntÞunðxÞunðyÞ; x; y 2 X; t P 0

and in case of positive eigenvalues we need the condition
X

n2N

ln expðknTÞunðxÞ2 <1 for all x 2 X

to be able to work in ½0; T�. This approach generalizes the standard heat kernel. Note that elliptic operators will have negative
eigenvalues in (2.1), and then the coefficients lnðtÞ will decay with increasing time.

4. Interpolatory methods

Since we have a positive semidefinite kernel K0 on the spatial domain, we can choose a set X ¼ fx1; . . . ; xMg � X of points
in X and interpolate the initial function u0 by a linear combination of the functions K0ðx; xmÞ; 1 6 m 6 M via the linear
system

u0ðxiÞ ¼
XM

m¼1

amK0ðxi; xmÞ ð4:1Þ

for 1 6 i 6 M. If the initial function u0 lies in H, this problem is solvable, though the kernel matrix is only positive semide-
finite. We then define

~uðx; tÞ :¼
XM

m¼1

amKðx; xm; tÞ

to see that the differential equation and the boundary conditions are satisfied.
The error satisfies the differential equation and the boundary conditions. Thus the error is exactly the evolution of the

initial error under the differential equation. If the maximum principle holds, the error for all positive times is thus bounded
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by the L1 interpolation error k~uð�;0Þ � u0k1 at startup. A theoretical analysis of this error requires an application of kernel
interpolation theory to Kðx; y;0Þ.

The choice of the weights in the kernel series (3.1) will depend on the smoothness of the starting function u0, since kernel
interpolation theory [15,11] tells us that the smoothness of the kernel Kðx; y;0Þ should be not lower than the smoothness of
the function supplying the data. And since, for example, the smoothness of the functions generated by trigonometric series is
related to the decay of the coefficients, the smoothness of Kðx; y;0Þ will usually be controlled by decay of the kk.

Direct interpolation of initial data by linear combinations of eigenfunctions is not possible in general. The use of kernels
always allows interpolation.

5. Examples

We start the simple example from (2.2) here.
The choice lk ¼ 1=k! gives a series which generates an analytic kernel plotted in Fig. 5.1. It has an explicit representation

4Kðx; y;0Þ ¼ expðexpðpðxþ yÞÞÞ þ expðexpð�pðxþ yÞÞÞ � expðexpðpðx� yÞÞÞ � expðexpð�pðx� yÞÞÞ

which unfortunately suffers from severe cancelation. But the rapid convergence of the series (3.1) allows to sum the series up
until the limit of double precision is reached, i.e. at k ¼ 19. This will, however, lead to inevitable rank loss in (4.1) for more
than n ¼ 19 data points. Nonetheless, and in particular if the initial function u0 is very smooth, there are usually good pro-
jections of the right-hand side into the column space of the matrix, leading to pretty good results. Fig. 5.2 shows an example
for the starting function u0ðxÞ ¼ 1� 2jx� 0:5j using only 12 interior points. The error is bounded by the visible difference of
the starting function and its first interpolant.

By simple spectral shifts, this example generalizes to the case Lu ¼ Duþ ju, and similarly for other spatial operators that
have known eigenfunction expansions.

If one tries to solve the heat equation backwards this way, the solution must increase exponentially. Fig. 5.3 shows two
examples:

� starting with u0ðxÞ ¼ xð1� xÞ up to time t ¼ �0:005 in steps of 0:0001,
� starting with u0ðxÞ ¼ 1� 2jx� 0:5j up to time t ¼ �0:001 in steps of 0:0001.

The final example concerns the wave equation. The time-dependent part now is

lnðtÞ ¼ lnð0Þ cosðkntÞ ¼ 1
n!

cosðnptÞ

in this case, using (2.2) in the spatial variables. The result is in Fig. 5.4 for u0ðxÞ ¼ 1� 2jx� 0:5j and times up to t ¼ 1 in steps
of 0:05. Note that the wave starts with the interpolant and reflects back to it.
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Fig. 5.1. Kernel with weights 1=n!.
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6. Extensions

This approach generalizes to other cases where separation of variables works, e.g. for the wave equation. If there is a lin-
ear differential operator D acting with respect to time, the problem Duðx; tÞ ¼ Luðx; tÞ can be split into eigenvalue problems

DvnðtÞ ¼ knvnðtÞ; LunðxÞ ¼ knunðxÞ;

for appropriate homogeneous boundary conditions, and we can define a kernel

Kðx; y; tÞ :¼
X

n

lnunðxÞunðyÞvnðtÞ

under the summability condition

Kðx; x; tÞ ¼
X

n

lnu2
nðxÞjvnðtÞj <1

To make interpolation at t ¼ 0 work, additional conditions must be satisfied. In case of the wave equation utt ¼ Du, we use
trial functions

uðx; tÞ :¼
XN

j¼1

ajKðx; xj; tÞ þ
XN

j¼1

bjKtðx; xj; tÞ

since for a useful initial-value problem we have to prescribe both uðx;0Þ and utðx;0Þ. On the spatial domain ½0;p� we can use
unðxÞ ¼ sinðnxÞ and vnðtÞ ¼ cosðntÞ to form kernels. We pose interpolation conditions
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Fig. 5.2. Solution of heat equation.
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Fig. 5.3. Two backward calculations.
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uðxk;0Þ ¼
XN

j¼1

ajKðxk; xj; 0Þ þ
XN

j¼1

bjKtðxk; xj;0Þ ¼
XN

j¼1

ajKðxk; xj; 0Þ

utðxk;0Þ ¼
XN

j¼1

ajKtðxk; xj; 0Þ þ
XN

j¼1

bjKttðxk; xj;0Þ ¼
XN

j¼1

bjKttðxk; xj; 0Þ

that simplify because of v 0nÞ ¼ 0 and thus Ktðx; y;0Þ ¼ 0. The kernels K and

Kttðx; y; tÞ ¼
X

n

knlnunðxÞunðyÞvnðtÞ

are both positive definite, and the interpolation problem is solvable.

7. Conclusion

Based on the recent successful development of meshless computational methods using direct kernel-based approxima-
tion techniques for solving various kinds of partial differential equations, we give in this paper a class of positive definite
kernels that allow the extension of the methods to solve certain kinds of evolution equations of parabolic type. Similar to
the theoretical development of finite element method, the future works will be devoted to the extension to solve equations
of hyperbolic type.
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Fig. 5.4. Solution of wave equation.

Y.C. Hon, R. Schaback / Applied Mathematics and Computation 258 (2015) 220–226 225

                               6 / 7

http://paperhub.ir
https://fa-en.com


[7] E.J. Kansa, H. Power, G.E. Fasshauer, L. Ling, A volumetric integral radial basis function method for time-dependent partial differential equations, Eng.
Anal. Boundary Elem. 28 (2004) 1191–1206.

[8] R. Schaback, Convergence of unsymmetric kernel-based meshless collocation methods, SIAM J. Numer. Anal. 45 (2007) 333–351 (electronic).
[9] R. Schaback, Solving the Laplace equation by meshless collocation using harmonic kernels, Adv. Comp. Math. 31 (2009) 457–470.

[10] R. Schaback, Unsymmetric meshless methods for operator equations, Numer. Math. 114 (2010) 629–651.
[11] R. Schaback, H. Wendland, Kernel techniques: from machine learning to meshless methods, Acta Numer. 15 (2006) 543–639.
[12] Q. Shen, A meshless method of lines for the numerical solution of kdv equation using radial basis functions, Eng. Anal. Boundary Elem. 33 (2009) 1171–

1180.
[13] E. Trefftz, Ein Gegenstück zum Ritzschen Verfahren, in 2, Zürich, Int. Kongr. f. Techn. Mechanik, 1926. pp. 131–137.
[14] M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput Methods Appl. Mech. Eng. 192 (2003) 227–246.
[15] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2005.

226 Y.C. Hon, R. Schaback / Applied Mathematics and Computation 258 (2015) 220–226

Powered by TCPDF (www.tcpdf.org)

                               7 / 7

http://www.tcpdf.org

