
European Journal of Operational Research 178 (2007) 207–216

www.elsevier.com/locate/ejor
Decision Support

Within-group common weights in DEA: An analysis
of power plant efficiency

Wade D. Cook a, Joe Zhu b,*

a Department of Management Science, Schulich School of Business, York University, Toronto, Ont., Canada M3J 1P3
b Department of Management, Worcester Polytechnic Institute, Worcester, MA 01609, United States

Received 24 March 2005; accepted 10 January 2006
Available online 20 March 2006
Abstract

In many real world applications where DEA is applied, DMUs can often be put into groups, such as those which may
be under a single management team. This often means that the multipliers used within a group should be common across
that group’s members. The case example examined in this regard is one involving a set of power plants, with each contain-
ing a set of power units under a common plant management. We develop a goal-programming model for this setting that
seeks to derive such a common-multiplier set. The important feature of this multiplier set is that it minimizes the maximum
discrepancy among the within-group scores from their ideal levels.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Charnes et al. (1978) presented a methodology
for evaluating the relative efficiencies of a set of
decision-making units (DMUs). This methodology,
data envelopment analysis (DEA), has been applied
in numerous settings over the past 25 years. These
include the analysis of efficiency of bank branches,
hospitals, maintenance crews, etc. The appropriate
setting to which the DEA model applies is one
wherein the DMUs (e.g., bank branches) are
assumed to be comparable, yet with each having
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its own unique circumstances. Specifically, each
DMU is permitted to choose, possibly within
bounds, its own set of multipliers for its output/
input bundle.

In certain situations, treating each DMU as an
independent entity may not be appropriate. It can
be argued that if the members of a given subset of
the decision-making units are experiencing similar
circumstances, then the ‘‘pricing’’ of inputs and out-
puts should apply uniformly across all members of
that subset. An example of this can be found in
Cook et al. (1990), where maintenance patrols are
evaluated relative to one another. It can be claimed
that those patrols within the same ‘‘district’’ experi-
ence similar climatic conditions, are subject to sim-
ilar resource availability, and are managed by the
same district engineer. Thus, permitting patrols
.
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within a district to freely choose input and output
multipliers that differ significantly across patrols
may not be warranted.

In the current paper we extend the DEA struc-
ture to apply to the more general setting where
DMUs fall into distinct groups, and where all mem-
bers of a group are to be treated uniformly in terms
of multiplier allocation. The specific problem setting
examined is the evaluation of relative efficiencies of
a set of power plants. Section 2 describes this prob-
lem setting. We demonstrate that the power ‘‘units’’
within the ‘‘plants’’ form natural groupings to
which the concept of common input and output
multipliers on the members applies. In Section 3
we develop a two-phase optimization model, pro-
viding a more realistic assessment of power unit effi-
ciency. Section 4 applies the methodology to the
data on eight power plants containing a total of
40 power units. Conclusions are given in Section 5.

2. The problem setting

Ontario Power Generation (formerly, Ontario
Hydro) was, in the mid-1900s, a Canadian crown
corporation supplying electric power to both Cana-
dian domestic and foreign markets in the northern
USA. Two classes of units were managed under
the corporation’s jurisdiction, namely nuclear and
thermal units. While the number of nuclear units is
relatively small, a total of 10 thermal plants consist-
ing of 40 thermal units of varying ages, capacities,
fuel types are operated by the corporation. Table 1
provides some basic statistics on the 10 power plants.

The power units within any plant (e.g., the eight
units comprising plant #1) are very similar in many
Table 1
Thermal plans

Location # Units Year built Fuel utilized Size
(MWHa)

Plant 1 8 1971–1972 US bit. coal
and Western
Cdn. coal

500

Plant 2 8 1968 US bit. coal 300
Plant 3 4 1970 US bit. coal 500
Plant 4(1) 1 1964–1966 US bit. coal 100
Plant 4(2) 2 1974–1975 Liquid bit. 150
Plant 5 4 1974 Oil 500
Plant 6 1 1978 Lignite bit. coal 200
Plant 7(1) 4 1956 Gas/coal 100
Plant 7(2) 4 1960 Gas/coal 200
Plant 8 4 1952 US bit. coal 50

a Megawatt hours.
respects. They are in the same general location, are
similar in age and capacity (in megawatt hours), and
experience similar maintenance practices. They
jointly service the same source of demand (although
some units may be down for maintenance at times
when others are in full operation), hence are sub-
jected to similar work loadings. Most importantly,
they share a common management team. We make
this point here to emphasize the fact that perfor-
mance evaluation should be conducted in a similar
manner across all units within a plant. As will be
seen in the following section, this will materialize
in the form of requiring that common multipliers
be applied to all units making up any given plant.
We point out here that even though similar condi-
tions may prevail across all DMUs in a group, such
as the existence of a common management team,
thus necessitating common weights, we do not
advocate aggregating all of the units of that group
into a single decision-making unit. There is still
the need to evaluate the relative efficiency of each
member of the group, to discover where gaps exist.

The standard measure of productivity used by
management is the ratio of total annual expenditure
(operating, maintenance and administration) to
total energy produced in megawatt hours per year.
While it is the case that the total power production
is a principal output of the operation, and is cer-
tainly the most convenient and readily available
indicator of productive capability, management is
interested in other, related indicators as well. What
may be missing in this simplistic measure of produc-
tivity is a consideration of those factors that reflect
management’s skill. To a great extent, a power
unit’s efficiency measure should reflect the quality
of maintenance that keeps it operating, and the abil-
ities of management in charge of that maintenance.
At least two types of other outputs should be con-
sidered, namely outages and deratings.

An outage is a situation in which a unit is shut
down; hence it is not generating electric power.
Types of outages include

• planned outage, which is scheduled downtime
(usually for major overhauls);

• maintenance outage, a form of scheduled down
time, for more minor, i.e., routine maintenance;

• forced outage, which is unscheduled and gener-
ally caused by equipment failure, environmental
requirements, or other unforeseen incidents.
There is generally some prior warning for this
type of shutdown, and some delay is possible.
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• sudden outage, which is a forced outage with no
prior warning.

While it can be argued that operating hours
essentially capture all forms of outages, it must be
recognized that there is a difference between taking
a unit out of service on a scheduled basis at non-
peak times, versus sudden brownouts or blackouts.
The latter ignite public opinion, interrupt business
operations, and generally reflect negatively on the
organization. Thus, such outages should play a
direct role in any measure of efficiency.

A derating is a reduction in unit capacity where
the operation may, for a number of reasons, operate
at only a fraction (e.g., 75% or 50%) of its available
(full) capacity. Breakdowns in coal belts, pulverizers
or rollers (of which there are several operating in
any plant) are a primary cause of such forced dera-
tings. Environmental restrictions, in particular SO2

emissions, can limit the extent to which a plant
can operate a full capacity. Furthermore, such
restrictions will often apply to a group of units
(e.g., at a given geographical location).

As with outages, there are several forms of dera-
tings, some of which are beyond the control of man-
agement and which have nothing to do with
maintenance quality (e.g., grid or transmission net-
work load restrictions), while others are a clear
reflection of maintenance quality, such as equip-
ment failures.

As with outputs, inputs should include several
factors. In addition to expenditures, factors such
as plant age and available but not operating time

(ABNOT) should play a role as well. The latter fac-
tor (ABNOT) is the time during which the plant is
able to operate, but for reasons beyond manage-
ments control (such as SO2 restrictions), the plant
is not running.

3. Deriving within-group common weights

3.1. Background

In earlier studies of power plant efficiency, Cook
et al. (1998) and Cook and Green (2005) were con-
cerned primarily with examining the hierarchical
property of the unit/plant structure. Specifically,
that study presented a methodology for evaluating
efficiency at two levels. In level 1, the power units
within a plant are treated as the ‘‘comparable
DMUs,’’ and a standard DEA analysis is carried
out. In level 2 the units within each plant are aggre-
gated to create a DMU representing the plant
itself. Then, the DEA analysis is repeated using
the plants as the DMUs. A mechanism is then uti-
lized to adjust the level 1 rating, taking into
account the ratings that the various plants received
at level 2.

A shortcoming of this earlier approach is that in
the level 1 analysis many ‘‘efficient’’ DMUs (power
units) result. Two factors contribute to this out-
come: (1) the small number of units per plant, and
(2) the fact that each power unit is free to choose
its own multipliers. One could, of course, restrict
multiplier choice by imposing assurance region con-
straints (see Thompson et al., 1990), but significant
differences will still exist between the multiplier vec-
tors of the individual units within a plant. As well,
one could argue that different assurance regions
may be required for some plants than for others.

To rectify apparent weaknesses in the model of
Cook et al. (1998) and Cook and Green (2005) we
propose a model for capturing power unit efficiency
that accomplishes two goals: First, the model
should encompass all power units across all plants
simultaneously within the analysis set. This will help
to alleviate the problem of the small samples result-
ing from restricting the analysis set to those power
units within a given plant. Second, the model should
derive a common set of weights applicable to all
power units within the relevant plant.

3.2. Deriving common weights: The ideal point

method

To frame the development herein in a general
format, consider the situation in which n DMUs
are organized into K groups or clusters fJ kgK

k¼1.
Each DMUj, j = 1, . . . ,n is characterized by its
own bundles of R outputs Yj = (yrj), and I inputs
Xj = (xij). Assume that we adopt as the efficiency
measurement technology, the constant returns to
scale (CRS) model of Charnes et al. (1978):

h0 ¼max lY 0=tX 0

subject to:

lY j=tX j 6 1; 8j;
lr; ti P 0; 8r; i.

ð3:1Þ

Let fhjk
g denote the optimal efficiency ratings

arising from (3.1) for members of group k. Note
that in general, the optimal multiplier vectors
ðl�jk

; t�jk
Þ yielding the hjk

can, and generally will be

different for the various members jk 2 Jk.
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We now wish to develop a common set of multi-
pliers ðl̂; t̂Þ that will be used to derive an efficiency
score ðl̂Y jk

=t̂X jk
Þ for each member jk 2 Jk. A logical

property to require of this multiplier vector is that it
yields ratings that are as near as possible to the indi-
vidually optimal ratings hjk

. Viewed in this manner,
deriving such a set of multipliers is a multiple objec-
tive problem in which the target is the ideal point or
vector ðhjk

Þ.
A common approach to ideal point problems,

and the one we adopt herein, is to set the hjk
as goals

to be achieved. That is, for the set of power units
jk 2 J k0

,we set the jJ k0
j goals:

lY jk
=tX jk

¼ hjk
; jk 2 J k0

. ð3:2Þ

Clearly, over achievement of the jJ k0
j goals in (3.2)

is not possible, since by definition

lY jk
=tX jk

6 hjk

for any feasible solution to (3.1). Thus, the only
issue becomes the manner in which we choose to
capture the extent of under achievement of the
jJ k0
j goals in (3.2). There would appear to be at

least two logical norms for doing this, namely the
‘1 and ‘1 norms. Under the ‘1 norm, the objective
would be to seek a set of multipliers (l,t) for
which total under achievement of the ideal point
goals (3.2) is minimized. In that regard, we define
a set of jJ k0

j goal achievement variables fcjk
g,

and for each k0 solve the math programming
problem:

min
X

jk2Jk0

cjk

subject to:

lY jk
=tX jk

þ cjk
¼ hjk

; jk 2 Jk0
;

lY jk
� tX jk

6 0; jk 2 J k; 8k;
lr; ti; cjk

P 0; 8r; i; jk.

ð3:3Þ

Note that the objective function measures the
aggregate of the differences between the ideal effi-
ciency scores hjk

of the jJ k0
j members of group k0,

and those generated by their common multipliers
ðbl;btÞ.

It can be argued that while (3.3) does provide a
set of collectively best projections, it may not yield
projections that are best in a cooperative or fair
sense. To achieve projections that are the most fair
in a cooperative sense, the goal should be to mini-
mize the penalty imposed on the most disadvan-
taged unit in a plant; that is, the unit whose final
efficiency score is furthest from the idea. To accom-
plish this, we recommend using a goal programming
formulation based on the ‘1 norm. Specifically, let c
be a goal achievement variable, and consider the
mathematical programming problem

min c

subject to:

lY jk
=tX jk

þ c P hjk
; jk 2 J k0

;

lY jk
� tX jk

6 0; jk 2 J k; 8k;
lr; ti; c P 0; 8r; i:

ð3:4Þ

For solution purposes we rewrite (3.4) in the form:

min c

subject to:

lY jk
� ðhjk

� cÞtX jk
P 0; jk 2 J k0

;

lY jk
� tX jk

6 0; jk 2 J k; 8k;
lr; ti; c P 0; 8r; i.

ð3:5Þ

We point out that problem (3.5) is non-linear, by
virtue of the product of c and t. One might propose
that non-linearity could be avoided here by replac-
ing goals (3.2) by the equivalent expression

lY jk
� tðhjk

X jk
Þ ¼ 0; jk 2 J k0

;

and then introducing the goal achievement variable
c as the difference between the left- and right-hand
sides. Specifically, we might consider replacing the
first set of constraints in (3.2) by

lY jk
� tðhjk

X jk
Þ þ c ¼ 0; jk 2 J k0

ð3:6Þ

yielding a linear expression. The problem with (3.6),
however, is that scales can come into effect. If out-
put and input values are much larger in scale for
some power units than for others, the minimal c will
tend to cater to the large units and ignore the smal-
ler ones. In problem (3.5), however, scale is not an
issue since c captures the difference between the
ideal scores h and ratios that are measured on a unit
scale.

In the following section we use model (3.5) to
derive efficiency scores for the 40 power units
described earlier. While one could apply any non-
linear programming algorithm to approximate the
solution of (3.5), we approach it as a parametric lin-
ear programming problem, with c serving as the
parameter. Specifically, using the range [0,h], we
solve (3.5) for a set of values for c within that range.
We note that we are searching for the minimal value
of the parameter for which a feasible solution to
(3.5) exists.

We demonstrate two approaches.
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3.3. Dinkelbach’s algorithm

This procedure (see Dinkelbach (1967) and Scha-
ible (1976)), for solving general fractional program-
ming problems, is a parametric linear programming
methodology, wherein c is treated as a parameter.
To implement the algorithm, we first note that for
any optimal solution (l*,t*), it is the case that any
multiple of this is also an optimal solution. Thus,
we may impose a restriction of the form

P
lr = R

on problem (3.4). Furthermore, one may view
(3.4) as a max min problem, specifically it is equiv-
alent to the problem:

min maxfhjk
� ðlY jk

=tX jk
Þjjk 2 J kg

subject to:

lY j � tX j 6 0; j ¼ 1; . . . ; n;

XR

r¼1

lr ¼ R;

lr; ti P 0; 8r; i.

ð3:7Þ

Dinkelbach’s approach involves replacing the max
min problem by the equivalent formulation:

min s

subject to:

ðh�jk
� cÞtX jk

� lY jk
6 s; jk 2 J k;

lY j � tX j 6 0; j ¼ 1; . . . ; n;

XR

r¼1

lr ¼ R;

lr; ti P 0; 8r; i.

ð3:8Þ

Treating c as a parameter, the LP model (3.8) is
solve for s, and this is continued until s = 0. Precise
details on the selection of c at each iteration can be
found in Dinkelbach (1967). Table 3 displays the
results from the application. We discuss this in the
next section.

3.4. Consecutive interval search

A convenient and simple search procedure is to
start at the lower end of the c range (c = 0), and
increment the parameter until a feasible solution is
found. Clearly, the smaller the increments, the more
accurate will be the solutions, but as well the more
iterations needed. Here, we chose an increment of
0.0001. Possibly, more efficient search tactics could
be applied, such as the half-interval method, but
our approach appears to converge relatively
quickly, and suffices for the purpose at hand. Table
4 provides similar results to those in Table 3.

3.5. Alternate optima

In the solution of (3.5), or its equivalents, alter-
nate optima may arise. Specifically, for any given
(approximate) optimal value of c = c*, more that
one pair of optimal solution vectors (l*,t*) and
(l0,t0), may exist. This is common in the general
area of ‘‘compromise programming’’, of which this
problem is an example. Hence, different alternate
optima can yield different relative rankings of the
members of any group. While in some respects,
non-uniqueness of the solution may be seen as unde-
sirable, choices for optima can have its advantages.
While some optimal vectors (l,t) can yield efficiency
scores that are radically, (and possibly undesirably)
different from one another, others produce scores
that can be more clustered, and less controversial
for management to defend.

It is important to point out that it is possible that
none of the DMUs will be 100% efficient. The fact
that the ‘1 norm is applied here, means that the
choice of multipliers (l,t) is designed to make the
distances of the actual efficiencies from their ideal
values ðhjk

Þ as near equal as possible. Fig. 1 illus-
trates this phenomenon. Hyperplane #1 represents
the optimal solution for DMUs A1–A7, while
hyperplane #2 is optimal for the remainder of the
DMUs. The only frontier unit on hyperplane #1,
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however, is C6 (not an ‘A’ unit), and the only one
on hyperplane #2 is A7 (not a ‘B’ or ‘C’ unit). Thus,
in this illustration, since DMUs are forced to apply
group-common multipliers, all final efficiency scores
would be strictly less than unity. We emphasize that
this phenomenon may be rare, and is purely a func-
tion of the numbers involved, not the particular
application setting.
Table 2
Data for power plants

Group Unit Outputs

OPER OUT

Plant 1 1 573 95
2 560 138
3 637 151
4 685 139
5 542 157
6 520 100
7 531 122
8 511 135

Plant 2 1 521 102
2 634 93
3 610 86
4 538 95
5 591 116
6 650 123
7 621 107
8 686 125

Plant 3 1 620 120
2 550 81
3 525 105
4 580 125

Plant 4(1) 1 430 105

Plant 4(2) 1 560 110
2 510 125

Plant 5 1 650 170
2 550 120
3 580 160
4 640 110

Plant 6 1 480 95

Plant 7(1) 1 320 70
2 250 60
3 370 100
4 280 90

Plant 7(2) 1 520 120
2 430 100
3 470 110
4 410 80

Plant 8 1 475 100
2 560 150
3 510 120
4 425 140
4. An analysis of power unit efficiency

Earlier a description was given of a problem set-
ting involving thermo-generating plants, wherein it
was argued that efficiency should be viewed in terms
of a set of outputs and inputs. Table 1 shows the
number of thermal units operating at each of eight
locations. Given also are the construction dates, fuel
MAINT OCCUP

EQDER

110 538 895
120 290 770
150 386 886
160 290 760
130 343 721
120 470 810
60 439 820

160 293 888

93 440 771
102 324 780
75 378 825

106 380 815
119 241 880
105 141 766
91 355 823

110 270 750

130 350 750
95 630 770

125 495 860
106 345 800

140 190 810

105 280 770
95 180 820

140 300 7000
120 275 800
110 447 650
130 370 720

125 228 880

110 230 790
110 220 790
140 320 840
100 280 810

100 281 750
140 302 850
150 227 770
110 254 825

120 179 750
120 143 800
110 114 750
90 172 820
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types and capacities in megawatt hours. We point
out that two of the plants (#4 and #7) are each bro-
ken down into two groups for a total of 10 group-
ings. This breakdown is imposed due to the
difference in construction dates for the different
units at the two locations (e.g., units 7(1) were con-
structed in 1956 versus those at 7(2) which were
built in 1960).

Table 2 displays the raw data for the 40 plants
under analysis. Shown are three outputs and two
Table 3
Group-common multipliers and efficiency scores: Dinkelbach’s method

DMU Original efficiency OPER OUT EQD

Plant 1-1 0.70443 0.27507 1.82284 1.50
Plant 1-2 0.89133
Plant 1-3 0.85654
Plant 1-4 1
Plant 1-5 1
Plant 1-6 0.71187
Plant 1-7 0.71698
Plant 1-8 0.90530

Plant 2-1 0.74290 0.87815 0.44585 0.00
Plant 2-2 0.88875
Plant 2-3 0.80838
Plant 2-4 0.72706
Plant 2-5 0.78366
Plant 2-6 1
Plant 2-7 0.82495
Plant 2-8 1

Plant 3-1 0.91281 1.04763 0.00000 0.26
Plant 3-2 0.78288
Plant 3-3 0.69041
Plant 3-4 0.80699

Plant 4(1) 0.99049 0.00000 0.00000 2.31

Plant 4(2)-1 0.80654 0.44083 1.92555 0.09
Plant 4(2)-2 0.82451

Plant 5-1 0.53833 0.23036 1.04398 0.16
Plant 5-2 0.80450
Plant 5-3 1
Plant 5-4 0.98023

Plant 6 0.78841 0.09158 0.00000 2.25

Plant 7(1)-1 0.71933 0.00000 0.01132 3.08
Plant 7(1)-2 0.73555
Plant 7(1)-3 0.79209
Plant 7(1)-4 0.61549

Plant 7(2)-1 0.81846 0.00000 1.61419 1.84
Plant 7(2)-2 0.80046
Plant 7(2)-3 1
Plant 7(2)-4 0.68613

Plant 8-1 0.92040 0.00000 1.67951 1.81
Plant 8-2 1
Plant 8-3 1
Plant 8-4 0.89354
inputs. These outputs and inputs are defined as
follows:

4.1. Outputs

• OPER—a function of equivalent full capacity
operating hours. This factor accounts for the fact
that when operating at less than 100% capacity
(e.g., if the unit is derated to 50% capacity), the
operating hours during this period are prorated.
ER MAINT OCCUP New efficiency c

070 0.16615 0.83385 0.59336 0.11107
0.84850
0.84139
1
0.95772
0.67073
0.60591
0.79423

000 0.19137 0.80863 0.71079 0.03211
0.86355
0.77626
0.70352
0.75319
0.96789
0.80857
1

485 0.00000 1.00000 0.91195 0.01237
0.78098
0.67803
0.79462

203 0.77937 0.22063 0.99049 0

786 0.37174 0.62826 0.79775 0.00880
0.81572

284 0.75321 0.24679 0.17917 0.35916
0.67114
0.64084
0.62106

557 0.71569 0.28431 0.78841 0

370 0.56391 0.43609 0.71697 0.01018
0.72536
0.79165
0.60530

129 0.51281 0.48719 0.74159 0.07688
0.73676
0.92312
0.62324

337 0.50300 0.49700 0.83311 0.08729
1
0.93238
0.80625
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To bring the scale of values for the units of mea-
surement within the range of the scales used for
other factors, we apply a scaling factor of 1/10,
i.e., OPER = 1/10 · full capacity operating
hours.

• OUT—a function of the number of forced and
sudden outages.
Table 4
Group-common multipliers and efficiency scores: consecutive interval s

DMU Original efficiency OPER OUT EQD

Plant 1-1 0.70443 0.00042 0.00277 0.00
Plant 1-2 0.89133
Plant 1-3 0.85654
Plant 1-4 1
Plant 1-5 1
Plant 1-6 0.71187
Plant 1-7 0.71698
Plant 1-8 0.90530

Plant 2-1 0.74290 0.00136 0.00042 0.00
Plant 2-2 0.88875
Plant 2-3 0.80838
Plant 2-4 0.72706
Plant 2-5 0.78366
Plant 2-6 1
Plant 2-7 0.82495
Plant 2-8 1

Plant 3-1 0.91281 0.00140 0.00000 0.00
Plant 3-2 0.78288
Plant 3-3 0.69041
Plant 3-4 0.80699

Plant 4(1) 0.99049 0.00000 0.00000 0.00

Plant 4(2)-1 0.80654 0.00076 0.00331 0.00
Plant 4(2)-2 0.82451

Plant 5-1 0.53833 0.00057 0.00258 0.00
Plant 5-2 0.80450
Plant 5-3 1
Plant 5-4 0.98023

Plant 6 0.78841 0.00022 0.00000 0.00

Plant 7(1)-1 0.71933 0.00000 0.00002 0.00
Plant 7(1)-2 0.73555
Plant 7(1)-3 0.79209
Plant 7(1)-4 0.61549

Plant 7(2)-1 0.81846 0.00000 0.00328 0.00
Plant 7(2)-2 0.80046
Plant 7(2)-3 1
Plant 7(2)-4 0.68613

Plant 8-1 0.92040 0.00000 0.00391 0.00
Plant 8-2 1
Plant 8-3 1
Plant 8-4 0.89354
• OUT = N � K (# forced outages + # sudden out-
ages). Sudden and forced outages, as unscheduled
shutdowns of operations, are often consequences
of equipment failure. Again, to bring scales into
line we arbitrarily choose N = 200, K = 10.

• EQDER—a function of forced deratings caused
by equipment failure.
earch method

ER MAINT OCCUP New efficiency c

228 0.00025 0.00127 0.59333 0.11110
0.84856
0.84139
1
0.95773
0.67068
0.60602
0.79420

028 0.00030 0.00125 0.71070 0.03220
0.86913
0.77626
0.70877
0.75743
0.96780
0.80762
1

034 0.00000 0.00133 0.91215 0.01240
0.78142
0.67801
0.79500

707 0.00238 0.00068 0.99049 0

017 0.00064 0.00108 0.79774 0.00880
0.81571

040 0.00186 0.00061 0.17913 0.35920
0.67104
0.64080
0.62103

546 0.00173 0.00069 0.78841 0

658 0.00120 0.00093 0.71700 0.01020
0.72540
0.79169
0.60529

375 0.00104 0.00099 0.74156 0.07690
0.73672
0.92310
0.62325

422 0.00117 0.00116 0.83310 0.08730
1
0.93237
0.80626



Table 5
Computational efficiency of the two algorithms

Group J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

tc 1111 322 124 0 88 3592 0 102 769 873
td 4 5 2 0 2 11 0 4 4 4
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EQDER = N � K (# equipment related dera-
tings), with N = 200 and K = 10 as above.

Since on the output side, any measure used must
be such that ‘‘bigger is better,’’ one cannot directly

take outages as an output. To achieve the bigger is
better condition, we subtract outages from some
constant to create a proper scale measure. The value
200 has been chosen arbitrarily, but at the same
time to yield ‘‘OUT’’ values that are in line with
the scales used for other factors. Some sensitivity
analyses were done relative to this parameter
(200), and the particular value chosen was found
to have very little effect on the final relative efficiency
outcomes.

4.2. Inputs

• MAINT—the total labor and materials expendi-
tures in thousands of dollars.
Clearly, we could separate this into monetary
inputs, but for purposes here we aggregate the
two amounts into one figure.

• OCCUP—a function of total occupied hours,
that is
OCCUP = 1/10 (total hours available � avail-
able but not operating hours).

4.3. Analysis

A DEA analysis of the 40 power units was con-
ducted, and the resulting efficiency scores are dis-
played in column 2 of Tables 3 and 4. We then
solved model (3.5) using the two heuristics discussed
earlier, deriving common multipliers and corre-
sponding within-group efficiency scores. Shown as
well are the values for c that measure the maximum
distances from the ideal scores.

There is reason to prefer the Dinkelbach solution
methodology in two respects: First, one gets greater
accuracy with this approach in terms of the values of
c; see the last column in each of the two tables. In
order to have arrived at equally acceptable solutions
with the consecutive search method, one would have
to choose an increment of 0.00001 for the parameter.
The second argument in favor of Dinkelbach’s algo-
rithm, is the generally smaller number of iterations
required before a solution is reached. Table 5 pro-
vides the number of iterations in the 10 problems
solved. Here, tc and td represent respectively the
numbers of iterations in the consecutive search and
Dinkelbach algorithms. Clearly, since the computa-
tional complexity of the feasibility checking in the
two methods is approximately the same, Dinkel-
bach’s algorithm is the more efficient approach.

5. Conclusions

In many real world applications where DEA is
applied, DMUs can often be put into groups, the
members of which may be under a single manage-
ment team, or should be evaluated under the same
assumptions. This often means that the multipliers
used within a group should be common across that
group’s members. The case example examined in
this regard is one involving a set of power plants,
where each contains a set of power units under a
common plant management. We develop a goal-
programming model for this setting that seeks to
derive such a common-multiplier set. The impor-
tant feature of the derived multiplier set is that it
minimizes the maximum discrepancy among the
within-group scores from their ideal levels. In this
manner, the model seeks to minimize the detrimen-
tal impact on the most disadvantaged member of
each group. We believe this model structure is an
important addition to the DEA methodology, and
is one deserving of further research.
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