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In this paper a new method for dynamic parameter adaptation in particle swarm optimization (PSO) is
proposed. PSO is a metaheuristic inspired in social behaviors, which is very useful in optimization prob-
lems. In this paper we propose an improvement to the convergence and diversity of the swarm in PSO
using fuzzy logic. Simulation results show that the proposed approach improves the performance of
PSO. First, benchmark mathematical functions are used to illustrate the feasibility of the proposed
approach. Then a set of classification problems are used to show the potential applicability of the fuzzy
parameter adaptation of PSO.
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1. Introduction

Fuzzy logic or multi-valued logic is based on fuzzy set theory
proposed by (Zadeh, 1965a), which helps us in modeling knowl-
edge, through the use of if-then fuzzy rules (Yen & Langari, 1998).

The fuzzy set theory provides a systematic calculus to deal with
linguistic information (Kulkarni, 2001), and that improves the
numerical computation by using linguistic labels stipulated by
membership functions (Jang, Sun, & Mizutani, 1997; Zadeh,
1965b, 1997).

Particle swarm optimization (PSO) that was introduced by
Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 1995, 2001),
maintains a swarm of particles and each particle represents a pos-
sible solution. These particles ‘‘fly’’ through a multidimensional
search space, where the position of each particle is adjusted
according to your own experience and that of its neighbors
(Engelbrecht, xxxx).

PSO has recently received many improvements and applications
(Bingül & Karahan, 2011). Most of the modifications to PSO are to
improve convergence and to increase the diversity of the swarm
(Engelbrecht, xxxx). For example, S. Muthukaruppan, M.J. Er pro-
posed a hybrid particle swarm optimization based fuzzy expert sys-
tem for the diagnosis of coronary artery disease (Muthukaruppan &
Er, 2012). Chunshien Li, Tsunghan Wu proposed an adaptive fuzzy
approach to function approximation with PSO and the recursive
least squares estimator (Li & Wu, 2011). So in this paper we propose
an improvement to the convergence and diversity of PSO through
the use of fuzzy logic. Basically, fuzzy rules are used to control the
ll rights reserved.
key parameters in PSO to achieve the best possible dynamic
adaptation of these parameter values (Abdelbar, Abdelshahid &
Wunsch, 2005; Valdez, Melin & Castillo, 2011). First, benchmark
mathematical functions are used to illustrate the feasibility of the
proposed approach. Then a set of classification problems are used
to show the potential applicability of the fuzzy parameter
adaptation of PSO.

The rest of the paper is organized as follows. Section 2 describes
the proposed methodology. Section 3 shows how the experiments
were performed with the proposed method and the simple method
using the benchmark functions defined in Section 2. Section 4
shows how to perform the statistical comparison with all its
parameters and analysis of results. Section 5 shows the design of
fuzzy classifier. Section 6 shows the methodology to follow for
the design of fuzzy classifier. Section 7 shows how the experiments
were performed with the proposed method and the simple method
in the design of fuzzy classifier. Section 8 shows how to perform
the statistical comparison with all its parameters and analysis of
results. Section 9 shows the conclusions of the design of fuzzy clas-
sifier design. Finally, the conclusions of this paper are presented.

2. Methodology for parameter adaptation

The dynamics of PSO is defined by Eqs. (1) and (2), which are
the equations to update the position and velocity of the particle,
respectively.

xiðt þ 1Þ ¼ xiðtÞ þ v iðt þ 1Þ ð1Þ

v ijðt þ 1Þ ¼ v ijðtÞ þ c1r1ðtÞbyijðtÞ � xijðtÞc þ c2r2jðtÞbŷjðtÞ � xijðtÞc
ð2Þ
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Fig. 1. Input 1: iteration.

P. Melin et al. / Expert Systems with Applications 40 (2013) 3196–3206 3197
Parameters c1 and c2 were selected to be adjusted using fuzzy logic,
since those parameters account for the movement of the particles.

The parameter c1 or cognitive factor represents the level of
importance given the particle to its previous positions.

The parameter c2 or social factor represents the level of impor-
tance that the particle gives the best overall position.

Based on the literature (Engelbrecht, xxxx) the recommended
values for c1 and c2 must be in the range of 0.5 and 2.5, plus it is
also suggested that changing the parameters c1 and c2 dynamically
during the execution of this algorithm can produce better results.

In addition it is also found that the algorithm performance mea-
sures, such as: diversity of the swarm, the average error at one
point in the execution of the algorithm, the iterations themselves,
needs to be considered to run the algorithm, among others. In our
work all the above are taken in consideration for the fuzzy systems
to modify the parameters c1 and c2 dynamically changing these
parameters in each iteration of the algorithm.

For measuring the iterations of the algorithm, it was decided to
use a percentage of iterations, i.e. when starting the algorithm the
iterations will be considered ‘‘low’’, and when the iterations are
completed it will be considered ‘‘high’’ or close to 100%. To repre-
sent this idea we use:

Iteration ¼ Current Iteration
Maximum of Iterations

ð3Þ

The diversity measure is defined by Eq. (4), which measures the
degree of dispersion of the particles, i.e. when the particles are clo-
ser together there is less diversity as well as when particles are
separated then diversity is high. As the reader will realize the equa-
tion of diversity can be considered as the average of the Euclidean
distances between each particle and the best particle.

Diversity ðSðtÞÞ ¼ 1
ns

Xns

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx

j¼1

ðxijðtÞ � �xjðtÞÞ2
vuut ð4Þ

The error measure is defined by Eq. (5), which measures the dif-
ference between the swarm and the best particle, by averaging the
difference between the fitness of each particle and the fitness of
the best particle.

Error ¼ 1
ns

Xns

i¼1

ðFitnessðxiÞ �MinFÞ ð5Þ

Therefore for designing the fuzzy systems, which dynamically
adjust the parameters of c1 and c2, the three measures described
above were considered as inputs. It is obvious that for each fuzzy
system the outputs are c1 and c2.

In regards to the inputs of the fuzzy systems, the iteration var-
iable has by itself a defined range of possible values which range
from 0 to 1 (0 is 0% and 1 is the 100%), but with the diversity
and the error, we perform a normalization of the values of these
to have values between 0 and 1. Eq. (6) shows how the normaliza-
tion of diversity is performed and Eq. (7) shows how the normali-
zation of the error is obtained.

DiverNorm ¼
if MinDiver ¼ MaxDiverfDiverNorm ¼ 0
if MinDiver–MaxDiverfDiverNorm ¼ FbNorm

�
ð6Þ

FnNorm ¼ Diversity�MinDiver
MaxDiver �MinDiver

Eq. (6) shows two conditions for the normalization of diversity, the
first provides that where the maximum Euclidean distance is equal
to the minimum Euclidean distance, this means that the particles
are exactly in the same position so there is no diversity. The second
condition deals with the cases with different Euclidean distances.
ErrorNorm ¼
if MinF ¼ MaxFfErrorNorm ¼ 1
if MinF – MaxF fErrorNorm ¼ Error�MinF

MaxF�MinF

(
ð7Þ

Eq. (7) shows two conditions to normalize the error, the first one
tells us that when the minimum fitness is equal to the maximum
fitness, then the error will be 1; this is because the particles are
close together. The second condition deals with the cases with dif-
ferent fitness.

The design of the input variables can be appreciated in Figs. 1, 2
and 3, which show the inputs iteration, diversity, and error respec-
tively, each input is granulated into three triangular membership
functions.

For the output variables, as mentioned above, the recom-
mended values for c1 and c2 are between 0.5 and 2.5, so that the
output variables were designed using this range of values. Each
output is granulated in five triangular membership functions, the
design of the output variables can be seen in Figs. 4 and 5, c1 and
c2 respectively.

Having defined the possible input variables, it was decided to
combine them to generate different fuzzy systems for dynamic
adjustment of c1 and c2. Based on the combinations of possible in-
puts, there were seven possible fuzzy systems, but it was decided
to consider only the systems that have more inputs (since we pre-
viously considered fuzzy systems with only a single input), so that
eventually there were three fuzzy systems which are defined
below.

The first fuzzy system has iteration and diversity as inputs,
which is shown in Fig. 6. The second fuzzy system has iteration
and error as inputs and is shown in Fig. 7. The third fuzzy system
has iteration, diversity, and error as inputs, as shown in Fig. 8.

To design the rules of each fuzzy system, it was decided that in
early iterations the PSO algorithm must explore and eventually ex-
ploit. Taking into account other variables such as diversity, for
example, when diversity is low, that is, that the particles are close
together, we must use exploration, and when diversity is high we
must use exploitation.

The rules for each fuzzy system are shown in Figs. 9–11, for the
fuzzy systems 1, 2 and 3, respectively.

Also for the comparison of the proposed method with respect to
the PSO without parameter adaptation, we considered benchmark
mathematical functions, defined in Haupt & Haupt, xxxx; Marcin,
2005, which are 27 in total, and in each we must find the parame-
ters that give us the global minimum of each function. In Fig. 12
there is a sample of the functions that are used.



Fig. 2. Input 2: diversity.

Fig. 3. Input 3: error.

Fig. 4. Output 1: c1.

Fig. 5. Output 2: c2.
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As indicated in Fig. 12 we only considered functions of one or
two dimensions for the experiments.

So that once defined the fuzzy systems that dynamically adjust
the parameters of PSO, and defined the problem in which it applies
(benchmark mathematical functions), the proposal is as shown in
Fig. 13, where we can notice that c1 and c2 parameters are adjusted
by a fuzzy system, and in turn this ‘‘fuzzy PSO’’ searches for the
optimal parameters for the benchmark mathematical functions.
3. Experimentation with the fuzzy systems and the benchmark
mathematical functions

For the experiments we used the parameters contained in
Table 1. Table 1 shows the parameters of the methods to be com-
pared; in this case, we perform a comparison of the proposed
method and its variations against the simple PSO algorithm.

Since functions do not have the same global minimum, for com-
parison it was decided to normalize the results of each function, for
this it is used Eq. (8), which gives results between 0 and 1, which
means that a number close to 0 is better than a number close to 1.

ExperimentNorm ¼ Experiment � GlobalMin
GlobalMax� GlobalMin

����
���� ð8Þ

To normalize the results with Eq. (8), we need the maximum
and the minimum of each benchmark mathematical function; in
our case these data are known. Also, the absolute value is needed,
because we want to know how much difference between the re-
sults of the experiment and the minimum value of the function.
Therefore, Table 2 shows some experimental results of each meth-
od with each function.
4. Statistical comparison

To perform the statistical comparison, we have:

3 Methods to compare against the simple PSO: (FPSO1, FPSO2,
FPSO3).
27 Benchmark mathematical functions.
10 Experiments were performed for each method by each func-
tion, so it has a total of 270 experiments for each method. Of
this total, we took a random sample of 50 experiments for each
method for statistical comparison.



Fig. 6. First fuzzy system.

Fig. 7. Second fuzzy system.

Fig. 8. Third fuzzy system.

Fig. 9. Rules for fuzzy system 1.

Fig. 10. Rules for fuzzy system 2.
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Fig. 11. Rules for fuzzy system 3.

Fig. 12. Benchmark mathematical functions.
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The statistical test used for comparison is the z-test, whose
parameters are defined in Table 3.

With the parameters in Table 3, we applied the statistical z-test,
giving the following results shown in Table 4.

In applying the statistic z-test, with significance level of 0.05,
and the alternative hypothesis says that the average of the pro-
posed method is lower than the average of simple PSO, and of
course the null hypothesis tells us that the average of the proposed
method is greater than or equal to the average of simple PSO, with
a rejection region for all values fall below �1.645. So the statistical
test results are that: for the fuzzy PSO 1, there is significant evi-
dence to reject the null hypothesis, as in the fuzzy PSO 3. But in
the fuzzy PSO 2, there is no significant evidence to reject the null
hypothesis. In conclusion, two of the proposed variants of PSO
were significantly better than simple PSO.

We proposed a method for dynamic adaptation of the parame-
ters of PSO to improve the quality of results. With the results of the
statistic test, we can conclude that there is significant evidence to
say that the proposed approach could help in the adaptation of
parameters in PSO.



Fig. 13. Proposal for fuzzy dynamic adaptation of PSO.

Table 1
Parameters for each method.

Parameter Simple PSO Fuzzy PSO 1 Fuzzy PSO 2 Fuzzy PSO 3

Population 10 10 10 10
Iterations 30 30 30 30
c1 1 Dynamic Dynamic Dynamic
c2 3 Dynamic Dynamic Dynamic

Table 2
Simulation results.

Function Minimum Simple
PSO

Fuzzy PSO
1

Fuzzy PSO
2

Fuzzy PSO
3

1 1 0.0005 0.0000 0.0001 0.0003
2 0 0.0000 0.0000 0.0000 0.0000
3 0 0.0000 0.0009 0.0000 0.0000
4 0 0.0000 0.0000 0.0000 0.0000
5 �20 0.1042 0.0665 0.0728 0.0743
6 �100.2238 0.1275 0.1277 0.0000 0.0000
7 �18.5547 0.1929 0.2484 0.2645 0.1253
8 0 0.0000 0.0000 0.0003 0.0000
9 0 0.0017 0.0039 0.0157 0.0019

10 0 0.0000 0.0000 0.0001 0.0000

Table 3
Parameters for the statistical z-test.

Parameter Value

Level of significance 95%
Alpha 0.05%
Ha l1 < l2

H0 l1 P l2

Critical value �1.645

Table 4
Results of applying statistical z-test.

Our method Simple method Z value Evidence

FPSO1 Simple PSO �2.1937 Significant
FPSO2 Simple PSO �0.6801 Not significant
FPSO3 Simple PSO �2.1159 Significant
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Future work includes experiments with functions with more
than two dimensions, comparison with other approaches of PSO,
for example, PSO with inertia weight and PSO with constriction.
Also try to achieve better results for the PSO with fuzzy system
2, more specifically with the input error and the rules of the fuzzy
system. In future work also we try to apply the proposed method to
other types of problems, for example, optimization of fuzzy
systems.
5. Fuzzy classifier design

To design fuzzy classifiers were used methods such as PSO sim-
ple and proposed methods with parameters adapted dynamically
(Nozaki, Ishibuchi & Tanaka, 1994, 1996). These methods were ap-
plied to different dataset taken from Fisher (1936), Jossinet (1996),
Bohanec and Rajkovic (1988), Wolberg and Mangasarian (1990),
Aeberhard, Coomans, and de Vel (1992), Waugh, 1995 and Cortez,
Cerdeira, Almeida, Matos, and Reis (2009), in which the goal is to
obtain a fuzzy classifier that ‘‘classify’’ the data in the best way pos-
sible (Prado, Garcia-Galán, Exposito & Yuste, 2010). Fig. 14 shows
an example of a dataset, in this case the Fisher’s Iris dataset (Fisher,
1936), which shows that it has four attributes (length and width of
sepal and petal length and width), 150 records and three distinct
classes. The figure shows some graphs which visually compares
the attributes of Fisher’s Iris dataset.
6. Methodology for designing fuzzy classifiers

The methodology proposed for the design of fuzzy classifiers,
defined below:

1. Given a dataset, is obtained the number of different classes, and
is divided into 70% for training and 30% exclusively for testing.

2. From the training data are obtained some necessary features,
such as number of attributes, attribute ranges.

3. It generates a fuzzy classifier of base, from the characteristics
obtained.

4. Optimize the rules from fuzzy classifier using the data for
training.

5. Test the best fuzzy classifier found, so far, with the test data.
6. Optimize the membership functions of the best fuzzy classifier

found, which has optimized rules, using data for training.
7. Test the best fuzzy classifier found with the test data.

The following defines each step of the methodology for the
design of fuzzy classifiers.

In the first step, given a dataset, we obtain the number of differ-
ent classes, then is divide the dataset, is taken 30% of the dataset
randomly without replacement, the remaining records, that is,
70% becomes our set of data for training, but before that, are
obtained the number of different classes of 70%, and if this is less
than the total of different classes of full dataset, we proceed to
select a new random 30% of records, until the 70% of the data con-
tains at least one record of each class, this to guarantee that the
fuzzy classifier have all possible output classes.

In the second step, to obtain the necessary features from the
training data, we obtain the number of attributes, and ranges are
obtained from the minimum and maximum of each attribute.

In the third step, to generate a fuzzy classifier, a structure is cre-
ated to define a Sugeno-type fuzzy system from scratch, where the
inputs are each attribute of the dataset and the ranges of the inputs
are the ranges of each attribute, and the output of the fuzzy classi-
fication system, is given by the total number of classes. Also defines
the number of membership functions per input, since the system is
Sugeno each output, that is each class, will be an integer. The rules



Fig. 14. Fisher’s Iris dataset.

Fig. 15. Fuzzy classifier for Iris dataset.
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of the fuzzy classifier are all possible combinations in the anteced-
ents, and all the consequents are the first class. Fig. 15 shows a fuz-
zy classifier for Fisher’s Iris dataset.

In Fig. 15 one can observe the fuzzy system for classification of
Iris dataset. The Iris dataset has four attributes, which are: sepal
length, sepal width, petal length and petal width, these attributes
are reflected in the inputs of the fuzzy system.

Fig. 16 shows the inputs and the output of the fuzzy system, as
you can see, each entry has its own range, defined by the training
data, in addition, each input has two membership functions, placed
symmetrically (can be more membership functions but in the exam-
ple used only two), and has every possible output dataset class.
Fig. 17 shows the set of rules of the fuzzy system for classifica-
tion of the Iris dataset. As can be observed the number of rules is
defined by the number of inputs and their membership functions,
in the example, there are four inputs with two membership func-
tions each, so the maximum number of possible combinations in
the antecedents is 16 (that is 2 � 2 � 2 � 2 or 24), plus all rules
have class number 1 as consequent, that is for simplicity, since
the next step is an optimization of these rules.

Only for purposes of assessing the evolution of the fuzzy classi-
fier, we applied this to the classification of the test data, that to ob-
tain an error of classification using Eq. (9). The error in this case is
66.67%, this because the consequent of all rules is Class 1, and since



Fig. 16. Inputs and outputs from the fuzzy system for classification of Iris dataset.

Fig. 17. Set of rules from the fuzzy classifier.

Fig. 18. Particle for optimizing the rules of the fuzzy classifier.
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the dataset contains three classes with 50 records each, this is, the
third part of the dataset is for a class.

Error of classification ¼ Misclassified Records
Total Records

ð9Þ

For the fourth step, are used the PSO methods (simple and pro-
posed), for optimization of the rules of the fuzzy classifier previ-
ously generated. The optimization of the rules, in this case, is the
modification of the consequents of the rules, so that the length of
each particle depends on the number of rules to optimize, in
Fig. 18 shown an example of a particle for optimizing the rules of
the fuzzy classifier for Iris dataset, where you can see it has 16
positions each corresponding to each rule, and possible values
are the numbers 1, 2 or 3, which correspond to the possible classes.

For the fifth step, simply is used the best fuzzy classifier found
in the previous step, to classify the test data and obtain an error of
classification in this case of 22.67%. As can be seen by comparing
errors before optimize rules (66.67%) and once optimized, there
is an improvement in the data classification.

For the sixth step, the optimization of the membership func-
tions consist in ‘‘move’’ the points of the membership functions
of the inputs, continuing the example, there are four inputs with
two triangular membership functions each, so you should to
‘‘move’’ 3 points for each membership function, which gives a total
of 24 points, these 24 points become the size of the particle. Fig. 19
shows an example of a particle for optimizing the membership
functions of the fuzzy classifier system.

For the last step uses the best fuzzy classifier found, after opti-
mization of rules and membership functions to classify the test
data and obtain a classification error. In this case the classification
error is 14% compared with the classification error optimized keep-
ing only the rules (22.67%), so that there is an improvement in the
classification of data, and is saved the fuzzy classifier with less
error.

Fig. 20 shown the rules optimized of the fuzzy classifier, and
Fig. 21 shown the membership functions of each input once
optimized.
7. Experimentation in the design of fuzzy classifiers

For experimentation in the design of fuzzy classifiers, we used
dataset taken from Fisher (1936), Jossinet (1996), Bohanec and
Rajkovic (1988), Wolberg and Mangasarian (1990), Aeberhard
et al., 1992, Waugh, 1995 and Cortez et al. (2009). Table 5 shows
the main features of these dataset.

As can be seen in Table 5, the data supported by the proposed
method (so far) are: numerical and categorical. Addition the pro-
posed method can work with a varied number of attributes (inputs
for fuzzy classifier), number of classes (outputs) and number of in-
stances (records to classify).

The parameters used for each method are the same as specified
by performing experiments with benchmark mathematical func-
tions, this is, the parameters included in Table 1.



Fig. 19. Particle for optimizing the membership functions of the fuzzy classifier.

Fig. 20. Set of optimized rules of the fuzzy classifier.

Fig. 21. Optimized membership functions of the fuzzy classifier.

Table 5
Dataset used in the design of fuzzy classifiers.

Name Instances Classes Attributes Types of data

Abalone (Waugh, 1995) 4177 28 8 Numeric and categorical
Breast tissue (Jossinet, 1996) 106 6 9 Numeric
Breast cancer Wisconsin (Wolberg & Mangasarian, 1990) 699 2 6 Numeric and categorical
Car evaluation (Bohanec & Rajkovic, 1988) 1728 4 6 Categorical
Iris (Fisher, 1936) 150 3 4 Numeric
Wine (Aeberhard et al., 1992) 178 3 13 Numeric
Wine quality red (Cortez et al., 2009) 4898 11 12 Numeric
Wine quality white (Cortez et al., 2009) 4898 11 12 Numeric
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Table 6 shows some of the results of experiments in the de-
sign of fuzzy classifiers (first results were taken of each method
with each dataset, and in total 10 experiments were performed
for each method with each dataset). Moreover, these experi-
ments using Eq. (9), so that have values between the ranges of
0–1.
8. Statistical comparison for the fuzzy classifiers

For the statistical comparison we have:

3 methods to compare against PSO simple, which are: FPSO1,
FPSO2, FPSO3 with eight datasets.



Table 6
Experiments of each method with each dataset in the design of fuzzy classifiers.

Dataset Simple PSO FPSO1 FPSO2 FPSO3

Abalone (Waugh, 1995) 0.3556 0.0133 0.2667 0.2222
Breast tissue (Jossinet, 1996) 0.0667 0.0714 0.1238 0.0905
Breast cancer Wisconsin (Wolberg & Mangasarian, 1990) 0.7813 0.0593 0.6563 0.6563
Car evaluation (Bohanec & Rajkovic, 1988) 0.7399 0.0741 0.7784 0.6956
Iris (Fisher, 1936) 0.9346 0.0890 0.8892 0.8708
Wine (Aeberhard et al., 1992) 0.4815 0.4259 0.3704 0.4259
Wine quality red (Cortez et al., 2009) 0.5208 0.4729 0.4917 0.4417
Wine quality white (Cortez et al., 2009) 0.5687 0.5844 0.5531 0.5401

Table 7
Parameters for statistical z-test.

Parameter Value

Level of significance 95%
Alpha 0.05%
Ha l1 < l2

H0 l1 P l2

Critical value �1.645

Table 8
Results of applying statistical z-test.

Our method Simple method Z value Evidence

FPSO1 Simple PSO �2.1502 Significant
FPSO2 Simple PSO �0.8841 Not significant
FPSO3 Simple PSO �1.4242 Not significant
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10 experiments were performed for each method with each
dataset, so that it has a total of 80 experiments per method.
From this total, took a random sample of 30 experiments for
each method.

The statistical test used for comparison is the z-test, whose
parameters are defined in Table 7.

With the results contained in Table 7, we applied the statistical
z-test, obtaining the results contained in Table 8.

In applying the statistic z-test, with significance level of 0.05,
and the alternative hypothesis says that the average of the pro-
posed method is lower than the average of simple PSO, and of
course the null hypothesis tells us that the average of the proposed
method is greater than or equal to the average of simple PSO, with
a rejection region for all values fall below �1.645. So the statistical
test results are that: for the FPSO1, there is significant evidence to
reject the null hypothesis. But in the FPSO2 and FPSO3, there is no
significant evidence to reject the null hypothesis.

One of the main reasons that the FPSO2 and FPSO3methods,
have not sufficient statistical evidence to reject the null hypothesis,
is because both use the variable input error, and given that this
variable needs to know the minimum and maximum of each
experiment, this made the use of this variable does not give good
results.

In analyzing the results of the statistical test in the design of
fuzzy classifiers can see that only the first method found statistical
evidence to reject the null hypothesis, i.e., that the proposed meth-
od obtains less error in designing fuzzy classifiers.

The reason that only the first proposed method obtains good re-
sults is because when fuzzy systems are designed to adjust param-
eters, it was taken as a premise, that at the beginning the
optimization method (PSO), should explore the search space to ex-
plode eventually found the best area, and to do this, the best vari-
ables to use are the iteration and diversity, which are precisely the
inputs of the first method and the other two methods involve var-
iable error, it is for this reason that the first method can handle
diversity and convergence in a better way than the other two
methods.
9. Conclusions

We conclude that dynamically adjusting parameters of an opti-
mization method (in this case the particle swarm optimization
PSO), can improve the quality of results and increase the diversity
of solutions to a problem.

Three fuzzy systems were designed for adjusting the parame-
ters for particle swarm optimization. It was obtained in two sys-
tems statistical evidence of an improvement in the quality of the
results of the method of particle swarm optimization when applied
in the minimization of benchmark mathematical functions.

Experiments were performed with the proposed methods in the
minimization of mathematical functions and the design of fuzzy
classifiers, and a comparison was made between the method of
simple particle swarm optimization and the proposed methods,
i.e. with fuzzy parameters adjustment.

By comparing the proposed methods and the simple method of
PSO, in the design of fuzzy classifiers it was found that only the
first method obtained statistical evidence to reject the null hypoth-
esis, which says that in developing this work it was possible to de-
velop a method for adjusting the parameters c1 and c2 of the PSO
using fuzzy logic. And in this way improve the results compared
with the simple method of PSO.
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