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Abstract 

Kong, T.Y., A.W. Roscoe and A. Rosenfeld, Concepts of digital topology, Topology and its 

Applications 46 (1992) 219-262. 

In an earlier paper written for a different readership [Computers and Graphics 13(2) (1989) 
159-1661 the first author defined a digitalfundamentalgroup-an analog, for binary digital pictures, 

of the fundamental group. In general the definition of the digital fundamental group involves 

continuous deformation. But an alternative, discrete, definition of the digital fundamental group 

was proposed for the strongly normal digital picture spaces defined in the same paper. The 

above-mentioned paper also defined a “continuous analog” C(p) for each binary digital picture 

B on such a DPS (DPS = digital picture space). C(p) is a polyhedron constructed by “filling in 

the gaps” between black points (l’s) of the binary digital picture B in a specific way. Other kinds 

of continuous analog had previously been used by the first two authors. 

In seeking the simplest and most efficient algorithms for performing image processing operations, 

researchers have considered many different combinations of grids and adjacency relations. Almost 

all of those combinations are isomorphic to special cases of the concept of a strongly normal DPS. 

The main contribution of the present paper is a proof that the digital fundamental groups of 

binary digital pictures on a strongly normal DPS are naturally isomorphic to the fundamental 

groups of the digital pictures’ continuous analogs. We use this result to establish that on a strongly 

normal DPS the discrete and continuous definitions of the digital fundamental group are 

equivalent, up to a natural group isomorphism. We also show that many topological results which 

hold in the Euclidean plane or Euclidean 3-space have analogs that hold in every strongly normal 

DPS. Our results suggest that a strongly normal DPS is a suitable domain for studying topology- 

related image processing operations such as thinning, border tracking and contour filling. 

The definitions of digital fundamental group, strongly normal DPS and continuous analog are 

included in this paper so as to make it self-contained. 
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1. Introduction 

This paper is about the digital fundamental group, strongly normal digital picture 

spaces, and the continuous analog C( L?) of a binary digital picture ?? on a strongly 

normal digital picture space. These concepts of digital topology were introduced in 

[ll], a paper written for a different readership.’ 

The digital fundamental group is an analog for binary digital pictures2 of the 

fundamental group, just as digital connectedness (e.g., 4- or S-connectedness) is an 

analog for binary digital pictures of the topological notion of connectedness. The 

importance of the fundamental group in 3-d polyhedral topology suggests that the 

digital fundamental group will be a useful concept of 3-d digital topology. In fact 

the digital fundamental group has an immediate application to the theory of 3-d 

image thinning algorithms. For in order to preserve “tunnels” a 3-d thinning 

algorithm must preserve the digital fundamental groups of the input binary digital 

picture. See [ll, Section 2.3; 18, Section 10; 141 for further discussion of this topic. 

In seeking the simplest and most efficient algorithms for performing image 

processing operations such as thinning and border tracking, researchers have con- 

sidered many different combinations of grids and adjacency relations. Almost all 

of those combinations are isomorphic to special cases of the concept of a strongly 

normal digital picture space. 

The continuous analog C(9) of a binary digital picture ?? on a strongly normal 

digital picture space is a polyhedron constructed by “filling in the gaps” between 

black points of L!? in accordance with a number of fairly natural rules. The principal 

result of our paper, Theorem 6.1.1 in Section 6, shows that the fundamental groups 

of C(Y) and its complement are naturally isomorphic to the digital fundamental 

groups of Y and the complementary binary digital picture @. This is evidence that 

the digital fundamental group has been appropriately defined. Theorem 6.1.1 also 

shows that C(9) is analogous to 9 in other useful ways. 

In Section 7 we make extensive use of Theorem 6.1.1 to establish that a strongly 

normal digital picture space has the good “topological” properties which make it 

a suitable domain for studying topology-related image processing operations. Also, 

it follows from Proposition 7.9.1 that for strongly normal digital picture spaces the 

“continuous” definition of the digital fundamental group [ll, Definition 3.3.41 is 

equivalent3 to the discrete definition of the group in [ll, Section 4.41. 

To make this paper self-contained, many of the definitions given in [l l] are 

included in Sections 3-5. 

’ Digital fundamental groups and continuous analogs of binary digital pictures were also considered 

in [14, 191. Continuous analogs of binary images had previously been used by the first two authors in 
[15, 161, by the first author and Khalimsky in [12] and by Kopperman, Meyer and Wilson in [20]. 

’ A binary digital picture is a binary image equipped with adjacency relations that are used to define 
connectedness for sets of l’s and sets of 0’s. A more precise definition will be given in Section 3. In this 

paper a 1 in a binary image is called a black point and a 0 is called a white point. (Some authors use 

the opposite convention, calling l’s white and O’s black.) 

3 Up to a natural group isomorphism. 
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2. Standard grids and adjacency relations 

A number of different grids and adjacency relations have been considered by 

researchers seeking the best algorithms for performing image processing operations. 

Most of the adjacency relations considered have been based on the Voronoi neighbor- 

hoods of the grid points (cf. [l]). The Voronoi neighborhood of a grid point p in 

a 2-d grid (3-d grid) is the set of all points in the Euclidean plane (in Euclidean 

3-space) that are at least as close to p as to any other grid point. It is always a 

closed convex polygon or polyhedron. The Voronoi adjacency relations are the 

adjacency relations in which two grid points are adjacent if their Voronoi neighbor- 

hoods (i) share a vertex, (ii) share an edge, and (in the 3-d case) (iii) share a face. 

However, these adjacency relations may not all be distinct. In the case of the 

body-centered cubic grid defined below all three of them are the same, because the 

Voronoi neighborhoods of two grid points share a vertex only if they share a face. 

A Voronoi adjacency relation in which each grid point is adjacent to just n other 

grid points is referred to as the n-adjacency relation on the grid; two adjacent points 

are then said to be n-adjacent to each other and each is called an n-neighbor of the 

other. We call a straight line segment joining two n-neighbors an n-adjacency. 

We now describe most of the grids that have been considered in the image 

processing literature, and their Voronoi adjacency relations: 

l 2-d square grid: The grid points are the points (x, y) with integer coordinates. 

This is of course the most commonly used 2-d grid. The Voronoi neighborhood of 

each grid point is a unit square and the Voronoi adjacency relations are the standard 

4- and g-adjacency relations. 

l 2-d isometric hexagonal grid: The grid points are the centers of the hexagons 

in a tiling of the plane by regular hexagons. These hexagons are the Voronoi 

neighborhoods of the grid points. There is only one Voronoi adjacency relation: 

the 6-adjacency relation. This grid has been used by many authors (e.g., [4]). 

l 2-d triangular grid: The grid points are the centroids of the triangles in a tiling 

of the plane by equilateral triangles. These triangles are the Voronoi neighborhoods 

of the grid points. There are two Voronoi adjacency relations: the 3- and the 

12-adjacency relations. This grid is discussed in [3]. 

l 3-d cubic grid: The grid points are the points (x, y, z) with integer coordinates. 

This is the most obvious and commonly used 3-d grid. The Voronoi neighborhood 

of each grid point is a unit cube and the Voronoi adjacencies are the standard 6-, 

18- and 26-adjacency relations. 

l 3-d face-centered cubic grid: The grid points are the points with coordinates 

(x, y, z), where x, y and z are integers such that x + y + z is even. The Voronoi 

neighborhood of each grid point is a rhombic dodecahedron. There are just two 

Voronoi adjacency relations: the 12- and the 18-adjacency relations. The 12-neigh- 

bors of a grid point p are the grid points at a distance of fi from p. The 18-neighbors 

of p are the 12-neighbors of p plus the six grid points at a distance of 2 from p. 

This grid is considered in [5, 251. 
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l 3-d body-centered cubic grid: The grid points are the points with coordinates 

(x, y, z), where x, y and z are integers such that x = y - z (mod 2). The Voronoi 

neighborhood of each grid point is a truncated octahedron. There is only one 

Voronoi adjacency relation: the 1Cadjacency relation. The 14-neighbors of a grid 

point p are the eight grid points at a distance of & from p and the six grid points 

at a distance of 2 from p. This grid is used in [21]. 

Khalimsky’s adjacency relations. Khalimsky has introduced a different approach to 

digital topology in which images are represented by locally finite To topological 

spaces [6-lo]. Kovalevsky has independently developed a similar theory from a 

more practical standpoint (see [22]). For an introduction to this “topological” 

approach to digital topology see [13, 191. 

In the topological approach one gives the integers Z the (locally finite To) topology 

with basis 

Then Z” is topologized as a product of n copies of this space. We shall refer to the 

product space as Khalimsky n-space. 

Say that two distinct points p and q in Z” are Khalimsky-adjacent if the two-point 

set {p, q} is connected in Khalimsky n-space. Call a closed straight line segment in 

Euclidean n-space whose endpoints are Khalimsky-adjacent points in Z” a 

Khalimsky adjacency. Then a set S G Z” is connected in Khalimsky n-space if and 

only if the union of S and all the Khalimsky adjacencies that join two points in S 

is connected in Euclidean n-space. 

Following Khalimsky, call a grid point a pure point if its coordinates are all even 

or all odd, and a mixed point otherwise. Then when n =2 or 3 the Khalimsky 

adjacencies are the 8-adjacencies (n = 2) or 26-adjacencies (n = 3) in which at least 

one endpoint is a pure point, together with all 6-adjacencies that join two mixed 

points when n = 3. Thus the Khalimsky adjacency relation is an example of a 

non-Voronoi adjacency relation on the 2-d square and 3-d cubic grids. 

In this section we have described many different combinations of grids and 

adjacency relations. All of these combinations are special cases of the general 

concept of a binary digital picture space which we now introduce. 

3. Binary digital picture spaces and binary digital pictures 

3.1. Choice of representation 

In [ 161 the first two authors presented a general theory of binary digital pictures. 

In that theory a binary digital picture was represented by an ordered pair (A, S), 

where S was the set of “black” grid points on the 2-d square grid or 3-d cubic grid, 
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and A was an adjacency relation, on the set of all grid points, that satisfied certain 

regularity conditions. It was shown that well-behaved binary digital pictures had 

“continuous analogs”. However, the continuous analogs constructed in [ 161 are not 

consistent with any reasonable theory of digital fundamental groups. 

The (A, S) representation of binary digital pictures is not a convenient notation 

for discussing image processing operations such as thinning or digital rotation. The 

reason is that these operations would normally alter the A part of a binary digital 

picture (A, S) as well as the black point set S. Instead of the A part of the (A, S) 

representation, it is better to have something that is invariant under conventional 

image processing operations. For this reason we use a different representation of 

binary digital pictures that was introduced in [ll]. 

3.2. Binary digital picture spaces 

A binary digital picture space is a triple (V, p, w), where V is the set of grid points 

in a 2-d or 3-d grid and each of p and w is a set of closed straight line segments 

joining pairs of points in V. By “V is the set of grid points in a 2-d or 3-d grid” we 

mean that V is an infinite set of points in E* (2-d case) or E3 (3-d case), V has no 

accumulation points, and there exists a positive constant D such that every point 

in E* or respectively E3 is within distance D of a point in V. (We write E* for the 

Euclidean plane and E3 for Euclidean 3-space.) In this paper, as in [ll], we refer 

to a binary digital picture space simply as a digital picture space; and we will often 

abbreviate this to DPS. 

We call the members of V the points of (or in) the DPS (V, /3, w). Most often we 

take V = Z* or Z3, corresponding to the square or cubic grid. (We write Z* for the 

set of points with integer coordinates in E2, and Z’ for the set of points with integer 

coordinates in E’.) Some other possibilities for V were described in the previous 

section. 

An important notion of digital topology is that of adjacency between points. 

Typically, different adjacency relations are used for the black and the white points. 

On a DPS (V, p, w) these adjacency relations are defined by the line segments in 

the sets /3 and w. The set p contains all straight line segments joining points in V 

that will be considered adjacent to each other if they are both black. Similarly, the 

set w contains all straight line segments joining points in V that will be considered 

adjacent to each other if they are both white. Neither /3 nor w need have the same 

symmetries as V. (More precisely, neither IJp nor Uw need be invariant under 

isometries of E* or E3 that map V onto itself.) 

In the special case V = Z* it is most usual for one of p and w to be the set of all 

4-adjacencies of Zz and the other to be the set of all 8-adjacencies of Z2. In the 

special case V = Z’ it is most usual for one of p and w to be the set of all 6-adjacencies 

of Z3 and the other to be either the set of all 18-adjacencies or the set of all 

26-adjacencies of Z3. In general, if p happens to be the set of all m-adjacencies of 

V for some integer m, and w happens to be the set of all n-adjacencies for some 
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integer n, then we may denote the DPS (V, p, w) by (V, m, n), as in (Z’, 8,4) or 

(Z’, 6,26). 

A line segment in p is called a P-adjacency. Similarly, a line segment in w is 

called an w-adjacency. If p and q are the endpoints of a P-adjacency (w-adjacency) 

we say p is P-adjacent (w-adjacent) to q. 

An isomorphism of a DPS L+‘,=(V,,p,,w,) to a DPS 9’2=(Vz,pz,wz) is a 

homeomorphism h of the Euclidean plane (2-d case) or Euclidean 3-space (3-d 

case) to itself such that h maps V, onto V,, each P,-adjacency onto a &-adjacency 

and each w,-adjacency onto an w,-adjacency, and h-’ maps each P,-adjacency onto 

a P,-adjacency and each w,-adjacency onto an w,-adjacency. 

Thus the DPS ( V, 6,6) where V is the set of grid points in a 2-d isometric hexagonal 

grid is isomorphic to the DPS ( V, p, w ) in which V = Z2 and /? = w = the 4-adjacencies 

and the south-west-north-east diagonals of unit lattice squares4. The latter DPS is 

an example of a DPS (V, p, w) in which p and w do not have the same symmetries 

as V. 

If S is any set of points in the DPS Y= ( V, p, w) then the complement of S (with 

respect to Y), written s, is the set V-S. The complement of a DPS 9’ = ( V, p, co), 

written 9, is the DPS (V, w, p). For example, if Y= (Z’, 8,4), then 9 = (Z’, 4,8). 

3.3. Binary digital pictures 

A binary digital picture is a quadruple ( V, /3, w, B), where (V, p, w) is a DPS and 

B is a subset of V. In this paper, as in [ll], we refer to a binary digital picture 

simply as a digital picture; and often we just call it a picture. We say (V, p, w, B) is 

a picture on the DPS (V, /3, w), and points of the DPS (i.e., points in V) are also 

referred to as points of the picture. Points in B are called black points of the picture; 

each black point represents a pixel or voxel that has value 1. Points in L? correspond 

to pixels or voxels with value 0 and are called white points of the picture. The 

general effect of image processing operations such as shrinking, thinning, border 

finding and digital rotation is to transform a digital picture to another digital picture 

on the same digital picture space. 

An isomorphism of a picture P, = ( V, , /3,, w, , B,) to a picture CY2 = ( V,, &, w2, B2) 

is an isomorphism of the DPS ( V, , /3,, w,) to the DPS ( V,, pz, w2) that maps B, 

onto Bz. 

Two black points of the picture 9? = (V, p, o, B) are said to be P-adjacent if they 

are P-adjacent. Two white points or a white point and a black point are said to be 

P-adjacent if they are w-adjacent. 

A P-adjacency that joins two black points of 9 = (V, p, w, B) is called a black 

adjacency; an w-adjacency that joins two white points of g is called a white adjacency. 

4 On a 2-d square grid or 3-d cubic grid a unit lattice square is a unit square whose corners are all 

lattice points. Similarly, on a 3-d cubic grid a unit laftice cube is a unit cube whose corners are all lattice 

points. 
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A black (white) adjacency that joins two points in a subset S of V is called a black 

(white) adjacency of S. 

The complement of a picture P = ( V, /3, w, B), written @, is the picture (V, w, f3, B). 

In other words, the picture @ is the same as the picture 9 but with the black and 

white points and their associated adjacency relations interchanged. Thus P-adjacent 

black points of 9 are @-adjacent white points of @. However, a black point and a 

white point that are P-adjacent are not necessarily @-adjacent. 

3.4. Connectedness. Components. Paths. Simple closed curves 

Let 9 = (V, p, w, B) be any picture and let . be ?i”, p, w, or a positive integer (e.g., 

4 or 8 when V = Z’). In this section “point” will mean “point of 9”. 

If a point p is .-adjacent to a point q then we say p is a *-neighbor of q. A point 

p is said to be .-adjacent to a set of points S if p is *-adjacent to some point in S. 

Two sets of points S and T are said to be .-adjacent to each other if some point 

in S is .-adjacent to some point in T. 

A set of points is .-connected if it is not a union of two disjoint nonempty sets 

which are not .-adjacent to each other. A .-component of a nonempty set of points 

S is a maximal .-connected subset of S. Thus a .-component of S is a nonempty 

.-connected subset of S that is not .-adjacent to any other point in S. 

A ??-component of B (or, equivalently, a P-component of B) is called a black 

component of 9. A P-component of l? = V- B (or, equivalently, an w-component 

of B) is called a white component of 9. 

A .-path of ?? is a sequence p,, p2,. . . , pn of n 2 1 points in which each point pz 

is .-adjacent to pRpl (1 < i G n). A .-path from p to q is a .-path whose initial and 

final points are respectively p and q. It is easy to show that two points p and q lie 

in the same .-component of a set of points S if and only if there is a .-path in S 

from p to q. 

A simple closed .-curve of B is a finite *-connected set of points in which each 

point is .-adjacent to exactly two other points in the set. 

A .-path or simple closed .-curve of B is said to be black (white) if all its points 

are black (white). Notice that a black P-path of 9 is a P-path in B and a white 

P-path of P is an w-path in B. Analogous remarks apply to black and white simple 

closed P-curves of 9. 

3.5. Borders. Surrounding. Holes and cavities. The background 

In the rest of this paper we use the terms adjacent, neighbor, connected, component, 

path and simple closed curve to mean (respectively) P-adjacent, P-neighbor, P- 

connected, P-component, P-path, and simple closed P-curve, where B is whatever 

picture is currently being discussed. 

Given a black component C in a picture 9’ = (V, p, w, B), a point in C that is 

adjacent to a white point of 9 is called a border point of C in 9. (Note that here 

“adjacent” means “w-adjacent”.) The set of all border points of C in P is called 
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the border of C in 9’. If D is a white component of 9, then the border of C with 

respect to D in 9 is the set of all points in C that are adjacent to D. 

We say that a DPS Y= (V, p, o) is connected if V is connected in every picture 

on 9 All the digital picture spaces described in Section 2 are connected. 

In a picture (V, p, w, B) on a connected DPS a nonempty set X G V is adjacent 

to each component of X. For if C is a component of X, then by the connectedness 

of V there is a path in V from a point in C to a point in X. The first point on such 

a path that belongs to X must be adjacent to C. 

A connected set of points X in a picture 9 = (V, p, w, B) is said to surround a 

(not necessarily connected) set of points Y in g if every point in Y is contained 

in a finite component of X (i.e., a component of X consisting of just finitely many 

points). Note that since V has no accumulation points a subset of V is finite if and 

only if it is bounded. In a picture on a connected DPS if X surrounds Y, then Y 

does not surround X-this is Proposition 3.5.1 below. 

A white component of a picture 9 which is both adjacent to and surrounded by 

a black component C of ?? is called a hole of (or in) C if 9’ is a 2-d picture, and 

a cavity of (or in) C if p is a 3-d picture. By a hole in 9’ we mean a hole in any 

black component of 9. 

A white component of 9 that surrounds the set of all black points is called a 

background component of p. The background component may be the only white 

component of 9”. On the other hand, 9” may have no background component. This 

is so when 9? = (Z’, 8,4, B) and B is the set of all lattice points whose x and y 

coordinates are both positive. But in a picture on a connected DPS the background 

component, if it exists, is unique-this is Proposition 3.5.2. 

We now prove Propositions 3.5.1 and 3.5.2. The proofs are fairly easy, and would 

also be good exercises for the reader. 

Proposition 3.51. In a picture on a connected DPS if a connected set of points X 

surrounds a connected set of points Y, then Y does not surround X. 

Proof. Let X and Y be connected sets of points in a picture on the connected DPS 

(V, p, w) such that X surrounds Y. Then the component of X that contains Y is 

finite. Therefore, since V is infinite, either some other component of X is infinite, 

or there are infinitely many other components of X, or X itself is infinite. As V is 

connected each component of X is adjacent to X. So in each of the three cases X 

is contained in an infinite component of Y. Therefore Y does not surround X. q 

Proposition 3.5.2. A picture on a connected DPS has no more than one background 

component. 

Proof. Let D be a background component of a picture ?? on the connected DPS 

(V, p, w), and let F be any other white component of 9’. Each component of D 
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must contain a black point adjacent to D (at the border of the component). So each 

component of D is finite, since D must surround the black points in that component. 

As V is infinite it follows that either D is infinite, or D has infinitely many components 

in which case D is adjacent to infinitely many black points. Hence the black points 

adjacent to D belong to an infinite component of F, and so F is not a background 

component. •i 

Suppose 9’ is a picture on a connected DPS such that each point in Y is adjacent 

to only finitely many other points. Then the complement of any finite set of points 

in 9? has only finitely many components, one of which must be infinite. But all 

components of the complement of the background component of ?? must be finite. 

Hence the background component of C!?‘, if it exists, is infinite. 

3.6. Regular digital picture spaces 

To avoid awkward, or “pathological”, digital picture spaces that are incompatible 

with our definition of digital fundamental groups, we shall have to impose two 

restrictions on the sets p and w of a DPS (V, p, w). We call the DPS’s that satisfy 

these conditions regular, and in the rest of Section 3 we will confine our attention 

to regular DPS’s. 

Definition 3.6.1. A DPS (V, p, w) 1s said to be regular if it satisfies both of the 

following conditions: 

(1) no P-adjacency or w-adjacency passes through any point in V other than its 

endpoints, 

(2) no P-adjacency meets an w-adjacency with which it does not share an 

endpoint. 

The second condition in this definition essentially says that no P-adjacency ever 

“crosses” an o-adjacency. Notice that if a DPS Y is regular, then so is its complement 

9. 

For a DPS Y= (V, 0, w) satisfying condition (l), condition (2) is equivalent to 

the following condition: 

(2’) If the points a, b, c, d in V are the corners of a convex quadrilateral, where 

a is diagonally opposite to c, then in any picture on Y in which a and c are black 

points and b and d are white points, the sets {a, c} and {b, d} are not both connected. 

The motivation for condition (2’) is that Euclidean space has an analogous 

property: if a closed convex quadrilateral in Euclidean space with corners a, b, c, d, 

where a is diagonally opposite to c, is partitioned into two subsets in such a way 

that a and c belong to one subset and b and d to the other, then the two subsets 

are not both arcwise connected. 
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The DPS’s (Z’, 8,8), (Z’, 18, 18), (Z’, 18,26) and (Z’, 26,26) are not regular. If 

V is the set of grid points of the face-centered cubic grid, then (V, 18, 18) is not a 

regular DPS. 

In the rest of Section 3 all digital picture spaces will be regular. For brevity, this 

assumption will rarely be made explicit. Thus “a picture 9”’ will actually mean “a 

picture CZ? on a regular DPS”. 

3.7. P-walks and LP-loops; the digital fundamental group 

A P-walk is a curve y : [0, l] + E”, where n = 2 or 3 according as 9 is 2-d or 3-d, 

such that y(O) and y(l) are black points of 9, and there exists a positive integer k 

such that for all nonnegative integers i < k: 

(1) y( i/ k) is a black point, and 

(2) y(i/k) is equal or adjacent to y((i + 1)/k), and 

(3) y is linear on the closed interval [i/k, (i + 1)/k]. 

A p-walk y is said to be a 9’-walk from y(0) to y(l). 

A C!?-walk that is a constant map will be called trivial; all other B-walks will be 

called nontrivial. If y is a nontrivial g-walk, then it follows from the first condition 

in Definition 3.6.1 that there is just one positive integer k such that the conditions 

(l), (2) and (3) in the definition of a g-walk are satisfied for all nonnegative integers 

i < k. This value of k will be called the length of y. For a trivial p-walk all positive 

integers k satisfy conditions (l), (2) and (3), so this definition cannot be used. We 

define the length of a trivial C!?-walk to be 1. 

If yr is a p-walk of length m from p to q and y2 is a g-walk of length n from 

q to r, then the product of y, and y2, written y, . y2, is the g-walk from p to r 

obtained by catenating the curves y, and y2 in the following way: 

Yl ’ Y*(x)= 
{ 

rl((m + nhlm), if OGxSm/(m+n), 

y,((m+n)x/n-m/n), if m/(m+n)Gx~l. 

Note that this operation is associative. The length of y, * y2 is the sum of the lengths 

of y, and yz, provided at least one of y, and y2 is nontrivial. 

A CZ?-walk from a point p to itself is called a ??-loop, and is said to be based at 

p; we also call p the base point of the 9-100~. A trivial p-walk is a 9’-loop, and is 

called a trivial P-loop; all other ~-loops are called nontrivial. The trivial 9-100~ 

based at p is denoted by e,,. 

Now let 8 be a picture on an n-dimensional DPS, where n = 2 or 3. Two p-loops 

with the same base point are called equivalent if they are fixed base point homotopic 

in E” - W, where W is the union of all white points of 9’ if n = 2, and the union 

of all white adjacencies of $9’ if n = 3. This is of course an equivalence relation. 

We write [Al9 for the equivalence class consisting of all 9-loops which have the 

same base point as A and which are equivalent to A. If the 9?-loops A and A’ have 

the same base point, then define [Alup * [A’19 to be the equivalence class [A . A’lep. 

This is a well-defined associative binary operation on equivalence classes. 
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Definition 3.7.1. Let 9 be a picture on a regular DPS. The digitalfundamental group 

of?? with base point p, denoted by r(Y), p), is the group of all equivalence classes 

[Al9 where A is a B-loop based at p, under the . operation.’ 

It is readily confirmed that if p, and p2 are points in the same black component 

of a picture B on a regular DPS, then m( CJ”, p,) and n( 9, pz) are isomorphic groups. 

Digital fundamental groups are invariant under isomorphism of pictures. In fact, 

if f is any isomorphism of a picture Y, to a picture Yz, then, for each black point 

p in 9,) f induces a group isomorphism of ~(9,) p) to ~(p*,f(p)). 

Although the definition of C??-loop equivalence, and hence the definition of the 

digital fundamental group, involves global continuous deformation, we shall see in 

Section 4.4 that for pictures on a large class of well-behaved DPS’s-the strongly 

normal digital picture spaces-there is a group with a purely discrete definition that 

is naturally isomorphic to the digital fundamental group. 

4. Strongly normal digital picture spaces 

4.1. General discussion 

A strongly normal digital picture space is a DPS Y= (Z”, /3, w) (where n = 2 or 

3) in which there is a certain duality between the /3-adjacencies and the w-adjacen- 

ties. As a result of this duality the digital topology of Y is in many ways analogous 

to the topology of the Euclidean plane or Euclidean 3-space. 

We will show in Section 7 that strongly normal DPS’s have many good properties. 

A strongly normal DPS provides a possible basis for topology-related image process- 

ing operations such as thinning and border following. Digital picture spaces that 

are not strongly normal, such as (Z’, 4,4), may be quite unsuitable for this purpose. 

4.2. Dejinition of a strongly normal DPS 

Definition 4.2.1. Y= ( V, p, w) is strongly normal if it is regular and also satisfies all 

of the following conditions: 

(1) V= Z* (the 2-d case) or V= Z’ (the 3-d case). 

(2) In the 2-d case every 4-adjacency and in the 3-d case every 6-adjacency is 

both a P-adjacency and an w-adjacency. 

’ In [19], r(P, p) is defined as the subgroup of the fundamental group n,(E” - Pw, p) consisting of 
those homotopy classes that contain a loop in 9’s, where Pw is the union of the white points and white 

adjacencies of 9’ and ??a is the union of the black points and black adjacencies of 9’. This is equivalent 

to the present definition up to a natural group isomorphism. For, firstly, the Simplicial Approximation 
Theorem implies that every loop in Pa based at p is fixed base point homotopic in Pa to a B-loop. 
Secondly, two P-loops are fixed base point homotopic in E” - Pw if and only if they are equivalent in 

our sense-by the definition of equivalence when n = 3, and as a consequence of Lemma 6.2.2 (since 
8, z C’(9)) when n = 2. 



230 T. Y. Kong et al. 

(3) All /3-adjacencies and w-adjacencies are 8-adjacencies in the 2-d case and 

26-adjacencies in the 3-d case. 

(4) In any given unit lattice square either both diagonals are /3-adjacencies or 

both diagonals are w-adjacencies or one of the diagonals is both a P-adjacency and 

an w-adjacency. 

(5) Every picture 9 on Y has the property that whenever a black component of 

?? is either P-adjacent or w-adjacent to a white component of 9, the black component 

is in the 2-d case 4-adjacent and in the 3-d case 6-adjacent to the white component. 

It is easy to see that the familiar DPS’s (Z’, 8,4) and (Z’, 26,6) are strongly 

normal. Other examples will be given in Section 4.3. Notice that if a DPS Y is 

strongly normal, then so is its complement 9. 

Conditions (1) and (2) imply that a strongly normal DPS is connected. Regarding 

condition (4), note that if both diagonals are /3-adjacencies (w-adjacencies), then 

neither is an o-adjacency (a P-adjacency) because Y is regular. Conditions (l), (2) 

and (5) imply that a black component and a white component of a picture on a 

strongly normal DPS (V, /3, w) are P-adjacent if and only if they are w-adjacent. 

We leave it to the reader to verify that for a 2-d DPS conditions (l), (2) and (3) 

imply condition (5). 

Given that 9’ satisfies condition (l), it is easily seen that condition (4) is equivalent 

to each of the following conditions: 

(4’) In any picture on 9, if two diagonally opposite corners a, c of a unit lattice 

square are black points and the other two corners b, d are white points, then one 

of the sets {a, c} and {b, d} is connected. 

(4”) If either diagonal of a unit lattice square is not a P-adjacency, the other is 

an w-adjacency. 

When V=Z2 and Y satisfies conditions (2) and (3) we want condition (4’) (and 

hence (4) and (4*)) to hold because if it does not, then we can construct a 

“connectivity paradox”. For if (4’) fails, then we may suppose w.1.o.g. that {a, c} = 

((0, O), (1, 1)). Then, in the picture on Y with black point set B = 

((0, n) I n E z, n s 0} u ((1, n) 1 n E Z, n > 0}, B has two components and neither com- 

ponent separates Z2 (i.e., if we remove either black component by changing its 

points into white points, then the white point set becomes connected). NOW’ if a 

closed set in the Euclidean plane E2 has just two components and neither component 

separates E2, then the set itself does not separate E2. However, B does separate Z2 

(in the sense that Z2-B is not connected). To avoid this “connectivity paradox”, 

we must require condition (4’) to hold when V = Z2. 

We want a 3-d strongly normal DPS to meet each coordinate plane in a strongly 

normal 2-dimensional DPS. So we also require condition (4’) to hold when V = Z3. 

6 Here we are appealing to one of the Phragmen-Brouwer properties of Euclidean space [26, Chapter 

II], namely that in E” if neither of two disjoint closed sets separates two points, then the union of the 
sets does not separate those points. 



Concepts of digital topology 231 

Condition (5) may seem unsatisfactory for two reasons. First, it may not be clear 

why one might expect condition (5) to hold in a well-behaved DPS. Second, it looks 

as though one might have to do some work to determine whether a given DPS 

satisfies condition (5) or not. Our next result (Proposition 4.2.2 below), eliminates 

these apparent drawbacks of condition (5) by giving two alternate formulations of 

that condition. It asserts that if 9 satisfies conditions (l)-(4), then condition (5) is 

equivalent to each of the following conditions: 

(5’) In any picture on .Y, a one-point black component {p} and a one-point white 

component {q} cannot be p-adjacent or w-adjacent to each other. 

(5*) In the case V = I?‘, if p and q are diametrically opposite corners of a unit 

lattice cube in which p is not p-adjacent to any 6-neighbor of q, and q is not 

w-adjacent to any 6-neighbor of p, then p and q are neither /3- nor w-adjacent. 

Here is an informal, intuitive, argument in support of condition (5’) (and hence 

of (5) and (5*)). A one-point white component {q} corresponds to a very small 

cavity Q in some object in E’. A one-point black component {p} corresponds to a 

very small object P in E3. Since (assuming condition (2)) {p} does not surround 

{q} and {q} does not surround {p}, the object P should neither surround nor be 

surrounded by the cavity Q. Thus removing the object P should not affect the cavity 

Q, so changing p to a white point should not enlarge the white component {q}. 

Hence {p} should not be w-adjacent to {q}. Similarly, filling in the cavity Q should 

not affect the object P, so changing q to a black point should not enlarge the black 

component {p}. Hence {p} should not be p-adjacent to {q}. 

Proposition 4.2.2. Suppose Y = (Z’, p, w satisfies conditions (2)-(4) in the dejnition ) 

of a strongly normal DPS. Then conditions (5), (5’) and (5*) are equivalent. 

Proof. To see that (5’) implies (5*), suppose (5’) holds. Let p and q be diametrically 

opposite corners of the unit lattice cube K. Let a, b, c be the three 6-neighbors of 

q in K. If q is not w-adjacent to any 6-neighbor of p, and p is not p-adjacent to 

any 6-neighbor of q, then when B is the set consisting of p, a, 6, c, and the nineteen 

26-neighbors of q outside K the sets {p} and {q} are respectively a black and white 

component of (Z’, p, w, B), and so (5’) implies p is neither p- nor w-adjacent to q. 

It is equally straightforward to verify that (5”) implies (5) and that (5) implies 

(5’). 0 

4.3. Examples of strongly normal DPSs 

The DPS’s (Z’, 8,4), (2*,4,8), (Z’, 6,26), (Z’, 26,6), (Z’, 6, 18) and (Z’, 18,6) 

are all strongly normal. Both the 2-d and the 3-d “Khalimsky digital picture spaces”, 

in which /3 = w = the Khalimsky adjacencies, are strongly normal. (However, the 

DPS’s (Z2,4,4), (Z’, 8,8), (Z’, 6,6), (Z’, 18, 18) and (Z’, 26,26) are not strongly 

normal.) It is not difficult to show that each of the following five DPS’s is isomorphic 

to a strongly normal DPS (for further details, see [ll, Section 4.31): 

(1) (V, 6,6) where V = grid points of the 2-d isometric hexagonal grid, 
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(2) ( V, 12, 12) where V = grid points of the 3-d face-centered cubic grid, 

(3) ( V, 12,18) where V = grid points of the 3-d face-centered cubic grid, 

(4) (V, 18, 12) where V=grid points of the 3-d face-centered cubic grid, 

(5) (V, 14, 14) where V = grid points of the 3-d body-centered cubic grid. 

In a DPS that is isomorphic to a strongly normal DPS every point has at least 

four P-neighbors and at least four w-neighbors (each point has at least six of each 

in the 3-d case). Thus neither of the DPS’s (V, 12,3) and (V, 3,12) where V is the 

set of grid points of the 2-d triangular grid (described in Section 2) is isomorphic 

to a strongly normal DPS. 

4.4. Black digital walks and loops; the discrete digital fundamental group 

Given two finite sequences c, , c2, where the final point of c, is the same as the 

initial point of c2, the product of c1 and c2, written c, . c2, is the sequence obtained 

by removing the initial element of c2 and appending the resulting sequence onto 

the end of cl. Thus (P, P, q, r, a) . (a, x, Y, a> = (P, P, q, r, a, x, Y, a>. 

The reduced form of a finite sequence c is the subsequence of c that is obtained 

when we remove from c all but one point from every set of consecutive equal points. 

If all members of a sequence are equal to p, then the reduced form of the sequence 

is (p). Otherwise, if c = (p, , p2, . . . , p,), then the reduced form of c is the longest 

sequence of the form (p, , pi,, . . . , p,,,), where n 2 1, i, is the smallest value of i such 

that p, # p, , and each of the other ik is the smallest value of i greater than ik-, such 

that pi f P,,_, . Thus the reduced form of (P, P, P, 4, r, r, 9. 4, q,q, P, P) is (P, 9, r, 9, P> 

if p, q and r are distinct. 

For any digital picture 9 and black points p, p’ of ?J”, a black digital walk of P 

from p to p’ is a sequence (p, , p2,. . . , p,,) of black points of 9 where n 3 1, p, = p, 

p,, =p’ and each point pi is equal or adjacent to pi_, (1~ i G n).’ A black digital 

walk is said to be trivial if all its points are equal, nontrivial otherwise. A black 

digital walk of 69 from p to p is called a black digital loop of 6?? based at p, and we 

call p its base point. 

Now suppose Y is a picture on a strongly normal DPS. If K is any unit lattice 

square or unit lattice cube, then we say that one black digital walk is K-equivalent 

to another with the same initial and final points if the two are equal or if the first 

is (x=p1,p2,..., pm = y), the second is (x = q, , q2,. . . , qn = y) and the following 

three conditions are satisfied: 

(1) m=n, and 

(2) for l&isn,p;EK if qiEK, and 

(3) for l<i<n,pi=qi if q,_,EK or qigK or qi+,&K. 

K-equivalence is a symmetric relation, since (3) implies that pi & K if qi JZ K and 

so (2) and (3) together imply p, E K if and only if qi E K. 

’ In general a black digital walk is not a path because consecutive points may be equal. 
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Say that two black digital loops of ?? with the same base point are immediately 

equivalent if they have the same reduced form, or if they are K-equivalent for some 

unit lattice square K, or if they are K-equivalent for some unit lattice cube K in 

which no two diametrically opposed corners are white points that are adjacent to 

one another. Obviously the third case applies only if 6!i’ is 3-dimensional. 

Define equivalence of black digital loops of 9 to be the transitive closure of 

immediate equivalence. This is of course an equivalence relation. Given a black 

digital loop c, write [cl!, for the equivalence class consisting of all black digital 

loops of 6!? that have the same base point as c and which are equivalent to c. If c, 

and c2 are black digital loops with the same base point, then we define [c,],+ * [czIzIp = 

[Cl . c&. This is a well-defined associative binary operation on equivalence classes. 

Definition 4.4.1. Let ?? be a picture on a strongly normal DPS and let p be a black 

point of p. The discrete digital fundamental group of ?J’ with base point p, written 

nd(g’, p), is the group of all equivalence classes [cl,, in which c is a black digital 

loop of ?? with base point p, under the . operation. 

This is in essence the discrete definition of the digital fundamental group given 

in [ 11, Section 4.41. (However, we have introduced a new name and notation for 

the group defined in this definition, to avoid any possible confusion with the digital 

fundamental group 7~( ?j”, p).) 

The black digital loop of a Y-loop A of length k is the black digital loop 

(A (i/ k) 10 G is k). This is a base point preserving l-l mapping of 6P-loops to black 

digital loops. In Section 7.9 we show that this mapping induces an isomorphism of 

the digital fundamental group ~(9, p) to the discrete digital fundamental group 

&RP). 

5. Continuous analogs of digital pictures 

Every digital picture space we consider in Section 5 will be strongly normal, and 

every digital picture we consider will be a picture on a strongly normal DPS. For 

brevity these hypotheses will not always be stated explicitly. 

5.1. Continuous analog properties 

We now relate the digital topology of strongly normal digital picture spaces to 

the topology of Euclidean space. Specifically, we shall associate each picture p = 

(Z”, p, w, B), where n = 2 or 3, with a polyhedron C(g) z B (a “continuous analog” 

of 9). The polyhedron C(!Y) will have all of the following properties, which we 

shall refer to as continuous analog properties: 

(1) All black points and all black adjacencies of 9 are contained in C(g). 

(2) All white points and all white adjacencies of ?? are contained in E” - C(9). 
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(3) Each component of C(P) meets Z” in a black component of 9. 

(4) Each component of E” - C(P) meets Z” in a white component of 9. 

(5) The boundary of a component X of C(P) meets the boundary of a component 

Y of 15” - C( 9’) if and only if there is a black point in X that is adjacent to a white 

point in Y. 

(6) For each black point p in 9, the inclusion of the black points and black 

adjacencies of 9’ in C(P) induces an isomorphism of the digital fundamental group 

~(9, p) to the (classical) fundamental group rTTI( C(P), p). 

(7) For each white point 9 in 9, the inclusion of the white points and white 

adjacencies of 9’ in En - C( 9’) induces an isomorphism of the digital fundamental 

group r(g), q) to the fundamental group S-,( E” - C(9), q). 

5.2. Ordinary and special unit lattice cubes. ??-simplexes 

Our construction of a polyhedron C(P) having properties (l)-(7) is based on a 

triangulation of the Euclidean plane or Euclidean 3-space that is consistent with 

the adjacencies of 9. This triangulation involves dividing each unit lattice square 

into two (1, 1, a) triangles along an appropriate diagonal, and appropriately sub- 

dividing each unit lattice cube, as we now explain. 

Every unit lattice square must satisfy exactly one of the following three conditions: 

(1) The four corners are all black points or are all white points of $P. 

(2) The corners are not all white points or all black points, but one of the two 

diagonals is a black adjacency or a white adjacency of 9’. 

(3) The corners are not all white points or all black points, and neither diagonal 

is a white adjacency or a black adjacency. 

When condition (1) is satisfied it turns out that either diagonal may in principle 

be used to subdivide the unit lattice square. For definiteness we choose the diagonal 

each of whose endpoints has coordinates that sum to an even number. When 

condition (2) holds the appropriate diagonal for subdividing the square is the one 

which is a black or a white adjacency. (There is only one such diagonal, since 9 

is regular.) When condition (3) holds the appropriate diagonal is a diagonal that 

joins a black point to a white point (at least one diagonal has this property, by 

strong normality); if both diagonals join a white point to a black point, then in 

principle either diagonal may be used, and we again choose the diagonal each of 

whose endpoints has coordinates that sum to an even number. 

Regardless of whether 9 is 2-d or 3-d, let T,(P) be the set of closed (1, 1, a) 

triangles obtained by subdividing all unit lattice squares in accordance with these 

rules. 

For 9 = (Z’, p, w, B), we now define a collection T’(9) of 3-simplexes. The 

following are some important properties of T,(P): 

(1) Every simplex in T3(P) is contained in a unit lattice cube. 

(2) For each simplex u in Tj(P,), every 2-d face of u that is contained in a unit 

lattice square is in T,(P). 

(3) Every simplex in T,(P) is the common face of two simplexes in T3(P). 
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Say that a unit lattice cube K is special (with respect to 9) if there are three 

black adjacencies and three white adjacencies of 9’ in K both of which form a 

(a, fi, a) equilateral triangle. (Here regularity and strong normality condition 

(5*) imply that the two triangles lie in parallel planes perpendicular to a diameter* 

of K that is neither a p- nor an w-adjacency.) Observe that a unit lattice cube is 

special with respect to 9 if and only if it is special with respect to @. Call a unit 

lattice cube ordinary if it is not special. 

In a special unit lattice cube K let e, , e2, e3, e4, e5 and e6 be the edges of the 

two equilateral triangles formed by black and by white adjacencies (in any order). 

We want e, to be one of the three diameters of K that join a corner of one triangle 

to a corner of the other triangle; for definiteness we choose e, as follows’: if the 

diameter of K parallel to the vector (1, 1, 1) is not perpendicular to the triangles, 

then let e, be this diameter; otherwise let e7 be the diameter of K parallel to the 

vector (1, -l,l). We subdivide K in the obvious manner into six 3-simplexes whose 

edges are the edges of K and the ei. 

Every ordinary unit lattice cube is subdivided into twelve congruent 3-simplexes, 

each of which has a vertex at the centroid of the unit lattice cube and a face in 

T2(Y). We define T3(g) to be the set of 3-simplexes produced by subdividing all 

unit lattice cubes, ordinary and special, in the ways just described. 

For n = 2 or 3, if 9 is any picture on a strongly normal n-dimensional DPS, then 

a nonempty face of a simplex in T,(9) is called a 9”-sirnplex.‘” An r-dimensional 

Y-simplex is also called an r-simplex of 6%‘. When n = 2 the 0-simplexes of 9 are 

just the points of 9. When n = 3 the 0-simplexes of 9 are the points of 9 and the 

centroids of ordinary lattice cubes. 

Lemma 5.2.1. The following are true for any picture 9 = (Z”, B, CO, B) on a strongly 

normal DPS: 

(1) The set of all C?-simplexes is a triangulation of E “. In particular, every point x 

in E * lies in the relative interior” of exactly one P-simplex, and that P-simplex is a 

face of every ??-simplex that contains x. 

(2) Let e be a straight line segment joining two black or two white points of 9’ which 

is not a diagonal of a unit lattice square whose corner points are all black or all white. 

Then e is a l-simplex of 9 if and only if e is contained in a unit lattice square and 

e’s endpoints are adjacent to each other. 

(3) Every P-simplex is a g-simplex, and vice versa. 

* By a diameter of a cube we mean a straight line segment joining two diametrically opposite corners 

of the cube. 

9 In [ll], e, was allowed to be any one of the three diameters. But in this paper we specify which 

diameter is to be e, to ensure that T,(P) = TX(@). 

lo In other words, the B-simplexes are the members of T,(P), the 2-d faces of members of T,,(B) if 

n = 3, the edges of members of T,(P), and the vertices of members of T,,(P). 
” The relatioe interior of a simplex c is the set of points in c which do not belong to any proper face 

of (T. Note that the relative interior of a O-simplex is the O-simplex itself. Every point in a simplex (T lies 
in the relative interior of exactly one face of V. 



236 T. I’. Kong et al. 

This lemma follows from the definitions of T2( 9’) and T3( 9’). We leave the details 

to the reader. 

We emphasize that part (2) of the lemma only applies when the endpoints of e 

are both black points or both white points. 

5.3. The augmented black and white point sets; black, white and semi-black 9’-simplexes 

The augmented black point set of a 3-d picture 9, denoted by B’(9), is the union 

of the black point set of 9’ with the set of all centroids of ordinary unit lattice cubes 

K that satisfy at least one of the following two conditions: 

(1) One of the four diameters of K is a black adjacency of 9’. 

(2) K contains a black simple closed curve of 9 which is not contained in any 

one of the six faces of K, and no diameter of K is a white adjacency of PP. 

To avoid having to distinguish the 2-d and the 3-d cases all the time, when 9 is 

a 2-d picture we define its augmented black point set B’( 9) to be its black point set. 

The augmented black point sets of 8 and 9 are disjoint. For when 9’ is a 3-d 

picture it is easily verified that if a unit lattice cube K in which no diameter is a 

black or a white adjacency of 9’ contains a black simple closed curve of 9’ and a 

black simple closed curve of @ (i.e., a white simple closed curve of Pi’), neither of 

which is contained in a face of K, then K is special. 

Every point in the augmented black point set of 9 is a O-simplex of 9’. The 

augmented whitepoint set of a picture 9, denoted byB’( P), is the set of all 0-simplexes 

of 9’ that do not belong to the augmented black point set B’(P). When n = 2, since 

the set of 0-simplexes of 9” is just Z2 and since B’(9) is just the black point set of 

C?‘, the augmented white point set Bi( 9) is just the white point set of 9. When n = 3, 

B’(P) is the union of the white point set with the set of centroids of ordinary unit 

lattice cubes which do not belong to the augmented black point set. Note that in 

the 3-d case the centroid of a special unit lattice cube is not a O-simplex of 9 and 

so is not in the augmented black point set or the augmented white point set. 

Since the set of Pi’-simplexes is the same as the set of @-simplexes, and the 

augmented black point sets of 9’ and @ are disjoint, the augmented white point set 

of 9 includes the augmented black point set of @ (and the inclusion may be strict). 

The augmented black and augmented white point sets provide important informa- 

tion about the connectedness of the set of black and the set of white points in each 

ordinary unit lattice cube: 

Proposition 53.1. Let 9 be a 3-d picture on a strongly normal DPS, and let K be a 

unit lattice cube with centroid c. If c is in the augmented white point set of ST, then the 

set of white points of 9 in K is connected, If c is in the augmented black point set of 

9, then the set of black points of 9’ in K is connected. 

Proof. To prove the first assertion, suppose the set of white points in K has more 

than one component. Then no diameter of K can be a white adjacency. Moreover, 
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either one of the components contains just one point or there are precisely two 

components, each of which consists of two 18-adjacent points. In both cases one 

sees (after some case checking using the definition of a strongly normal DPS) that 

there must be a black simple closed curve of 9 in K that is not contained in any 

one face of K. So either K is special or c is in the augmented black point set, 

whence c is not in the augmented white point set. This proves the first assertion. 

Since the augmented white point set of g includes the augmented black point 

set of 9, we can deduce the second assertion by applying the first assertion to the 

picture g. 0 

A black p-simplex is a 9”-simplex all of whose vertices lie in the augmented black 

point set of 9. A white Y-simplex is a Y-simplex all of whose vertices lie in the 

augmented white point set of $3”. A semi-black 9’-simplex is a 9’-simplex which is 

neither black nor white. 

5.4. C(P) and C’(g) 

C(9) will denote the union of all black 9’-simplexes, and C’(p) will denote the 

union of all white 9’-simplexes. 

Since no black Y-simplex ever meets a white Y-simplex, C’(Y) and C(9) are 

disjoint. Also, C’(S) 2 C(g), since the augmented white point set of Y contains 

the augmented black point set of 8. When 9 is a 2-d picture, C’(9) = C(!?) since 

the augmented black and augmented white point sets are just the black and the 

white point sets respectively. 

If 9’ = (Z”, /3, w, B) is any picture on a strongly normal DPS and 9 n K denotes 

the picture (Z”, /?, w, B n K) where K is a unit lattice square or cube, then C(9 n 

K) = C(Y) n K. For the black (9 n K)-simplexes are then all contained in K, and 

the black (LP n K)-simplexes in K are just the black LP’-simplexes in K. 

We end this section with two useful results about C(9) and C’(9). 

Lemma 5.4.1. Let B be a 2-d or 3-d picture on a strongly normal DPS, and let each 

of A and D be a union of 9-simplexes. Then A - (C( 9) u C’(9) u D) is the union 

of the relative interiors of all semi-black P-simplexes that are contained in A but are 

not contained in D. 

Proof. The set A is the union of the relative interiors of the Y-simplexes contained 

in A, and D is the union of the relative interiors of the 9-simplexes contained in 

D. So, since the relative interiors of distinct Y’-simplexes are disjoint, A-D is the 

union of the relative interiors of the 9’-simplexes that are contained in A but are 

not contained in D. Similarly, since C(9) u C’(9) is the union of the relative 

interiors of all 9-simplexes that are not semi-black, A -(C(9) u C’( 9) u D) = 

(A-D) -(C(9) u C’(S)) is the union of the relative interiors of all semi-black 

9-simplexes that are contained in A but not contained in D. 0 
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Proposition 5.42. Let 5rj = (Z”, B, w, B) be a 2-d or 3-d picture on a strongly normal 

DPS. Then there are strong deformation retractionsf : E” - C’( 9’) + C( 9) and g : En - 

C(9) + C’(9). Moreover, if K is any unit lattice square or cube, then the restrictions 

off to K - C’(9) andg to K - C( 9) are strong deformation retractions onto C( 9”) n K 

and C’( 9) n K respectively. 

Proof. For each point y in E” let a(y) be the 9-simplex whose relative interior 

contains y. 

We define the retraction mapping f as follows, using the fact that if x E E” - C’(9), 

then at least one vertex of a(x) is in B’( 9). For all x in En - C’( 9) let f (x) be the 

point in a(x) such that: 

(1) each barycentric coordinate of f(x) associated with a vertex of a(x) that is 

in B’(9) is 0, and 

(2) each barycentric coordinate of f(x) associated with a vertex of a(x) that is 

in B’(Y) is the quotient of the corresponding barycentric coordinate of x divided 

by the sum of the barycentric coordinates of x that are associated with vertices of 

a(x) that are in B’(9). 

It is readily confirmed that f is continuous, even at points x in En - C’( ??) that 

belong to two or more 9-simplexes. Plainly f maps E” - C’(9) to C(9), maps 

each point in C(9) to itself, and is homotopic relative to C( 9’) to the identity map 

on E” - C’( 9) (by a linear homotopy). Also, f( K - C’(S)) c K for any unit lattice 

square or cube K. 

We define the retraction mapping g analogously, but with the roles of B’(9) and 

Bi( 9’) interchanged. 0 

6. The main theorem 

As in Section 5, every digital picture space we consider in Section 6 will be 

strongly normal, and every digital picture we consider will be a picture on a strongly 

normal DPS. Again, these hypotheses will not always be explicitly stated. 

6.1. Statement of the result 

The following theorem is the principal result of our paper: 

Theorem 6.1.1. If 9 is a 2-d or 3-d picture on a strongly normal DPS, then C(Y) 

has all seven of the continuous analog properties listed in Section 5.1. 

Properties (1) and (2) are easy consequences of the definition of C(9). We 

proceed to establish the other five properties. 
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4.2. Well-dejned homomorphisms 

In this section we show that the inclusion of the black points and adjacencies of 

9’ in C( 9) and the inclusion of the white points and adjacencies of @ in E” - C( 9) 

induce well-defined group homomorphisms i, : n-( 9, p) + n,( C( P), p) and 

tj:rr(@,q)+n,(E”-C(P),q). 

Recall that a closed curve y: [0, l]-+ X is null-homotopic in X if y is freely 

homotopic in X to a trivial loop (i.e., to a constant map), or, equivalently, if y is 

fixed base point homotopic in X to a trivial loop. 

Proposition 6.2.1. Let S be an open set in a topological space Z, and let y : [0, l] + S 

be a closed curve in S that is not null-homotopic in S. Let T be an open set in Z such 

that each component of S n Tis simply connected. Then y is not null-homotopic in S v T 

This proposition is a special case of Brown’s fundamental groupoid version of 

the van Kampen Theorem [2]. However, we will give a detailed sketch of an 

elementary proof. 

Proof (Sketch). Suppose y is null-homotopic in Su T. Then there exists a fixed 

base point homotopy h : [0, l] x [0, l] + S u T such that 

(1) h(x, 0) = y(x) for all x in [0, 11, and 

(2) h(x, 1) = y(0) = y(l) for all x in [0, 11, and 

(3) h(0, t)= h(1, t) = y(O)= y(1) for all t in [0, 11. 

The proposition is proved by showing that y is null-homotopic in S, contrary to 

hypothesis. 

Since h is continuous and S, T are open, {h-‘(S), h-‘(T)} is an open cover of 

the compact set [0, l] x [0, I]. So by Lebesgue’s lemma there is a positive integer k 

such that every closed square in [0, l] x [0, l] with side length l/k is contained 

either in the open set h-‘(S) or in the open set hP’( T). Subdivide [0, l] x [0, l] into 

k2 closed squares of side length l/k in the obvious manner. Call a small square a 

white square if it is contained in h-‘(S), and a black square otherwise. Then every 

black square is contained in h-‘(T). Call an edge of a small square a white edge if 

it is not the common edge of two adjacent black squares. Call a corner of a small 

square a white corner if it is not the common corner of four black squares. Thus 

every white edge and white corner is contained in h-‘(S). 

Define an S-edge loop to be a closed curve A : [0, l] + h-‘(S) satisfying A(0) = 

A (1) = (0,O) for which there exist numbers 0 = x0 < x, < * - . < x, = 1 such that A is 

linear on each interval [xi, x,+,1 and maps every such interval onto a white edge or 

onto a white corner. (Thus, for each i, h(x,) is a white corner.) An S-edge loop A 

will be called degenerate if A([O, 11) =(O,O), nondegenerate otherwise. An S-edge 

loop A will be said to enclose a small square X if the interior of X is contained in 

a bounded component of E2-A([O, 11). 
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For S-edge loops Al, A,: [0, l] + h-‘(S), say that A, is immediately equivalent to 

A2 if there are a, b in [0, l] with a cb, such that Al=A2 on [O,a]u[b,l], both 

A,(a) = A,(a) and A,(b) = A,(b) are white corners, and at least one of the following 

conditions holds: 

(1) there is a white square whose boundary contains both A r ([ a, b]) and A,([ a, b]), 

or 

(2) there is a collection of black squares such that the boundary of the union of 

those squares contains both A,([ a, b]) and A,([u, b]). 

We claim that if Al and AZ are immediately equivalent S-edge loops, then the 

closed curve hh, is fixed base point homotopic in S to the closed curve hA2. Every 

white square is contained in h-‘(S), so our claim is valid if condition (1) holds 

because A1 and A2 are then fixed base point homotopic in K’(S). If condition (2) 

holds, then Ar([ a, b]) and A,([u, b]) are contained in h-‘(S) n h-‘(T); so the 

restrictions to [a, b] of hh, and hh, are curves in S n T with the same endpoints, 

and these curves must be fixed endpoint homotopic because each component of 

Sn T is simply connected. Thus our claim is valid in this case also. 

Suppose A is a nondegenerate S-edge loop. Let is equivalent to be the transitive 

closure of “is immediately equivalent to”. If A encloses one or more small squares, 

then it is not hard to show that A is equivalent to an S-edge loop A’ which encloses 

strictly fewer small squares: we leave the details to the reader. If A encloses no 

small squares, then it is easy to see that A is equivalent to an S-edge loop A’ whose 

image contains strictly fewer edges of small squares. 

Hence if A is any S-edge loop, then A is equivalent to a degenerate S-edge loop, 

which implies that hh is null-homotopic in S. 

But the closed curve y is certainly fixed base point homotopic in S to hh where 

A is an S-edge loop which winds around the boundary of [0, l] x [0, l] just once 

in an anti-clockwise direction. Hence y is null-homotopic in S contrary to our 

hypothesis. 0 

This result will now be used to prove two key lemmas. 

Lemma 6.2.2. Let 9 = (Z’, p, w, B) be a picture on a strongly normal 2-d DPS, and 

let A be a Y-loop with base point p that is not null-homotopic in E* - C’( 9”). Then A 

is not equivalent to a trivial P-loop. 

Proof. Let S = E2 - C’( 9). Then A lies in S and is not null-homotopic in S. We 

must show that A is not null-homotopic in E* - B. In view of Proposition 6.2.1, we 

can do this by finding an open set T such that S u T I, E2 - l? and each component 

of Sn T is simply connected. 

Let T be the open set E2 - (C( 9’) u X), where X is the union of all semi-black 

1-simplexes of 9’. Since a semi-black l-simplex meets C’(P) only at its endpoint 

in B, Su T= E2-(C’(9’)n(C(Y)uX))= E2-(C’(Y)nX)I> E2-B. 
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Also, S n T = E* - (C( 9) u C’( 9) u X) is the union of the interiors of all semi- 

black 2-simplexes of 9’ by Lemma 5.4.1. So each component of S n T is the interior 

of a 2-simplex and is therefore simply connected. q 

Next, we prove a 3-d version of this lemma. The basic idea of the proof is similar; 

however, the details are more involved. 

Lemma 6.2.3. Let 9 = (Z’, p, w, B) be a picture on a strongly normal 3-d DPS, and 

let A be a ??-loop with base point p that is not null-homotopic in E’- C’(Y). Then A 

is not equivalent to a trivial p-loop. 

Proof. Let S = E3- C’(g), and let B, denote the union of all white points and 

white adjacencies of 9. Then A lies in S and is not null-homotopic in S. We will 

show that h is not null-homotopic in E” - B, . (This will clearly imply that A is also 

not null-homotopic in the complement of the union of the white adjacencies alone, 

and hence not equivalent to a trivial loop.) In view of Proposition 6.2.1, it is enough 

to find an open set T such that S u T 2 E’- B, and each component of S n T is 

simply connected. 

It follows from part (2) of Lemma 5.2.1 that if two vertices of a semi-black 

2-simplex of 9’ are white points of 9, then the edge joining those vertices is always 

a white adjacency. For, firstly, that edge is not the diameter of a unit lattice cube, 

since two diametrically opposite corners of an ordinary unit lattice cube cannot be 

the vertices of a l-simplex of 9”, and two diametrically opposite corners of a special 

unit lattice cube that are both white points cannot be the vertices of a l-simplex of 

9. Secondly, that edge cannot be a diagonal of a unit lattice square all of whose 

corners are white points: any unit lattice cube K with such a unit lattice square as 

a face is ordinary and the centroid of K is in the augmented white point set, so a 

diagonal of a face of K all four of whose corners are white points is not the edge 

of any semi-black %-simplex of 9 in K. 

Call a semi-black 2-simplex of B unexceptional if its intersection with C’(9) is 

a white point of 9, or a white adjacency of p’, or half of a white adjacency of B 

that joins two diametrically opposite corners of a unit lattice cube; otherwise call 

it exceptional. It follows from the preceding paragraph that a semi-black 2-simplex 

of 9 is exceptional if and only if one of its vertices is the centroid of a unit lattice 

cube K in the augmented white point set, and each of its other two vertices either 

is a black point, or is diametrically opposite a black point in K, or is diametrically 

opposite a white point in K that is not adjacent to it. Let Y be the union of all 

unexceptional semi-black 2-simplexes of 9’. 

Let 2 be the union of all semi-black 2-simplexes u of 9 such that one vertex of 

u is the centroid of a unit lattice cube in the augmented white point set, the other 

two vertices are black points, and two diametrically opposite corners of the unit 

lattice cube containing (T are white points adjacent to one another. (Thus 2 is a 

union of exceptional 2-simplexes, and every point in 2 n C’(9) is the midpoint of 

a white adjacency of p.) 
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Let TbetheopensetE3-(C(P)u YuZ).SinceeverypointinC’(B)n(YuZ) 

is a white point or lies on a white adjacency of 9, SU T= 

E3-(C’(P)n(C(9)u YuZ))=E3-(C’(P)n(YuZ))zE3-I$ as required. 

It remains to show that each component of S n T = E’ - (C’( 9) u C( 9) u YU Z) 

is simply connected. Suppose A is a unit lattice cube or a face of a unit lattice cube. 

ThenbyLemma5.4.1,SnTnA=A-(C’(~)uC(~)uYuZ)istheunionofthe 

relative interiors of all semi-black 9-simplexes that are contained in A but are not 

contained in Y u Z. Moreover, if A is a face of a unit lattice cube, or if A is a unit 

lattice cube whose centroid is not in the augmented white point set, then all 

semi-black 2- and I-simplexes of 9 contained in A are in fact contained in Y. (Here 

the semi-black 1-simplexes are contained in Y because each of them is an edge of 

some unexceptional semi-black 2-simplex of 9.) Hence: 

(1) If A is a face of a unit lattice cube, then S n T n A = 0. 

(2) If A is a unit lattice cube whose centroid is not in the augmented white point 

set, then S n T n A is the union of the interiors of all semi-black 3-simplexes of B 

contained in A. 

Now (1) shows that each component of S n T is contained in the interior of some 

unit lattice cube, while (2) shows that every component contained in a unit lattice 

cube whose centroid is not in the augmented white point set is the interior of a 

3-simplex and hence is simply connected. 

Let U be the interior of a unit lattice cube K whose centroid c is contained in 

the augmented white point set. To complete the proof, it suffices to show that each 

component of S n T n U is simply connected. 

Since K’s centroid c is in the augmented white point set, C(P) n U = 0. 

Let W=(YuZ)nU and let D= C’(P)n U. Then SnTnU= 

u-(c(hP)uc’(P)u YuZ)= u-(C’(S)u YuZ)= u-(Du W). 

Let F be the boundary of K. Now D u W is a union of sets u, - F, u2 - F, . . . , uk - 

F where each gi is a l-, 2- or 3-simplex with one vertex at the centroid c of K and 

all other vertices in F. Thus U - (D u W) is the union of all straight line segments 

(without their endpoints) that join c to F - cl( D u W). If M is the set of midpoints 

of those straight line segments, then M is a strong deformation retract of U - 

(D u W), and M is homeomorphic to the set of endpoints F - cl( D u W). Hence 

U - (D u W) and F - cl( D u W) are homotopy equivalent. 

Thus it is enough to show that each component of F -cl(D u W) is simply 

connected. But F is a polyhedral 2-sphere, and it is well known that in a polyhedral 

2-sphere each component of the complement of a connected polyhedron is simply 

connected. Hence we need only show that cl( D u W) n F is connected. Since 

cl( D u W) n F is a union of 0-, l- and 2-simplexes whose vertices are corners of 

K, to prove that this set is connected it is enough to show that all corners of K that 

are in the set belong to the same component of the set. 

Suppose no two diametrically opposite corners of K are white points that are 

adjacent to one another. Then Z n U = Y n U = 0, so W = 0. Thus cl(D u W) n F = 

cl(D) n F = C’(P) n F, and a corner of K is in this set if and only if it is a white 
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point. By Proposition 5.3.1 the set of white points in K is connected. So by continuous 

analog property (l), applied to C( @) (which is a subset of C’( ?7’)), all white points 

in C’( 9’) n F belong to the same component of C’( 9) n F, as required. 

Now suppose two diametrically opposite corners p and q of K are white points 

that are adjacent to one another. We will show that all corners of K are in 

cl(D u W) n F and belong to the same component of that set. 

The set cl( W) n F contains each line segment joining one of p and q to a black 

6-neighbor in K (because every such line segment is an edge of a semi-black 

2-simplex of 9 the rest of which is contained in Y n U). The set cl(D) n F = C’( 8) n 
F certainly contains each straight line segment joining two 6-adjacent white points 

in K. It follows that p and its three 6-neighbors in K belong to one component of 

cl(D u W) n F, and q and its three 6-neighbors in K belong to one component of 

cl(Du W)n F. 

The set cl( W) n F contains each line segment joining two 6-adjacent black points 

in K (because every such line segment is an edge of a semi-black 2-simplex of 9 

the rest of which is contained in 2 n U). So if among the corners of K other than 

p and q there are two 6-adjacent points x, y that are both black or both white, then 

we are done. For x and y then belong to the same component of cl( D u W) n F, 

and moreover one must be a 6-neighbor of p, the other a 6-neighbor of q. 

Now suppose such points x and y do not exist. Then we may assume w.1.o.g. 

that the three 6-neighbors of q in K are black and that the three 6-neighbors of p 

in K are white. Since p is w-adjacent to q, it follows from strong normality condition 

(5*) that either p is P-adjacent to a 6-neighbor of q in K, a say, or q is w-adjacent 

to a 6-neighbor of p in K, b say. In the first case the line segment joining a to p is 

a l-simplex of 9, and so it is an edge of a 2-simplex of 9 the rest of which is in 

Y n U; thus that line segment lies in cl( W) n F. In the second case the line segment 

joining q to b is a white adjacency and is contained in C’(9) n F = cl(D) n F. In 

either case it follows that p and its 6-neighbors belong to the same component of 

cl( D u W) n F as q and its 6-neighbors. 0 

Corollary 6.2.4. Let 9 = (Z”, p, W, B) be a picture on a strongly normal DPS, and let 

A be a 9-loop with base point p that is not null-homotopic in C(g). Then A is not 

equivalent to a trivial Y-loop. 

Proof. By Proposition 5.4.2, A is not null-homotopic in E” - C’(9), so the result 

follows from Lemmas 6.2.2 and 6.2.3. 0 

We have now shown that both in two and in three dimensions, the inclusion of 

the black points and black adjacencies of $9’ in C( 9) and the inclusion of the white 

points and white adjacencies of 9 in E” - C(Y) induce well-defined group 

homomorphisms il:r(9,p)+r,(C(??),p) and iz:rr(~,q)+~,(E”--C(B),q). 

Here i, is well defined by Corollary 6.2.4; and i2 is well defined by Lemmas 6.2.2 

and 6.2.3, which we apply to g instead of 9”, noting that C’(g) 2 C(9). It is plain 

that i, and i2 are l-l. But we still have to prove that they are onto. 



244 T. Y. Kong et al. 

6.3. T-adjacency, T-walks, T-loops and T-walks 

Let 9 be any picture on a strongly normal DPS. Two points p and q that are 

both in the augmented black point set of 9’ or are both in the augmented white 

point set of 9” will be said to be T-adjacent (with respect to cP) if the straight line 

segment from p to q is a l-simplex of ??.I2 Note that if p and q are T-adjacent 

black points or T-adjacent white points, then p and q are contained in some unit 

lattice square. 

Let 9? be any n-dimensional (n = 2 or 3) picture on a strongly normal DPS. A 

T-walk of 9” is a curve y : [0, l] + E” such that y(0) and y( 1) are black points of 

9, and there exists a strictly increasing sequence (xi (0 < i G k) in [0, l] with x,, = 0 

and xk = 1 such that for all nonnegative integers i < k: 
(1) y(xi) is in the augmented black point set of 9, and 

(2) y(xi) is equal or T-adjacent to y(Xi+l), and 

(3) y is linear on the closed interval [x,, xi+,]. 

A T-walk of 9’ is defined in the same way except that y(O) and y( 1) must be 

white points of 9 and the augmented white point set replaces the augmented black 

point set in condition (1). Thus every T-walk of g is a T-walk of CF”, but the converse 

is false. A T-walk or T-walk y is said to be a T-walk or T-walk from y(O) to y(l). 

A T-walk of B from a point p to itself is called a T-loop of Y and is said to be 

based at p; we also call p the base point of the T-loop. A T-loop is said to be trivial 
if it is a constant map onto its base point. 

Proposition 6.3.1. Let 9 = (Z”, B, w, B) be a picture on a strongly normal DPS. Zf y 
is a T-walk of Y’, then y is$xed endpoint homotopic in C(9) to a p-walk. Similarly, 
if y is a T-walk of 9, then y isjixed endpoint homotopic in E” - C(Y) to a @-walk. 

Proof. We will say that a T-walk y : [0, l] + E” is elementary if it satisfies one of 

the following conditions, and that it is of type k (where k = 1, 2 or 3) if it satisfies 

condition k: 
(1) y([O, 11) = {p} for some black point p of 9. 

(2) y(O) and y(l) are T-adjacent black points of C? and y is linear. 

(3) y(O) and y(l) are black points of 9 in a unit lattice cube K with centroid 

c, and there are x, y E (0, l), x G y, such that y([x, y]) = {c} and y is linear on [0, x] 

and on [y, 11. 

Define an elementary T-walk of type k in the same way, but with “white” instead 

of “black”. Then every T-walk (T-walk) can be obtained by catenating a finite 

collection of elementary T-walks (elementary T-walks). So it is enough to prove 

the proposition for elementary T-walks and T-walks. Now we claim that: 

‘* T-adjacency is so called because the I-simplexes of B are just the edges of members of T,(B) or 

TX(~). 
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(1) If the black (white) points p and q of B are T-adjacent but not adjacent, 

then p and 4 must be diagonally opposite corners of a unit lattice square S with 

four black (white) corners. In this case SG C(9) (SG E” - C(Y)). 

(2) If the centroid of a unit lattice cube K is in the augmented black (augmented 

white) point set of 9, then the set C( 9) n K (the set K - C( ?j’)) is simply connected. 

Claim (1) follows from part (2) of Lemma 5.2.1 and the definition of C(9). As 

for claim (2), note that if the centroid c of a unit lattice cube K is in the augmented 

black point set, then for all x E C( 9) n K the closed straight line segment joining 

c to x is contained in C( g’) n K : so C( 9’) n K is a star body and is therefore simply 

connected. Similarly, if the centroid of K is in the augmented white point set, then 

C’(9) n K is a star body and is therefore simply connected, whence K - C(P) is 

also simply connected by Proposition 5.4.2. So claim (2) is also correct. 

The proposition is trivially valid for elementary T-walks and T-walks of type 1. 

For elementary T-walks and ?-walks of type 2, it is an immediate consequence of 

claim (1). 

Now suppose y is an elementary T-walk (an elementary T-walk) of type 3. Then 

y([O, 11) G C(Y) n K (y([O, 11) c K - C(P)) for some unit lattice cube K whose 

centroid is in the augmented black (white) point set. By Proposition 5.3.1 there is 

a p-walk (a g-walk) r from y(O) to y(l) with r([O, 11) G K. By continuous analog 

property (1) (property (2)), r([O, 11) E C(9) n K (r([O, 11) G K -C(P)), so it fol- 

lows from claim (2) that y is fixed endpoint homotopic to K 0 

6.4. Proof of the main theorem 

We already know that C(9) has properties (1) and (2). Also it is readily confirmed 

that each component of C(B) or of E” - C(9) meets Z”. 

Let y : [0, l] + E” - C(9) be a curve whose endpoints y(O) and y(l) are white 

points of 9’. Here n = 2 or 3 according as 9 is 2-d or 3-d. We will show that y is 

fixed endpoint homotopic in E” - C(P) to a g-walk. This will establish property 

(4). It will also show that the well-defined homomorphism i,: QT(@‘, q) + 

n-,( E” - C(9), q) induced by the inclusion of the white points and adjacencies of 

9 in E” - C(P) is onto. So property (7) will also be established-since i2 is plainly 

l-l. Our argument will be a variant of a special case of the usual proof of the 

Simplicial Approximation Theorem. 

The star with respect to &?? of a point p in E “, written stop(p), is the union of the 

relative interiors of all ?i”-simplexes that contain p. Thus stg( p) is an open neighbor- 

hood of p, stg(p) -{p} does not contain any O-simplex of 9?‘, and st9(x) nstip(y) 

is nonempty if and only if there is a ??-simplex that contains both x and y. 

Let x be any point in E” - C(9). Then x E stp(p) for some point p in the 

augmented white point set Bi( 9). (For x lies in the relative interior of a p-simplex 

a, and x E st*( u) for each vertex u of (T. Since x & C( 9), u is not a black 9’-simplex, 

so at least one vertex of u is in B’(p).) 
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Thus W’(sMy)) b EB’(p)l is an open cover of the compact set [0, 11. So by 

Lebesgue’s lemma there is an integer k 3 2 such that, for all positive integers 

i<k,[(i-l)/k,(i+l)/k]~yp’(st,(w,)) for some point wing. Observe that, 

for all positive integers i< k- 1, st9(wi) nstg(wi+i) is nonempty (it contains 

y([ i/k, (i + 1)/k])): so either wi = wi+, or wi is T-adjacent to wi+i . 

Note that -y(O)~$(wr), which implies w, = y(O) (since y(0) is a O-simplex of 

9). Similarly w&i = y(1). Now define wO= y(O) and wk = y(l). Then by “joining 

the Wi” we can produce a T-walk y, from y(O) to y( 1) such that, for all nonnegative 

integers i < k, y,(i/k) = wi and y, is linear on [i/k, (i+ 1)/k]. 

For all x in [0, l] there is a white or semi-black 9-simplex that contains both 

y(x) and y,(x). (Indeed, suppose x E [i/k, (i+ 1)/k] where i < k is a nonnegative 

integer. Then y(x) E stp(wi) n st9( wi+,), which implies that the 8-simplex whose 

relative interior contains y(x) contains both wi and w,+r. Since that 9-simplex 

contains both wi = r,( i/ k) and w,,, = y,((i+l)/k), it contains y,([i/k, (i+l)/k]) 

and therefore contains y,(x).) Consequently y is fixed endpoint homotopic to y, 

in En- C(9) by a linear homotopy. By Proposition 6.3.1, y, is fixed endpoint 

homotopic in E” - C(P) to a g-walk. This implies that y is fixed endpoint 

homotopic in E” - C(9) to a g-walk. So properties (4) and (7) are established. 

A very similar compactness argument, or an appeal to the Simplicial Approxima- 

tion Theorem, shows that if y : [0, l] + C(p) is any curve whose endpoints y(O) 

and y( 1) are black points of 9, then y is fixed endpoint homotopic in C( 9’) to a 

T-walk of 8. So by Proposition 6.3.1, y is fixed endpoint homotopic in C(p) to a 

p-walk. This establishes property (3). It also shows that the well-defined 

homomorphism i, : ~(9, p) + rrr( C(9), p) induced by the inclusion of the black 

points and adjacencies of 9’ in C(9) is onto. Since i, is plainly l-l, property (6) 

is established. 

It remains only to establish property (5). For this purpose let X be a component 

of C(9) where 9 = (Z”, /3, w, B), and let Y be a component of E” -C(P). By 

properties (3) and (4), the sets X n B = X n Z” and Y n fi = Y n Z” are respectively 

a black and a white component. 

Suppose a point p in X n Z” is adjacent to a point q in Y n H”. If there is a unit 

lattice square containing both p and q-there must be such a square in the 2-d 

case-then p is a common point of the boundaries of X and Y, for the straight line 

segment joining p to q meets C(9) only at p (if p and q are diagonally opposite 

corners of the square, then since 9 is regular the other diagonal is not a black 

adjacency and is not contained in C(9), whence C(9) does not meet the interior 

of the square). Now consider the case where no unit lattice square contains both p 
and q. Then p and q are diametrically opposite corners of a unit lattice cube K. If 

K is special, then, since p is adjacent to q, p is a corner of the equilateral triangle 

in K whose edges are black adjacencies, and q is a corner of the equilateral triangle 

in K whose edges are white adjacencies: so the straight line segment joining p to 

q meets C(9) only at p, and p is a common point of the boundaries of X and Y. 

Now suppose K is ordinary and c is its centroid. If c is in the augmented white 
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point set, then the straight line segment joining p to q meets C(9) only at p, so p 

is a common point of the boundaries of X and Y. If c is in the augmented black 

point set, then the straight line segment joining p to c is contained in C(9) and 

the straight line segment joining c to q meets C(p) only at c: so c is a common 

point of the boundaries of X and Y 

Conversely, suppose the boundaries of X and Y meet. Then in the 2-d case there 

is a unit lattice square that meets both X and Y. We claim such a unit lattice square 

exists in the 3-d case also. For suppose otherwise. Since the boundaries of X and 

Y meet there is a unit lattice cube K such that the boundaries of X n K and Y n K 

meet. Each of X and Y must contain a corner of K. So (since no face of K meets 

both X and Y) X n K n Z3 = {x} and Y n K n Z3 = {y}, where x and y are diametri- 

cally opposite corners of K. Since the 6-neighbors of x in K are not in the black 

component X n Z3, those 6-neighbors are all white points. None of those 6-neighbors 

is in the white component Y n Z3, so none of them is adjacent to y. Similarly the 

6-neighbors of y in K are all black points, and none of them is adjacent to x. Now 

strong normality condition (4’) implies K is special and it follows from the definition 

of C(9) that the boundaries of X n K and Y n K do not meet-a contradiction. 

Thus there is a unit lattice square which meets both X and Y, and which therefore 

meets both the black component X n Z” and the white component Y n Z”. Since 

each component of black points in a unit lattice square is 4- or 6-adjacent to each 

component of white points in that square, it follows that X n Z” is adjacent to 

YnZ”. 0 

7. Topological properties of strongly normal digital picture spaces 

7.1. Introductory remarks 

In Section 7 we show that a number of important topological results about 

Euclidean space have analogs for any DPS that is isomorphic to a strongly normal 

DPS. Many of these results are generalizations of known results about the DPS’s 

(Z’, 8,4), (Z’, 4,8), (Z’, 26,6) and (Z’, 6,26) which are given, for example, in [24]. 

We will also prove that for pictures on a strongly normal DPS the discrete digital 

fundamental group is naturally isomorphic to the digital fundamental group. 

7.2. A digital Jordan curve theorem 

Our first result is a digital analog of the celebrated Jordan Curve Theorem. 

Proposition 7.2.1. Let .9 = (Z’, /3, w, B) be a picture on a strongly normal DPS, where 

B is a black simple closed curve of 9 that is not contained in any unit lattice square. 

Then B has just two white components, and each point in B is adjacent to both of them. 
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Proof. Let p be any point in B and define 9” = (Z’, p, w, B - {p}). Since B is a black 

simple closed curve of 9, B is P-connected and each point in B is P-adjacent to 

just two others. Hence no four points in B are the four corners of a unit lattice 

square. (For otherwise none of the points in question is /?-adjacent to any other 

point in B and so, since B is P-connected, B contains no other point and is therefore 

contained in a unit lattice square, contrary to the hypothesis.) Similarly, since three 

pairwise P-adjacent points are pairwise gadjacent and are therefore contained in 

a unit lattice square, no three points in B are pairwise P-adjacent. 

For both 9’ and B’, it follows from part (2) of Lemma 5.2.1 that two black points 

are T-adjacent if and only if they are adjacent (or, equivalently, /?-adjacent). So in 

9 and 9’ there do not exist three black points that are pairwise T-adjacent. Hence 

C(9) and C(9’) contain no 2-simplexes of !Y or 9’, only 1-simplexes. It follows 

that C(9) is the union of all straight line segments joining T-adjacent (or, 

equivalently, adjacent) black points of 9”; and similarly C(9’) is the union of all 

black adjacencies of 9’. Recalling that in B each black point is adjacent to just 

two others and the black point set is connected, it is readily confirmed that C(Y) 

is a Jordan curve; and C(9”) c C(9) - {p}. So by the (classical) Jordan curve 

theorem E*- C(P) has just two components and E* - C(??‘) is connected. Hence, 

by continuous analog property (4), g has just two white components, and 9” has 

just one white component. Since 9” has just one white component, (Z’ - B) u {p} 

is w-connected, whence p is adjacent in 9 to both white components of 9. Cl 

7.3. The adjacency graph. Weak normality 

For any picture 9’ let adj(9) denote the adjacency graph of the black and white 

components of 9. Each vertex of adj(9) represents a different black or white 

component of 8, and two vertices are adjacent whenever they represent adjacent 

black and white components. 

If 2 is a black or white component of 9, then let adj(9) -2 denote the (usually 

disconnected) graph obtained by removing the vertex that corresponds to 2 from 

adj( 9). For any black or white component 2 of 9, the union of the black and white 

components of 6%” that are represented by the vertices in any single component of 

the graph adj(9) - 2 is a component of 2 This is a natural l-l correspondence 

between the components of 2 and the components of the graph adj(??) -2. 

Note that if 9 is a picture on a strongly normal DPS, then adj(9) is isomorphic 

to adj(@). For by condition (5) in the definition of strong normality, adjacent black 

and white components of 9 are adjacent white and black components of @. 

A fundamental property of strongly normal DPS’s is that the adjacency graph of 

any picture on such a DPS is a tree. In fact we prove a more general version of this 

result, which asserts that the adjacency graph is a tree under much weaker hypotheses. 

We will use the more general result to prove the proposition in the next section 

about the connectedness of borders. 
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Call a DPS (V, /I, w) weakly normal if there is a strongly normal DPS (V, PO, q,) 

such that PO G p G PO u w0 and w,, G w G PO u wO. Every strongly normal DPS is 

weakly normal. Two other examples of weakly normal DPS’s are (Z’, 8,8) and 

(Z’, 26, 18). The DPS’s (Z’, 4,4) and (Z’, 6,6) are not weakly normal. 

Observe that a weakly normal DPS satisfies conditions (l)-(5) in the definition 

of a strongly normal DPS (and hence also conditions (4’), (4*), (5’) and (5”)). 

However, a weakly normal DPS need not be regular. 

Proposition 7.3.1. Let 9’ = (V, p, w, B) where Y = ( V, p, w) is isomorphic to a weakly 

normal DPS. Then adj(??) is a tree. 

Proof. We first assume that Y is strongly normal. Suppose, for the purpose of getting 

a contradiction, that adj(9’) contains a cycle. Pick a black component C of ?ij in 

that cycle, and let Y and 2 be the white components of 9’ that are adjacent to C 

in the cycle. Let C,, be the component of C(9) that contains C. Since Y and 2 are 

different white components contained in the same component of V- C and in the 

same component of V - (B - C), by continuous analog property (4), Y and 2 are 

in different components of E” - C(9), but by properties (l)-(5) they are in the 

same component of E” - CO and in the same component of E” - (C( 9’) - CO). This 

is impossibleI since C, and C( 9) - C, are disjoint closed sets whose union is C (LP), 

and the contradiction proves the result in the case when Y is strongly normal. 

To prove the general result, assume without loss of generality that Y is weakly 

normal. Let PO and w0 be sets of adjacencies such that PO G p G PO u wO, w0 G w c PO u 

w0 and ( V, PO, oO) is strongly normal. Then adj(( V, PO, wO, B)) is a tree. We assume 

/3 -/I,, and w -w,, are finite: it is not hard to show that the truth of the result in this 

special case implies the truth of the result in general. 

Let pl=(V,P1,wl, B) where pO~p,~pOuwO, and W,G W,G&UW,. Let e be 

anymemberofp,uw,,let9;=(V,p,, w, u {e}, B) and let 9”; = ( V, /3, u {e}, w, , B). 

Suppose adj(9’,) is a tree. We will show this implies adj(9’:) and adj(9,:l) are trees 

too. This will prove the proposition (since /&, can be converted to /3, and w0 to w, 

in a finite number of steps where each step adds a single adjacency in &u w(,). 

Suppose e joins two white points of 9,. Then adj(??,;l) = adj(9,) is a tree. If the 

endpoints of e are in the same white component of 9,) then adj(9’;) = adj(9,) is 

a tree. So we may suppose the endpoints of e are in different white components X 

and Y of 9,. Then X is 26-adjacent (3-d case) or 8-adjacent (2-d case) to Y, so 

each of X and Y is 6- or 4-adjacent, and hence w,-adjacent, to some black component 

2 of 9,. (For there is a 6- or 4-path from X to Y containing at most two points 

other than its endpoints in X and Y; that path passes through a black component 

of 9’, that is 6- or 4-adjacent to each of the white components X and Y.) Thus 

adj( 9;) is obtained from the tree adj( 9’,) by identifying two neighbors of the vertex 

that represents 2. This shows that adj(??{) is a tree. We have now shown that if e 

I3 We are again appealing to the Phragmen-Brouwer property of E” stated in an earlier footnote 
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joins two white points of pl, then adj( 9’;) and adj( 9’;) are trees. By a symmetrical 

argument the same is true if e joins two black points of 9,. 

Now suppose e joins a point in a black component X of $F’, to a point in a white 

component Y of 9’i. Then adj(??y) = adj( 9,) is a tree. Also, X and Y are &,-adjacent 

or w,-adjacent (because e E &,u q,), so they are &-adjacent or q-adjacent, and 

hence 6- or 4-adjacent (by normality condition (5) and the fact that (V, p,, q) is 

weakly normal). Thus X is adjacent to Y in 9, and therefore adj(9;) = adj(9,) is 

a tree. Cl 

7.4. Connectedness of borders 

In this section we use Proposition 7.3.1 to prove a fundamental result about 

borders: 

Proposition 7.4.1. Let 9 = (V, p, w, B), where (V, p, o) is isomorphic to a weakly 

normal DPS. Then the border of a black component X of ?j’ with respect to an adjacent 

white component Y of ?? is connected. 

Proof. Let F be the border of X with respect to Y. Let PO be the set of all 

P-adjacencies joining pairs of points in X. Let 9, be the picture ( V, p, w u &, , F u 

(B -X)). Then the white points of g1 are B u (X - F). Notice that Y is a white 

component of 9,) since Y is a white component of 9 and by definition of F, Y is 

not o-adjacent to X - F. 

Now suppose F is not P-connected. Then since X is p-connected there must be 

a P-path in X that joins two distinct P-components F, and F2 of F, and which 

meets F only at its endpoints. Let E be the white component of CF’i that this path 

passes through. Then E, F, , Y and F2 form a cycle in adj(p,), contrary to Proposition 

7.3.1. This contradiction proves that F is P-connected. 0 

It is now clear why we had to prove Proposition 7.3.1 for weakly normal DPS’s. 

The above proof depended on the fact that if ( V, /3, w) is weakly normal and PO c p, 

then (V, p, w u PO) is also weakly normal. However, it is not true that if (V, p, o) 

is strongly normal and /_?,, G p, then ( V, /3, w u PO) is strongly normal. 

7.5. Topological independence of distinct components I 

In this section and the next we give two results which show that distinct black 

components of a picture on a strongly normal DPS “do not interfere with each 

other’s digital topology”. Our result in this section shows that the border of a black 

component is not affected by other black components. This result is true even on 

weakly normal DPS’s. 



Concepts of digital topology 251 

Proposition 7.5.1. Let !9 = (V, ,B, w, B), where (V, /3, w) is isomorphic to a weakly 

normal DPS. Let C be a black component of 9, let 9”’ be the picture (V, /3, W, C) and 

let Y be any white component of 9”‘. Then Y contains just one white component of 9 

that is adjacent to C, and the border of C in 9 with respect to that white component 

of 9 is the same as the border of C with respect to Yin 9”. 

Proof. Assume w.1.o.g. that (V, p, w) is weakly normal. Note that Y is a union of 

white components of ??’ with a (possibly empty) set of black points of 9. Also, Y 

contains a point x that is 4- or 6-adjacent to C (in any 4- or 6-path in V that joins 

a point in C to a point in Y, take the first point that is in Y). Since C is a black 

component of 9, x is a white point of 8. So Y contains a white component of 9 

that is adjacent to C (namely the white component of 9 containing x). We claim 

that Y contains no more than one white component of ?i’ that is adjacent to C. 

Let p, be the union of /3 with the set of all w-adjacencies both of whose endpoints 

are in B. Then (V, p,, w) is isomorphic to a weakly normal DPS. Let 9’, be the 

picture ( V, 0, , w, B). Then each white component of p’ is a connected subset of c 

in 9,. By Proposition 7.3.1, adj(!?,) is a tree. So, by the natural l-l correspondence 

between the components of c in 2J’, and the components of the graph adj(9,) - C, 

no connected subset of c in 9, meets more than one white component of 9’, that 

is adjacent to C. Thus no white component of p” contains more than one white 

component of 9, that is adjacent to C. Since the white components of GF’, are 

precisely the same as the white components of 9, our claim is justified. 

Now let YO be the unique white component of 9 that is contained in Y and 

adjacent to C. Let p be any point in C. To complete the proof, we need to show 

that if p is w-adjacent to Y, then p is o-adjacent to Y,. But C is not w-adjacent 

to any white component of 9 that meets Y other than YO. Thus it is enough to 

show that if p is w-adjacent to Y, then p is w-adjacent to a white point of g in Y. 

To prove this, suppose p is w-adjacent to some black point q of 9 in Y. Then there 

must be a unit lattice square or cube that contains both p and q. 

Suppose there is a unit lattice square K that contains both p and q. Then since 

p and q are in different black components of 9”, they are diagonally opposite corners 

of K. Moreover, the two other corners of K must be white points of 9, and as they 

are 4- or 6-adjacent to q (which is in Y) they are both in Y. Since p is 4- or 6-adjacent 

to those two corners, p is indeed o-adjacent to a white point of ?? in Y. 

Now suppose p and q are diametrically opposite corners of a unit lattice cube 

K. If a 6-neighbor r of q in K is also a black point of 9, then the common 6-neighbors 

of r and p in K must be white points of 9’ in Y (for q E Y which implies q @ C 

which implies rg C and r E Y)-so p is w-adjacent to a white point of 2J’ in Y, as 

required. Hence we may assume that all three 6-neighbors of q in K are white 

points of 9 and are therefore in Y. If any 6-neighbor of p in K is a white point of 

9”, then, since that point is 6-adjacent to a 6-neighbor of q in K, it is in Y, which 

again shows that p is o-adjacent to a white point of 9 in Y. So we may assume all 

three 6-neighbors of p in K are black points of ?? and are therefore in C. Since q 
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is a black point of 9’ and q .@ C, q is not /I-adjacent to any 6-neighbor of p in K. 

But p is w-adjacent to q, so, by normality condition (5*), p is w-adjacent to one of 

the 6-neighbors of q in K, all of which are white points of 9 in Y. 0 

Corollary 7.5.2. Let Y’, 9” and C be de&ted as in the above proposition. Then tf ?? is 

2-d, each hole of C in 9” contains just one hole of C in 9. If 9’ is 3-d, then each cavity 

of C in 9” contains just one cavity of C in ??. 

Proof. For if C surrounds a white component Y of g”, then a fortiori C surrounds 

the unique white component of p that is contained in Y and adjacent to C. 0 

7.6. Topological independence of distinct components II 

Our result in this section shows that in a picture on a strongly normal DPS the 

digital fundamental groups associated with each black component are unaffected 

by other black components. 

Proposition 7.6.1. Let 9 = (V, p, w, B), where (V, p, w) is isomorphic to a strongly 

normal DPS. Let D be a black component of 9 and let 9’ be the picture ( V, /?, w, D). 

Then C(8’) is the component of C(p) that contains D, and r( 9, p) = n(??‘, p) for 

all points p in D. 

Proof. The second assertion follows from the first assertion and Theorem 6.1.1. We 

prove the first assertion. 

Claim 1. In the 3-d case, if a unit lattice cube K contains a point in D, then the 

centroid of K is in the augmented black point set of 9 tfand only if it is in the augmented 

black point set of 9’; if K contains more than one point in D, then K is special with 

respect to 9 if and only if K is special with respect to 6%“‘. 

We begin by justifying the second assertion of Claim 1. First observe that if K 

is special with respect to ?J”‘, then K is special with respect to 9. For in this case 

no corner of the equilateral triangle in K whose edges are white adjacencies of 9’ 

can be in B, since each of those corners is in l? but is B-adjacent to D, and D is a 

black component of 9. Now suppose K is special with respect to 9. Then, since 

D is a black component of 9, either D contains all three corners of the equilateral 

triangle in K whose edges are black adjacencies of 9’ (in which case K is special 

with respect to p’), or D contains no corner of K except perhaps the corner which 

is not 6-adjacent to any corner of that triangle. So if K contains more than one 

point in D, then K is special with respect to 9?“. Thus we have justified the second 

assertion. 

To justify the first assertion of Claim 1, suppose first that the centroid of K is in 

the augmented black point set of p’. Then by Proposition 5.3.1 the set B n K is 

connected so, since D is a black component of 9, either D n K = 0 or D n K = B n K. 

Therefore if K contains a point in D, then the centroid of K is also in the augmented 

black point set of ??I. 
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Next, suppose the centroid of K is not the augmented black point set of 9. If K 

is special with respect to 8, then by the second assertion either K is special with 

respect to 9” or K contains at most one point in D; in neither case is the centroid 

of K in the augmented black point set of 9’. Now suppose K is not special with 

respect to 9. Then, since K’s centroid is not in the augmented black point set of 

8, no diameter of K is a black adjacency of 9, and either one of the diameters of 

K is a white adjacency of 9 or there is no black simple closed curve of 9 in K 

that is not contained in one face of K. A fortiori the same is true with 9”’ in place 

of 9, so the centroid of K is not in the augmented black point set of 9’. Thus we 

have justified Claim 1. 

Claim 2. Let p and q be points in the augmented black point set of 9”. Then p and q 

are T-adjacent with respect to 9”’ if and only if p and q are T-adjacent with respect 

to 9. 

To justify Claim 2, we may assume that p and q are T-adjacent with respect to 

9’ or with respect to 9. Then by part (2) of Lemma 5.2.1 at least one of the following 

is true: 

(1) (3-d case only) one of p and q is the centroid of a unit lattice cube K, or 

(2) p and q are diagonally opposite corners of a unit lattice square all four of 

whose corners are in B, or 

(3) p and q are P-adjacent in some unit lattice square. 

If (1) is true, or if (1) and (2) are both false (so (3) is true), then p and q are 

T-adjacent with respect to 9” and with respect to P, so Claim 2 holds. (If (1) is 

true, then the centroid of K is in the augmented black point set of P’, so by Claim 

1 it is also in the augmented black point set of P.) If (2) is true, then, since D is a 

black component of 9, (2) remains true when B is replaced by D: so for p to be 

T-adjacent to q in one of 9 and 9”’ the sum of the coordinates of p must be even, 

which makes p T-adjacent to q in both of 9’ and 9’. Thus Claim 2 holds in this 

case also. Hence Claim 2 is true in all cases. 

Define a C(P)-simplex to be a black P-simplex that has at least one vertex in 

V, and a C(P’)-simplex to be a black P’-simplex that has at least one vertex in V. 

Then C(9) is the union of all C(S)-simplexes and C(P’) is the union of all 

C( P’)-simplexes. 

It is readily confirmed that a simplex P is a C(P)-simplex if and only if the 

following three conditions hold, and is a C(P’)-simplex if and only if the three 

conditions hold when 9’ is replaced by 9”: 

(1) Every vertex of (T is in the augmented black point set of 9, and at least one 

vertex is in V. 

(2) Every two vertices of u are T-adjacent with respect to PP. 

(3) In the 3-d case either v is contained in a unit lattice square, or one vertex of 

u is the centroid of a unit lattice cube and all other vertices lie on one face of that 

cube, or w is a 2- or 3-simplex in a unit lattice cube that is special with respect to 9. 
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It follows from this characterization, and Claims 1 and 2, that a simplex g with 

a vertex in D and no vertex in B - D is a C( 9”)-simplex if and only if it is a 

C( B)-simplex. So since every C( 9’)-simplex has a vertex in V and hence in D but 

has no vertex in B - 0, and since no C( 9)simplex has vertices in both of D and 

B-D (e.g., by continuous analog property (3) and the fact that D is a black 

component of 9’), the C( ??‘)-simplexes are precisely the C( 9)-simplexes that have 

a vertex in D. 

Let X be the component of C(9) that contains D. Then, by continuous analog 

property (3), X n V = D. Since every C( 9)-simplex is contained in C(p), every 

C(S)-simplex which meets X is contained in X. So, since every point in X is in 

C(9) and therefore lies in a C(9)-simplex, X is the union of all C(9)-simplexes 

that meet X. 

Since a C( Y)-simplex must have a vertex in V and hence in B, if a C( 9)simplex 

has no vertex in D, then it has a vertex in B-D and cannot be contained in X 

(because X n V = D). Thus a C( 9’)-simplex meets X, or, equivalently, is contained 

in X, if and only if it has a vertex in D. So X is the union of all C(9)-simplexes 

that have a vertex in D. Hence X is the union of all C(S’)-simplexes. Therefore 

x= C(Y). 0 

7.7. The Euler characteristic. Tunnels 

As usual, we write x(S) for the Euler characteristic of a finite polyhedron S. 

Recall that if S is any finite polyhedron, then x(S) = C,, (- l)“h, (S) where h, denotes 

the nth Betti number and, for any triangulation K of S, x(S) = C, (-1)“~~ where 

c, is the number of n-simplexes in K. 

Now suppose S is a finite polyhedron in 3-space. Then h,(S) is the number of 

components of S, and by Alexander duality h,(S) is the number of cavities in S 

(i.e., the number of bounded components of E3-S). Note that h,(S) =0 if and 

only if S is simply connected [17]. Also, if the polyhedron S’ is obtained from S 

by attaching n “solid handles” to S or by removing the interior of an n-holed solid 

polyhedral torus from the interior of S, then h,(S’) = h,(S)+ n. For these reasons 

we call the topological invariant h,(S) the number of tunnels in S. Then x(S) = no. 

of components of S+no. of cavities in S-no. of tunnels in S. 

We now define an analogous quantity for digital pictures that is invariant under 

DPS isomorphisms: 

Definition 7.7.1. Let 9” be a picture with finitely many black points. Suppose further 

that 9’ is isomorphic to a picture 9* on a strongly normal DPS. Then the Euler 

characteristic of g’, denoted by x(9), is x(C(p*)). 

For any given 9 there may well be more than one picture 9’” that satisfies the 

condition in this definition. However, ,y(S) is well defined because the value of 

x( C( 9*)) is the same for any valid choice of 8*-as we now show. 
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In the 2-d case x( 9) = x( C( 9”*)) = ( no. of components of C( p*)) -(no. of holes 

in C(Y*)). So by Theorem 6.1.1, x(Y)=( no. of black components of 9*)-(no. 

of holes in Y*) = (no. of black components of 9’) -(no. of holes in 9). 

For any 3-d picture 9 we define h,(9), h,(9) and h,(9) as follows. Let 

&,Bz,..., B, be the black components of 9’. For 16 is n let pi be a point in B,. 

Then we define h,(9) = n, h,(9) = (no. of cavities in 9’), and h,(9) = (sum of the 

ranks of the abelianizations of the groups ~(9, pi)). We now have: 

Proposition 7.7.2. Let 9 be a 3-d picture with jinitely many black points on a DPS 

that is isomorphic to a strongly normal DPS. Then x(Y) = h,(9) - h,(9) + h2(9). 

Proof. Suppose 9 is isomorphic to a picture 9’” on the strongly normal DPS 

(Z”, p, w). Let 9’” = (Z’, p, w, BF), where BT, Bz, . . , Bz are the black components 

of B*. For 1 s i< k pick p” E By. Then rr(p*, p”) = T(P)*, p*) = T,( C(Y,*), p?), 

by Proposition 7.6.1 and Theorem 6.1.1. Since the rank of the abelianization of 

T,(C(~F’,T),~?) is just h,(C(YT)), h,(Y)= h,(?F’*)=Ci h,(C(?i’?))= h,(C(9*)), 

where the last equality follows from the fact that the C(9”) are the components 

of C(9*) (by Proposition 7.6.1). Also, h,(9) = h,,(9)*) = h,( C(9)*)), and h,(9) = 

h,( 9*) = h2( C( 9”*)) by the Alexander Duality Theorem. Thus x( 9’) = ,y( C( ??*)) = 

C, (-l)“h,(C(~*)) = h,(g) -h,(p)+ h,(p). 0 

This proposition suggests an alternative and more general definition of x(Y) for 

3-d pictures 9, namely x( 9) = h,( 9) - h, (9) + h2( 9’). 

If 9 is a 3-d picture with finitely many black points that is isomorphic to a picture 

9’* on a strongly normal DPS, then as we observed in the above proof h,(p) = 

h,(C(Y*)). Thus h,(9) = (no. of tunnels in C(Y*)). So we call h,(9) the number 

of tunnels in 9. Thus ~(9’) = (no. of black components of 9) + (no. of cavities in 

9) -(no. of tunnels in 9). 

7.8. Computing Euler characteristics 

For any unit lattice square or unit lattice cube K let K, be the set of corners of 

K, let K, be the union of the edges of K, and if K is a unit lattice cube, let Kz be 

the union of the six faces of K. 

Let ?7’ be a picture on a strongly normal DPS and let C = C(9). If 9’ is 

2-dimensional, then for all unit lattice squares K define 

x(9”; K)=x(CnK)-x(CnK,)/2-x(CnK,)/4. (1) 

If 9’ is 3-dimensional, then for all unit lattice cubes K define 

x(~;K)=x(C~K)-X(C~K,)/~-~(C~K,)/~ 

-x(Cn&)/8. (2) 
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It is not difficult to show using the Inclusion-Exclusion Principle that if 6?? has only 

finitely many black points, then x(p) is just the sum of the ~(9’; K) over all unit 

lattice squares K or all unit lattice cubes K, according as .Y is 2-d or 3-d. This is 

essentially a finite sum, for if Y has only finitely many black points, then there are 

only finitely many K for which x(??‘; K) is nonzero. Note that the value of x(9; K) 

is always completely determined by the configuration of black and white points and 

black and white adjacencies of ?? in K, and does not depend on the rest of 9’. 

For other possible approaches to the problem of computing x(S) see [18]. 

7.9. Equivalence of the discrete and continuous definitions of the digital fundamental 

group 

Let 9 be a picture on a strongly normal DPS. The 9-loop of a black digital loop 

c of ?? is the 6!?-loop obtained by joining up the points of c in the obvious way. 

Formally, the ?J’-loop of the black digital loop (c, 10~ i G m) is the 9-100~ A given 

by A(( i + h)/m) = (1 - h)ci + hci+, for h in [0, l] and nonnegative integers i < m. 

Every nontrivial black digital loop is the black digital loop of its Y-loop. Every 

g-loop is the 5i’-loop of its black digital loop. 

We can now prove: 

Proposition 7.9.1. Let 9’ be a picture on a strongly normal DPS. Then two CT’-loops 

are equivalent if and only if their black digital loops are equivalent. 

Proof. We shall assume 6P is a 3-d picture. A simplified version of this argument 

can be used to prove the result in the case when ?7-’ is a 2-d picture. 

Two B-loops are certainly equivalent if their black digital loops are immediately 

equivalent, so (since equivalence of B-loops is transitive) two 8-loops are equivalent 

if their black digital loops are equivalent. Thus the “if” part of the proposition is 

true. Now we have to prove the “only if” part. 

Say that a black digital loop c1 is contiguous to a black digital loop c2 if there 

are immediately equivalent black digital loops d, and d2 which have the same 

reduced forms as c, and c2 respectively. Plainly, the immediate equivalence and 

contiguity relations have the same transitive closure. 

Claim 1. Let a and a’ be black digital walks in K from x to y, where K either is a 

unit lattice square or is a unit lattice cube in which no diameter is a white adjacency 

of 9. Let g and g’ be black digital walks from p to x and from y top respectively. Then 

the black digital loops g. a. g’ and g * a’ * g’ are contiguous. 

Suppose w.1.o.g. that a’ contains at least as many points as a, and the difference 

in the number of points is exactly k. Let ei denote the trivial black digital loop with 

exactly k+ 1 points all of which are equal to y. Then the black digital loops 

g. (a . e$) . g’ and g . a’ . g’ are K-equivalent, and hence immediately equivalent. 

Moreover, g * (a. ez) . g’ has the same reduced form as g * a. g’. Thus Claim 1 is 

valid. 
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Claim 2. Let h be a ?P-loop and let c be the black digital loop of A. Then h is equivalent 
to a P?-loop A’ such that A’ is a T-loop and such that c is related to the black digital 
loop of A’ by the transitive closure of contiguity. 

Let c=(cJlGi G n). Suppose two consecutive points of c, cj and c,+,, are 

diagonally opposite corners of a unit lattice square K whose corners are all black 

points. Let p be one of the two common 6-neighbors of cj and c,+, . Then since 

a = (c,, c,,,) and a’ = (c,, p, c,,,) are black digital walks in the unit lattice square K, 
it follows from Claim 1 that c is contiguous to the black digital loop c’ obtained 

from c by replacing its subsequence a with a’ (i.e., by inserting the point p between 

cj and c,,,). Now the number of pairs of consecutive points of c’ that are diagonally 

opposite corners of a unit lattice square whose corners are all black points is one 

less than the number of such pairs of consecutive points of c. 

The argument in the previous paragraph shows that the transitive closure of 

contiguity relates c to a black digital loop d = (di 11 G i s m) in which no two 

consecutive points are diagonally opposite corners of a unit lattice square whose 

corners are all black points. Since d is a black digital loop, each point di is equal 

or adjacent to d,+, . SO, by part (2) of Lemma 5.2.1, di and di+l either are equal or 

are T-adjacent or are diametrically opposite corners of a unit lattice cube. Note 

that in the third case the cube cannot be special (since no diameter of a special unit 

lattice cube is a black adjacency); so it is ordinary, its centroid is in the augmented 

black point set, and its centroid is T-adjacent to d, and to d,+, . Thus in all 

three cases the P-walk of length 1 from di to d,,, is a T-walk: so the P-loop of d 
(which is just the + product of those P-walks in order of increasing i) is also a 

T-loop. 

Let A’ be the P-loop of d. Then d is the black digital loop of A’ unless both are 

trivial, but even in the latter case d has the same reduced form as the black digital 

loop of A’. Moreover, A is equivalent to A’ since c and d are equivalent. This justifies 

Claim 2. 

An augmented black T-sequence is a sequence of points in the augmented black 

point set such that the first and last points are black points and every pair of 

consecutive points are either equal or T-adjacent. An augmented black T-sequence 

is closed if its initial and final points are equal. The black point sequence of an 

augmented black T-sequence c is the subsequence of c that contains just those 

points of c that are black points. 

Define a valid quadruple to be an ordered quadruple (p, q, i, t) in which t is an 

augmented black T-sequence, p and q are black points such that q is the immediate 

successor of p in the black point sequence of t, and i is a positive integer such that 

the ith point of t is p and the first black point in t after that point is q. We now 

define a function 0 which maps each valid quadruple (p, q, i, t) to a black digital 

walk from p to q that is contained in every unit lattice square and cube that contains 

p, q and the (i+ 1)th point of t. 
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Let (p, q, i, t) be any valid quadruple. If p and q are equal or adjacent black 

points, then define O( p, q, i, t) to be (p, q). Otherwise, if p and q are T-adjacent, 

then (since they are not adjacent) part (2) of Lemma 5.2.1 implies they are diagonally 

opposite corners of a unit lattice square K whose corner points are all black. In 

this case we define O(p, q, i, t) to be (p, r, q) where r is the common 6-neighbor of 

p and q that is given by some rule (e.g., r is the common 6-neighbor for which 

x+2y is greater, where x and y denote the x- and y-coordinates). Notice that if p 

and q are equal, adjacent or T-adjacent black points, then O( p, q, i, t) is completely 

determined by p and q (if it is defined at all) and does not depend on i or t. 

Moreover, in these cases O(p, q, i, t) is certainly contained in every unit lattice 

square and cube that contains both p and q. 

Now suppose p and q are not equal, adjacent or T-adjacent. Then q is not the 

immediate successor of p in t. So, since the ith point of t is p and the first black 

point in r after that point is q, q is the jth point of t where j 2 i +2 and for all 

integers k such that i < k <j the kth point of f is not a black point. It follows that 

for all integers k such that i < k <j the kth point of t is the centroid of a unit lattice 

cube K that contains p and q. Since the centroid of K is in the augmented black 

point set, Proposition 5.3.1 implies that there is a black digital walk in K from p 

to q. Let O(p, q, i, t) be such a black digital walk in K (if there are two or more 

such black digital walks, then we do not care which one is given by O(p, q, i, t)). 

Note that in this case K is the unique unit lattice cube that contains the (i + 1)th 

point of t. 

Let n be the number of terms of t that are black points. For positive integers 

j< n, let I, denote the jth smallest integer I such that the Zth point of t is a black 

point, and let pi denote the 4th point of t. (So the sequence of pJ’s is the black point 

sequence of t.) We define 0(t) to be the black digital walk given by the . product, 

over all integers j in the range 1 s j < n, of the black digital walks @(pi, pj+i, 1,, t) 

taken in order of increasing j. 

For any C??-loop A that is also a T-loop, the augmented black T-sequence of A is 

the augmented black T-sequence obtained from the black digital loop of A as 

follows. Let (p, 11 s is n) be the black digital loop of A. (Note that since A is a 

T-loop and a C!J’-loop, pi is equal or T-adjacent to pi+, unless pi and Pi+, are 

diametrically opposite corners of a unit lattice cube.) Whenever pi and pi+1 are 

diametrically opposite corners of a unit lattice cube, replace the two consecutive 

points pi, P,+I with Pi> X, Pi+1 where x is the centroid of that cube. 

Thus there is a strictly increasing finite sequence of points (yi 11 s i s m) in [0, l] 

with y, = 0, y,,, = 1, such that (A(yi) 11 s i G m) is the augmented black T-sequence 

of A. 

Claim 3. Suppose the 8-loop A is a T-loop and the augmented black T-sequence of A 

is t. Let c be the black digital loop of A. Then c = O(t). 

Here c is the black point sequence of t. Thus in the above definition of e(t) the 

sequence of pj’s is just c; and, for 1 s j < n, p, and pi+, are equal or adjacent black 
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points SO @(Pj,Pj+l, .j, I t) is just (p,, p,,,). Now O(t) is defined to be the product of 

these in order of increasing j, and this is just c. Hence Claim 3 is true. 

Say that two augmented black T-sequences are T-contiguous if one of the sequen- 

ces can be obtained from the other by replacing one of its points t, with t,, tiy or if 

one of the sequences can be obtained from the other by replacing two consecutive 

points ti, ti+, with t,, X, t,+, where X, ti, and ti+k are (not necessarily distinct) vertices 

of a black 2-simplex of 9. 

Claim 4. Let t and t’ be T-contiguous closed augmented black T-sequences. Then O(t) 

and O( t’) are contiguous black digital loops. 

Let t = ( ti 11 G is m). If t’ can be obtained from t by replacing one of its points 

tj with ti, ti, then O(t) has the same reduced form as f3( t’) (and the two are equal 

if ti is the centroid of a unit lattice cube). 

Now suppose t’ can be obtained from t by replacing two consecutive points t,, t,+, 

with t,, x, t,+, where X, tiy and ti+l are (not necessarily distinct) vertices of a black 

2-simplex of 9’. Then any two of x, t, and ti+, are equal or T-adjacent, and so at 

least one of the following is true: 

(1) {x, t;, tit,} lies in a unit lattice square K. 

(2) {x, ti, titl} lies in a special unit lattice cube K. 

(3) {x, ti, t,+,} lies in an ordinary unit lattice cube K in which no diameter is a 

white adjacency. 

(4) {x, ti, ti+l} lies in an ordinary unit lattice cube K in which some diameter is 

a white adjacency. 

Consider case (4). Here the centroid of K is in the augmented white point set, 

SO none of X, ti and ti+, is the centroid. Hence x, t, and t,+, are corners of K, and 

since they are vertices of a black 2-simplex of P it follows from the way ordinary 

unit lattice cubes are subdivided that they all lie on one face of K. Thus case (1) 

also applies. So it suffices to consider cases (l), (2) and (3). Note that in case (2) 

the fact that K is special implies that no diameter of K is a white adjacency. 

Suppose case (l), (2) or (3) holds. Let j be the greatest integer pi such that 5 is 

a black point, and let k be the least integer >i+ 1 such that tk is a black point. 

Then $ and tk are consecutive points in the black point sequence of t. Now either 

ti+l is a black point in which case k = i+ 1 and t, = ti+, is a corner of K, or else tit1 

is the centroid of K. If the latter is true (which is only possible in case (3)) and R 

is the least integer > i + 1 such that tR is not equal to the centroid of K, then tR is 

a corner of K so tR is a black point and R = k (whence tk = tR is a corner of K). 

Therefore tk is a corner of K and, for all integers r such that i+ 1 G r < k, t, is the 

centroid of K. A similar argument applies to t;. Thus $ and tk are corners of K 

and, for all integers r such that j < r < k, t,. is the centroid of K. 

If x is not a black point, then x is the centroid of K: in this case $ and tk are 

consecutive points in the black point sequence of t’ as well as that of t, so O(t’) is 

obtained from O(t) by replacing a subsequence of consecutive points a = O( $, tk, j, t) 
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with the sequence a’= O(t,, tk, j, t’). If x is a black point, then 5, x and tk are 

consecutive points in the black point sequence of t’, and the inserted point x 

is the (i+ 1)th point of t’: so O( t’) is obtained from 0(t) by replacing a sub- 

sequence of consecutive points b = O(t,, tkr j, t) with the sequence b’= 

O($,x,j, t’). 0(x, tk, i+l, t’). 

Now x, $, tk and $+i are in K; and since t, is the centroid of K for all integers 

r such that j < r < k, the (j + 1)th and (i + 2)th points of t’ are also in K. So (since 

O(p, q, 1, T) is always a black digital walk that is contained in every unit lattice 

square and cube that contains p, q and the (I+ 1)th point of T) the black digital 

walks a, a’, b and b’ defined in the previous paragraph are black digital walks in 

K. Hence 0(t) is contiguous to 0( t’) by Claim 1, and Claim 4 is justified. 

By Claim 2 it suffices to prove the proposition for ?J’-loops which are also T-loops. 

Let A and A’ be two equivalent 8-100~s that are also T-loops. By Theorem 6.1.1, 

A is fixed base point homotopic to A’ in C( ??), and henceI as a fairly straightforward 

consequence of the Simplicial Approximation Theorem the augmented black T- 

sequences of A and A’ are related by the transitive closure of T-contiguity. So by 

Claims 3 and 4 the black digital loops of A and A’ are related by the transitive 

closure of contiguity and hence of immediate equivalence. 0 

Let ?? be a picture on a strongly normal DPS. It follows from Proposition 7.9.1 

that the operation of taking the black digital loop of a 5P-loop induces a well-defined 

injection of the digital fundamental group rr( 9, p) to the discrete digital fundamental 

group ~~(9, p). This injection is in fact a bijection, since every trivial black digital 

loop (p, p) and every nontrivial black digital loop is the black digital loop of its 

~-loop, and all trivial black digital loops with the same base point are equivalent. 

Now if Ai and A2 are p-loops based at p, and their black digital loops are respectively 

c, and c2, then the black digital loop of A, * A2 is equivalent to c, . c2 (in fact either 

they are both trivial or they are equal). So the induced bijection is an isomorphism 

of ~~(p’,p) onto 7i-“(g,p). 

8. Concluding remarks 

We have shown that a large class of binary digital picture spaces, namely the 

strongly normal digital picture spaces, have good topological properties that provide 

a suitable foundation for image processing operations such as thinning, border 

following and contour filling. One such good property is that on a strongly normal 

digital picture space it is possible to define a digital fundamental group that behaves 

very much like the fundamental group of polyhedral topology. Most combinations 

of grids and adjacency relations that have been considered in the literature are 

isomorphic to a strongly normal digital picture space. 

l4 For further details see, for example, the proof of Theorem 3.3.9 in [23]. 
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