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Abstract 
Nanotechnology is drawing worldwide attention for its numerous applications in various industrial areas. There is a 

growing public concern about the safety of manufactured nanoparticles (MNPs), since it has been demonstrated that MNPs 

intended for industrial applications could cause toxic effects in humans. Acute or repeated exposure to MNPs present in 

commercial products may potentially cause systemic, cellular, and/or genomic toxicities. Thus, understanding the biological 

effects of exposure to MNPs is essential. This minireview tries to provide a summary  of  recent  key  advances in  the  field  

of Quantitative Nanostructure-Activity Relationship (QNAR)  modelling  of  nanomaterial biological effects, categorize and 

analyze related  researches based on different machine learning techniques and also investigate challenges and different 

approaches which are proposed to overcome them. The proposed classification can be effective in choosing applications 

appropriate algorithm and  identifying  the  major  gaps  in  research  required to  accelerate  the  use  of  quantitative 

structure–activity  relationship  (QSAR)  methods ,  and    providing a roadmap  for  future  research  needed  to  achieve  

QSAR  models  useful  for  regulatory  purposes. 
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1. Introduction

Nanotechnology is getting more attention for its numerous applications in various areas, such as material 

science, medical research, cosmetics, or even clothing. Once MNPs gain entry into the systemic circulation, they 

have the potential to interact immediately with blood cells and can then be either distributed throughout the body, 

[1]. There is a growing public concern about the safety of MNPs [2, 3] since it has been proven that MNPs 

intended for industrial applications, could cause toxic effects in humans [4]. These undesirable effects could 

result from exposure and subsequent absorption of ultrafine MNPs [5] and finally lead to their potentially harmful 

delivery to critical organs [6]. 

As we mentioned, Acute or repeated exposure to MNPs may cause systemic, cellular, and/or genomic 

toxicities [4]. Thus, understanding the biological effects of exposure to these materials is necessary, and it is 

imperative to develop a comprehensive, and predictive knowledge of the effects of MNPs on the environment as 

well as animals and humans [1]. 
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Recently, combinatorial chemistry and HTS technologies have been extended towards designing novel 

MNPs. Due to growing trend in using MNPs in many areas, computational methodologies such as Quantitative 

Nano Structure-Activity Relationship (QNAR) modeling are expected to provide critical support to experimental 

studies to identify safe nanoparticles with desired properties. However, it is important to emphasize that such 

procedures require relatively large amounts of reliable and consistent experimental data where MNPs can be 

characterized by a set of physical chemical properties and tested in well-defined assays [7].  

The rest of this paper is structured as follow. Section 2 provides a brief description of QSAR 

methodology. In section 3, a classification of QSAR challenges and current proposed approaches is proposed. 

Section 4 reviews QNAR algorithms and presents a classification of these algorithms based on their machine 

learning techniques. Section 5 concludes the paper and provides a roadmap for future research. 

2. Quantitative Structure-Activity Relationship (QSAR) 

QSAR is a simple, well-validated, computationally efficient method of modeling first developed by 

Hansch and Fujita several decades ago [8]. The aim of QSAR is to find a function R() which, given a structured 

representation of a molecule, predicts its activity [9]: 

activity = R(structure).             (1) 

There are two main problems to solve: 

1. The representation problem, i.e., how to encode molecules through the extraction and selection of structural 

features.  

2. The mapping problem, i.e., determining the form of the function q and setting any free parameters so as to 

maximise the generalisation performance of the model. For example, the weights attached to each input in a 

linear regression model are estimated from data. 

The typical QSAR system depicted in Figure 1 [10]. 

 
Figure1. Main stages of a QSAR study. The molecular structure is encoded using numerical descriptors. The set of descriptors is pruned to 

select the most informative ones. The activity is derived as a function of the selected descriptors 
In this context, QSAR science has a role to play by achieving externally predictive QNAR models to 

compute MNPs’ properties and their biological effects based on their structural characteristics. 

As you see in figure 1, to enable MNP modeling, every particle should be described by numerical 

parameters, called descriptors. Properties such as size, shape, zeta potential, morphology, surface area, chemical 
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reactivity, chemical composition, and aspect ratio are often measured experimentally since these characteristics 

maybe critical to determine the behavior of MNPs. Once MNPs are characterized by their descriptors, subsets  of  

descriptors  are  chosen that  are  most  likely  to  relate  to  the  biological  property. Then classical QSAR 

modeling workflow and techniques are used to model MNPs. The idea behind this method is that assumption that 

the variation in the properties or biological activities of a NP can be correlated with changes in its molecular 

structure. This method can be used to predict the activity/property of newly synthesized NPs without resorting to 

experimentation. With the help of QSAR/QSPR method as a time- and money-saving technique, the number of 

animal experiments would be reduced as well [11]. So similar to general QSAR modeling strategies, the overall 

objective of QNAR models is to relate a set of descriptors characterizing MNPs with their measured biological 

effects, e.g., cell viability, or cellular uptake. Such models can then be applied to newly-designed or 

commercially available MNPs in order to quickly and efficiently assess their potential biological effects [1]. 
Models are built using complex machine learning algorithms such as Multi-Linear Regression (MLR), Artificial 

Neural Networks (ANN), Support Vector Machines (SVM), Random Forest (RF) or k Nearest Neighbors (kNN). 

These techniques take the descriptor matrix of compounds as inputs and output a predicted value for the modeled 

property. Externally predictive models [12] can be applied to screen virtual chemical libraries to identify 

compounds with desired properties and bias the design of new molecules [4]. Finally, the  model’s  robustness  

and  ability  to  predict  properties of  new  materials  is  assessed  by  statistical  cross-validation  techniques,  or  

by  predicting  properties  of  materials  in  a  test  set  not used  to  develop  the  model (figure 2). 

 

 
Figure2. The workflow of QNAR modeling 

3. Challenges of QNAR modeling 

        From a chemical perspective, MNPs are very different from small molecules in ways that make their 

modeling more challenging. These factors help to explain why there are no systematic QNAR studies of MNPs in 

the literature [7]. In this section, we’ll review some of important challenges and different approaches which are 

proposed to overcome them. 

3.1. First challenge; physical/structural complexity 

Firstly, MNPs are characterized by high physical/structural complexity and diversity as they represent 

assemblies of inorganic and/or organic elements, sometimes mixed or coated [7]. We believe that it is impossible 

Descriptor Selection QNAR modeling using machine 
learning methods 

Validation 
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to develop a universal model for all nanosystems and that it is practically impossible to establish one QSAR 

model for a very wide applicability domain. In fact, distinct QSAR models must be constructed for the different 

applicability domains. 

 Schevchenko et al. [13] reviewed structural diversity of nanomaterials and proposed the classification 

of all nanosystems depending on the nanoparticle geometry (figure 3).  

 

figure 3. The structural diversity nanoparticles: 0D (point), 1D (linear), fractal, 2D, and 3D.Reproduced with permission from 

Reference [13]  

There is also a need for a perceptual framework for grouping nanomaterials, based on unique material 

properties. Such a framework will help to identify SARs that are applicable within each group of nanomaterials. 

The currently available data from the literature and other open sources suggest that there is a high variability in 

the morphological structure, chemical reactivity, and mechanisms of action among different nanoparticles. So, 

the applicability domain of the SARs should be carefully validated [14]. Thus, there is a challenging task to 

develop a suitable groping/categorization scheme for nanomaterials. 

M Sayes et al. proposed a methodology using mathematical and statistical modeling that can use as a prototype 

for a framework and help to categorize nanomaterials on the basis of their measurable physicochemical properties 

[14]. The computational part of the proposed framework is rather general and can be applied to other groups of 

nanomaterials as well. Figure 4, illustrates the proposed framework  
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Figure4. The proposed data collection and processing framework. 

3.2. Second challenge; which descriptors should be used? 

In general, commonly used molecular descriptors for QSAR can be classified according to their 

‘‘dimensionality’’, we can see this classification in the following figures [15]: 

Molecular Descriptors 

experimental measurements                                                                                   theoretical molecular descriptors 

figure5.  main categories of molecular descriptors 

 

Experimental Measurements 

log P      molar refractivity    dipole moment      polarizability      other physico-chemical properties….. 

figure6. examples of experimental measurements 

 

Theoretical Molecular Descriptors 

 0D-descriptors         1D-descriptors         2D-descriptors           3D-descriptors              4D-descriptors 

Constitutional descriptors    count descriptors    structural fragments     fingerprints    graph invariants 

Figure7. categories of theoretical molecular descriptors 

 

3D-descriptors 

3D-MoRSE       WHIM      GETAWAY       quantum-chemical       size        steric       surface         volume descriptors 

Figure8. categories of 3D-descriptors 
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4D-descriptors(descriptors derived from) 

GRID methods              CoMFA methods                            CoMSIA methods                                       Volsurf 

Figure9. categories of 4D-descriptors 

The molecular descriptors can be calculated by means of many types of softwares, (e.g., ADRIANA.Code 

[16], Discovery Studio [17], Molecular Operating Environment(MOE) [18], DRAGON [19],…) or some of them 

could be directly extracted from the results of quantum-mechanical calculations [20]. Generally, the descriptor 

selection task cannot be manually achieved by experts, given that structure-activity relationships are frequently 

complex and non-linear. Moreover, the number of molecular descriptors that may be calculated for a single 

compound is huge [21]. So, the increase in the number of parameters required the use of AI approaches to select 

useful descriptors. One of the most important approaches is genetic alghorithm [22]. 

4. QNAR modeling using machine learning techniques 

4.1. K-Nearest Neighbors (kNN) 

The main idea of  the kNN method is that, the activity of a given compound can be predicted by 

averaging the activities of k compounds from the modeling set, which are most chemically similar to this 

compound [4]. Additional details of the method can be found elsewhere [12, 23, 24]. 

Tropsha and colleagues have recently developed a QSAR model to predict the cellular uptake of 109 

NPs in pancreatic cancer cells (PaCa2) [1]. Each NP possessed the same metal core but different organic 

coatings. 150 MOE descriptors were calculated for all 109 organic compounds. They performed a QSAR 

investigation and descriptor analysis to uncover major structural attributes responsible for cellular uptake of 

MNPs. External 5-fold cross validation exercise was done and the kNN was employed as a modeling approach. 

Results indicated that prediction accuracies expressed as coefficients of correlation R2
abs ranged from 0.65 to 0.80 

for external sets. These results were slightly improved to 0.67 to 0.90 by taking into account the applicability 

domain of the models and removing compounds found to be outside the domain. The findings imply that the 

cellular behavior of a nanoparticle library based on a common core can be predicted using QNAR analysis of the 

surface modifying ligands, and thus that rational design of organic compounds attached to the surface of MNPs is 

possible using QNAR models and descriptor analysis. 

3.2. Multiple Linear Regression (MLR) - Artificial Neural Network (ANN) 
 Multiple regression analysis is a highly flexible system for examining the relationship of a set of 

independent variables (or predictors) to a single dependent variable (or criterion) [25]. Additional details of the 

method can be found elsewhere [26]. 
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A neural network is a massively parallel distributed processor made up of simple processing units, 

which has a natural propensity for storing experiential knowledge and making it available for use. It resembles 

the brain in two respects [27].  

1. Knowledge is acquired by the network from its environment through a learning process.  

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired 

knowledge 

The NN learner uses the target vector to determine how well it has learned, and to guide adjustments to 

weight values to reduce its overall error [28]. 

Since interactions between a chemical and a biological system are non-linear by nature, ANN 

methodology has been successfully applied in QSAR studies of biological activities. 

In another study, An artificial neural network was used to predict the cellular uptake of 109 

magnetofluorescent nanoparticles (NPs) in pancreatic cancer cells on the basis of quantitative structure activity 

relationship method [11]. All NPs in the data set have the same metal core decorated with different synthetic 

small molecules. Six descriptors chosen by combining self-organizing map and stepwise MLR methods were 

used to correlate the nanostructure of the studied particles with their bioactivity using MLR and multilayered 

perceptron neural network (MLP-NN) modeling techniques. Results obtained by MLP-NN were compared to 

those given by MLR. The satisfactory results in training and test sets proved MLP-NN to be a useful and 

powerful technique in the field of QSAR analysis of nanomaterials. 

3.3. Bayesian methods 

The Bayesian method is summarized in the papers by Mackay [29-31] and Buntine and Weigend [32]. 

These are complementary to neural networks as they overcome the tendency of an overflexible network to 

discover nonexistent, or overly complex, data models. 

As we know, Computational models play a complementary role in allowing rapid prediction of potential 

toxicities of nanomaterials. The authors in [33], generated quantitative, predictive, and informative models that 

describe nanostructure-activity relationships for cellular uptake and apoptosis induced by nanomaterials. Their 

approach can provide guidance for nanoparticle regulation and the future design of safe nanomaterials. So, it 

provides important advantages over previous methods. The study used another set of experimental nanoparticle 

data to produce robust model of induction of apoptosis by metal oxide nanoparticles in several types of cells. The 

authors have shown how QNAR models can provide an in silico estimation of these biological properties in 

untested nanomaterials, particularly metal oxides when they employ chemically interpretable descriptors. The 

models can also be used to identify useful nanoparticle modifications in large virtual libraries when interpretable 

descriptors are not available. The authors used two nonlinear Bayesian regularized artificial neural network 

methods to construct QNAR models of biological effects of nanoparticles. The nonlinear modelling methods 

comprised of feed forward, fully connected networks with single input, hidden, and output layers. The 

complexity of the nonlinear models was controlled by Bayesian regularization, using Gaussian, and Laplacian 
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priors (BRANNGP and BRANNLP methods). Sparse Laplacian priors automatically prune irrelevant descriptors 

and network weights, leading to sparse robust models. Although based on limited data, the results show that 

machine learning modelling techniques show considerable promise for analysis of the biological effects of 

nanoparticles. They may also be useful for modelling the effects of different bodily environments such as serum, 

plasma or lung fluids on nanoparticle composition, as well as nanoparticle cellular uptake and interaction with 

cellular biochemical systems. Furthermore, analysis of nanoparticle interactions with cells can inform the 

development of novel and exciting modes of targeted delivery of therapeutics or diagnostics to diseased tissues. 

3.4. Support Vector Machine (SVM) 

SVM algorithms arose from concepts of structural risk minimization and statistical learning theory and 

you can find additional details in [34].  

In [1], SVM was used to build a classification model using a set of 51 NPs with different metal core and 

surface modifications that were tested for in different cell based assays. Tropsha et.al have applied conventional 

cheminformatics methods such as (i)cluster analysis to examine if MNPs with similar biological activities are 

also structurally similar, and (ii)QNAR modeling to establish quantitative links between available MNP 

descriptors and their biological activity. QNAR calculations led to statistically validated and externally predictive 

models. The data indicate that SVM models had relatively high external prediction accuracies of 56 – 88% for the 

five independent external validation sets, with the mean external accuracy as high as 73%. 

Nano-SARs for metal oxide nanoparticles (NPs) toxicity were investigated in [35]. Metal oxide 

nanoparticles have high commercial production volume. The NP cellular toxicity dataset [36] included toxicity 

profiles containing of seven assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) 

cells, over a concentration range of 0.39-100 mg/L and exposure time up to 24 h, for twenty-four different metal 

oxide NPs. The best performing Nano-SAR with the conduction band energy and ionic index, identified as 

suitable NP descriptors built with SVM model and of validated robustness, had a classification accuracy of 

~94%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, 

the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with 

respect to toxicity classification under different acceptance levels of false negative relative to false positive 

predictions. The developed nano-SAR provides the probability of identifying a given nanoparticles as being 

either toxic or non-toxic. 

3.4.1. Relevance Vector Machine (RVM) 

Relevance Vector Machine (RVM) is a Bayesian version of the well-known SVM. Additional details of 

the method can be found elsewhere [37]. 

 QSARs were investigated for cellular uptake of nanoparticles (NPs) with a dataset of 109 NPs of the 

same iron oxide core but with different surface-modifying organic molecules [38]. Both linear and non-linear 

models were evaluated for QSAR development. Linear regression was used to develop a linear QSAR of the 

following form:   
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( ) ( , )y x b a x                                                    (1) 

Where, (,) denotes the inner product of two vectors; x  identifies a NP with a vector comprised by 

descriptors of its surface-modifying organic molecule. a  and b  are model parameters that need to be determined 

from the data. For the development of non-linear QSARs, RVM with the following formulation was used: 

( ) ( , )1
ny x b a k x xi ii                                              (2) 

b , ai  and xi  are model parameters that need to be learned for the data. Particularly, xi ’s are NPs in 

the training data identified as support vectors. The non-linearity of the above model is granted by the Cauchy 

kernel function [39]( eq.(3)). 

1( , ) 21
k x y

x y


 
                                                  (3) 

Illustrations of the measured NP uptake by PaCa-2 cells versus those predicted by the QSARs developed 

basedon linear regression and RVM are given in figure 5. 

 
Figure 10. Measured versus predicted NP uptake (log10(pM)) by (a) Linear  

regression model and (b) RVM model. Note:  R2 in the plots is the squared correlation for the re-substitution test [38]. 

The resulting QSAR was a robust RVM model built with nine descriptors, which its prediction accuracy 

was assessed via 5-fold cross-validation. The average performance (R2
CV) was then used to quantify the QSAR 

prediction’s performance. Robustness of the developed QSAR was evaluated by comparing its performance to 

models derived based on Y-randomization of the response variable (i.e., NP uptake). The RVM based QSAR 

produced a comparable prediction accuracy with R2
CV = 0.77±0.07. This also outperformed previously reported 

kNN based QSARs [1]. The results show that the developed QSAR is of adequite accuracy and range of 

applicability to assist in providing useful insight regarding physicochemical parameters that may affect NP 

bioactivity (e.g., cellular uptake and toxicity) and thus provide guidance for the selection and/or design of safe 

NPs for biomedical applications. 

3.5. Genetic-Multiple Linear Regression (MLR)-Partial Least Squares (PLS) 

The partial least-squares regression method (PLS) is gaining importance in many fields of chemistry, 

analytical, physical, clinical chemistry and industrial process control can benefit from the use of the method. The 
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pioneering work in PLS was done in the late sixties by H. Wold in the field of econometrics. The use of the PLS 

method for chemical applications was pioneered by the groups of S. Wold and H. Martens in the late seventies 

after an initial application by Kowalski et al [40]. A tutorial on the PLS regression method is provided in [41]. 

A regression-based QNAR model was developed to establish statistically significant relationships 

between the measured cellular uptakes of 109 magnetofluorescent NPs in pancreatic cancer cells with their 

physical, chemical, and structural properties [42]. For the development of this model, initially, genetic function 

approximation (GFA) method was applied in order to find out the most suitable descriptors from a large set of 

descriptors. Then the thinned setof descriptors was subjected to stepwise multiple linear regression followed by 

partial least squares (PLS) regression to nullify any interaction among intercorrelated descriptors. Important 

fragments contributing to higher/lower cellular uptake of NPs were identified through critical analysis and 

interpretation of the developed model. Considering all these identified structural properties, one can choose or 

design safe, economical and suitable surface modifiers for NPs. The presented approach provides rich 

information in the context of virtual screening of relevant NP libraries. We can see the schematic overview of the 

used methodology in figure 11. 

 
Figure 11. A schematic overview of the methodology in [42] 

3.6. Genetic Algorithm-Multiple Linear Regression (GA-MLR) 

GA uses Darwin�s natural selection to evolve a population of computer programs. The better programs 

are selected to be parents for the next generation. Children are created by crossover and mutation. Some are better 

and some are worse than their parents. Selection continually encourages better individuals to pass on their genes. 

Overtime and successive generations the population improves until an individual with satisfactory performance is 

found [43]. For more information, refer to [22]. 
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 Puzyn  et  al. [44] have developed a model to describe the cytotoxicity of 17 different types of metal 

oxide nanoparticles to bacteria Escherichia coli. Nanosized particles of these oxides (but not their macro or micro 

counterparts) are toxic to some organisms [45]. So, developing rapid techniques for predicting the toxic 

behaviour and environmental impact of these nanoparticles is important and timely. In order to modeling, the 

authors applied the multiple regression method combined with a genetic algorithm (GA-MLR). The GAwas used 

to select the optimal combination of the previously calculated structural descriptors, to be utilized in the final 

model. The model reliably predicts the toxicity of all considered compounds, and the methodology is expected to 

provide guidance for the future design of safe nanomaterials. 

3.7. Logistic Regression 

 A classification-based cytotoxicity nanostructure–activity relationship (nanoSAR) is presented based on 

a set of nine metal oxide nanoparticles in [46]. In this study, the nanoSAR was developed based on a small set of 

ten fundamental nanoparticle descriptors which was selected consistent with the recommendations of a 

comprehensive review of nanoSARs [20]. Different nanoSARs were then constructed using a logistic regression 

model, which estimates the probability of a nanoparticle being toxic or nontoxic, based on the labeled data 

(Equation 3).  

 
ln

( )

P NP T
b a NPi i iP NP N


  



 
 
 

                                              (3) 

Where  P NP T  and ( )P NP N  are the probabilities that a nanoparticle will be classified as toxic 

(T) or nontoxic (N), respectively, and NPi is the i-th model input parameter (i.e., nanoparticle descriptor or 

concentration measure). If  P NP T > ( )P NP N , the nanoparticle will be classified as toxic, otherwise, it is 

considered nontoxic. 

These models (obtained with the different parameter subsets) were further assessed using the reserved 

external validation set resulting in only one model, which had classification accuracy above 95%. The best-

performing model is based on three descriptors: atomization energy of the metal oxide, period of the nanoparticle 

metal, and nanoparticle primary size, in addition to nanoparticle volume fraction. Despite to the success of the 

present modeling approach with a relatively small nanoparticle library, it is essential to recognize that a 

significantly larger data set would be needed in order to expand the applicability domain and increase the 

confidence and reliability of data-driven nanoSARs. 
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Table1. summery of machine learning methods used in QNAR 

Reference methods Results 
Fourches  et  al. 

(2010) [1] 

KNN 

SVM 

Generated  QNTR  models  predicting  the  results  of  in  vitro  cell-based  assays  for  nanoparticles in two 

cases: i. 51 various MNPs with diverse metal cores and ii. 109 MNPs with similar core but diverse surface 

modifiers. The method’s external prediction power was shown to be as high as 73% for classification 

modeling and R2 of 0.72 for regression modeling.

Puzyn  et  al. 

(2011) [44] 

GA 

MLR 

Developed model to describe the cytotoxicity of 17 different types of metal oxide nanoparticles to bacteria 

Escherichia coli. The model reliably predicts the toxicity of all considered compounds, and the 

methodology is expected to provide guidance for the future design of safe nanomaterials. 

Liu et al. 

(2011) [46] 

Logistic 

Regression 

Developed  a classification-based QNTR  model  based on a set of nine metal oxide nanoparticles. 

Epa et al. 

(2012) [33] 

Bayesian Genrated robust  and  predictive  quantitative  models  of  smooth  muscle apoptosis  induced  by  metal  

iron  oxide  nanoparticles  (MION),  and  cellular  uptake  of  surface  modified  nanoparticles and [47] 

provided important advantages over previous methods and also provided guidance for nanoparticle 

regulation and the future design of safe nanomaterials. 

Ghorbanzadeh 

et al. (2012) 

[11]  

MLP 

ANN 

Predicted the cellular uptake of 109 magnetofluorescent nanoparticles (NPs) in pancreatic cancer cells, 

based on a dataset with the same metal core decorated and different synthetic small molecules.  

Liu, R., et al. 

(2013) [35] 

SVM The best performing Nano-SAR for metal oxide nanoparticles (NPs) toxicity with the conduction band 

energy and ionic index, identified as suitable NP descriptors. The result;s had a classification accuracy of 

~94%. 

Liu, R., et al. 

(2013) [38] 

RVM Investigated QSAR for cellular uptake of nanoparticles (NPs) with a dataset of 109 NPs of the same iron 

oxide core but with different surface-modifying organic molecules. The resulting QSAR was a robust RVM 

model built with nine descriptors, which its prediction accuracy with R2
CV = 0.77±0.07 was assessed via 5-

fold cross-validation. 

Kar, S., et al. 

(2014) [42] 

Genetic 

MLR 

PLS 

Developed a regression-based Nano-QSAR model to establish statistically significant relationships between 

the measured cellular uptakes of 109 magnetofluorescent NPs in pancreatic cancer cells with their physical, 

chemical, and structural properties and provided rich information in the context of virtual screening of 

relevant NP libraries. 

3. Result and discussion

An international  COST  (European  Cooperation  in  Science and  Technology)  workshop  on  the  use  

of  QSAR  methods  to  model biological  effects  of  nanomaterials [48] identified  roadblocks  to  achieving  

helpful  models  for  assessing nanoparticle  risks,  and  methods  for  overcoming  them. A  number  of tasks  that 

need  to  be done  in  order  to  create  models  useful  for nanoparticle  regulation  within  the  ten-year  time 

frame  asked by  regulators,  were  divided  into  three  time  horizons  that  the  expert consensus  of  COST 

workshop  participants  identified  as  being  realistically  achievable. Winkler et al. in [47] have mentioned the 

outcome of this workshop (figure12). 
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 Roadmap 

 2-years horizon     Measure and model environment-specific changes to NPs 
 Develop high throughput methods for distributions and interactions of NPs 
 Develop surrogate or improved in vivo assays 
 Develop better NP-specific descriptors 
 NM characterization (pristine and time/location-dependent changes) 

 5-years horizon   Good in vitro endpoints models 
 Nascent in vivo endpoints models 
 Improved mechanistic underestanding of how NPs interact with biology 
 Predictive models with for biologicaly-relevant NP species 
 Lost of elevant in vitro data and mechanisms of toxicity 

 10-years horizon   Most informative high throughput in vitro assays functioning 
 Environment changes to NP predicted a priori 
 NP classification fingerprints developed 
 In vitro, in vivo, in situ models useful for NP regulation 

Figure 12. QNTR (quantitative  nanostructure–toxicity  relationship)  roadmap . The  result  will  be  a set  of  data  and  computational  tools  

that  can  guide  regulators  in  assigning  the  correct  level  of  risk  to  nanomaterials [47]. 

Participants discussed the many requirements for the successful development of QNTR methods 

including the need for a commonly accepted nomenclature, frameworks and standards, the choice of appropriate 

mathematical descriptors of nanomaterial properties, the types of experimental data available (and also those 

urgently required), and the need for creating and maintaining supporting scientific networks. 

In order to achieve milestones in the roadmap, a number of things should be happen.  Firstly, we need 

to  maintain  and expand  the  network  of  experimental  and  computational researchers,  regulators  and  policy-

makers,  such  as  will  be achieved  through  the  COST  Action  MODENA. Secondly, it  is necessary that  the 

needs  of  the  end-users  of  the  experimental  and  modeling research  outcomes  remain  a  outstanding  driver 

for  the  work. Thirdly,  it  is  important  to  focus  on  the  high  throughput  experimentation as  this  will 

provide  the  essential  data required  for  the  QNTR  models,  will  clarify  how  environment affects 

nanoparticles,  and  will  increase  our  knowledge  of  how nanoparticles  enter,  move  through,  and  affect  the  

biology  of human  and  environmental  systems.  Finally, a funding  mechanism should  be  developed  to 
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support  a  strong  collaborative  network of  stakeholders,  and  to  fund  the  research  component  of  the  work 

to  be  done. If these four  important  elements  can  be  achieved, we  are  confident  that  the  computational 

models using machine learning techniques developed,  and increased  knowledge  of  nanoparticle  impacts  in 

biological  systems,  will  acquire  outcomes  that  will help regulators  to  specify nanoparticle  risk  within  a 

10-year  time  frame.  This  will  simplify finding  the  best  balance  between  commercial  development  of these 

valuable  materials  and  protection  of  workers,  the  public,  and the  environment  from  adverse  effects [47]. 
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