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Abstract—Rejecting or selecting data from multiple trials of
electroencephalography (EEG) recordings is crucial. We propose
a sparsity-aware method to data selection from a set of multiple
EEG recordings during motor-imagery tasks, aiming at brain
machine interfaces (BMIs). Instead of empirical averaging over
sample covariance matrices for multiple trials including low-
quality data, which can lead to poor performance in BMI classifi-
cation, we introduce weighted averaging with weight coefficients
that can reject such trials. The weight coefficients are determined
by the ℓ1-minimization problem that lead to sparse weights
such that almost zero-values are allocated to low-quality trials.
The proposed method was successfully applied for estimating
covariance matrices for the so-called common spatial pattern
(CSP) method, which is widely used for feature extraction from
EEG in two-class classification. Classification of EEG signals
during motor imagery was examined to support the proposed
method. It should be noted that the proposed data selection
method can be applied to a number of variants of the original
CSP method.

Index Terms—brain-machine interfaces, sparsity-aware sig-
nal processing, ℓ1-norm, motor-imagery, electroencephalography
(EEG)

I. INTRODUCTION

T he brain machine interface (BMI) is a challenging ap-
plication of signal processing, machine learning, and

neuroscience [1]. Such interfaces capture brain activities asso-
ciated with mental tasks and external stimuli and enable non-
muscular communication and a control channel for conveying
messages and commands to the external world [1]–[5]. A
noninvasive BMI uses recordings of brain activities such as
electroencephalogram (EEG), magnetoencephalogram (MEG),
and functional magnetic response imaging (fMRI). Because
of its simplicity of device and high temporal resolution, using
EEG is the most practical for engineering applications [6], [7].

A crucial technique for enabling BMIs associated with
motor-imagery (MI-BMI) [8], [9] is efficient decoding around
the motor-cortex, which leads to practical biomedical appli-
cations in rehabilitation and neuroprosthesis [10]–[13]. For
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instance, real and imaginary movements of hands and feet
evoke a change in the so-called mu rhythm in different brain
regions [2], [3]. Therefore, by accurately capturing these
changes from EEG in the presence of measurement noise and
spontaneous components related to other brain activities, we
can classify the EEG signal associated with imagination of
different motor actions such as hand, arm, or foot movement.

A well known method to extract brain activity for MI-
BMI is the common spatial pattern (CSP) [1], [14], [15].
CSP is a set of spatial weight coefficients corresponding to
each electrode in a multichannel EEG. These coefficients are
determined from measured EEG data in such a way that
the variances of the signal extracted by the spatial weights
differ greatly between two tasks (e.g. left and right hand
movement imageries). These weights can also be regarded as
a spatial filter that projects observed EEG signals onto the
optimal space used to classify the observed data to a class
corresponding to a subject’s cerebral status. Several variants of
the CSP have been proposed such as Common Spatio-Spectral
Pattern (CSSP) [16], Common Sparse Spectral Spatial Pattern
(CSSSP) [17], SPECtrally weighted CSP (SPEC-CSP) [18],
[19], iterative spatio-spectral patterns learning (ISSPL) [20],
Filter Bank CSP (FBCSP) [21], Discriminative Filter Bank
CSP (DFBCSP) [22], Common Spatio-Time-Frequency Pat-
terns (CSTFP) [23], divergence-based method [24], and aug-
mented complex CSP [25].

A common manipulation for this CSP family is to estimate
the true covariance matrices in two different tasks of observed
signals. To increase estimation accuracy, EEG signals (training
data) are observed several times (called trials) for the same
task, which yields empirical covariance matrices called within-
trial covariance matrices. These matrices of all trials are then
simply averaged. This is due to an implicit assumption that
an EEG corresponding to the same task should be a (wide-
sense) stationary process. However, simply averaging all trials
can lead to poor estimation of the covariance matrices mainly
due to the following reasons. First, the feature signal can be
influenced by the user’s concentration. Second, the observed
EEG can be contaminated by non-stationary artifacts such as
eye and muscle movement. We call a trial leading to heavily
contaminated EEG a low-quality trial. It is crucial to eliminate
low-quality trials from a dataset used for obtaining a more
accurate CSP.

In this paper, we propose a method for estimating the true
covariance matrix of each task not by the simple average of but
by a weighted average of within-trial covariance matrices. To
evaluate quality of trials, within-trial covariance matrices are
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approximately jointly diagonalized. The underlying assump-
tion behind this diagonalization is that the residue resulting
from the diagonalization with respect to a low-quality trial
is large. This idea of weighted averaging is related to our
previous work [26], where a weighted ℓ2-norm minimization
with residue improved classification accuracy. Moreover, to
increase estimation accuracy of the covariance matrices, effi-
cient approaches are covariance shrinkage and reduced rank
estimation (see [27], [28], for instance). However, our aim
with this paper is to determine trial weights to reject low-
quality trials. To this end, the residue is involved in an ℓ1-
norm term to design sparse weights in such a way that a larger
residue yields almost zero weight to reject low-quality trials.
A convex optimization problem to find the sparse weights is
introduced and an iterative algorithm for solving this problem
is developed.

Notations: The following terminology, notations, and
mathematical operations are used throughout the paper. A
matrix is denoted by a capital bold letter, e.g., A and the (i, j)-
th entry of matrix A and the jth column vector are respectively
denoted by [A]i,j and [A]:,j . A matrix A ∈ RM×M is
called positive (semi) definite if u⊤Au(!) > 0 for all
nonzero u ∈ RM . The ℓp-norm of x ∈ RN is defined as

∥x∥p :=
(∑N

i=1 |xi|p
)1/p

, where xi is the ith entry of x.

II. COMMON SPATIAL PATTERN (CSP) IN TERMS OF JOINT
DIAGONALIZATION

Before discussing the proposed method, we summarize the
CSP, which is obtained as a generalized eigenvectors of a pair
of two covariance matrices. In other words, the CSP is a result
of joint diagonalization.

Let Xk ∈ RM×N be a matrix consisting of M channel
signals with N samples at the kth trial. The CSP is a
topological pattern derived from scalp EEG given as vector
v ∈ RM , which minimizes the in-class variance of a signal
extracted by a linear combination of Xk [14], [15]. In general,
each channel signal in Xk is band-limited by a bandpass
filter that passes the frequency components related to the
target brain activity. The components of Xk are denoted by
Xk = [xk

1 , . . . ,x
k
N ], where xk

n ∈ RM , and n is the time index
(n = 1, . . . , N ). The sample mean of the observed signal is
given by µk = (1/N)

∑N
n=1 x

k
n. Then, the sample variance

of the extracted signal of Xk is given by

σ2(Xk,v) =
1

N

N∑

n=1

|v⊤(xk
n − µk)|2. (1)

Let C1 and C2 be the training data containing the signals
observed at all trials belonging to classes (tasks) 1 and 2,
respectively, such that C1∩C2 = ∅. Let Kd be the number of
elements in class d (d = 1, 2). The CSP of class 1 (resp. 2)
is given as the maximizer (resp. minimizer) of the following
generalized Rayleigh quotient [14], [15];

J(v) =
v⊤S1v

v⊤S2v
(2)

where Sd (d = 1, 2) is given as

Sd =
1

Kd

∑

k∈Cd

Sk, (3)

and Sk ∈ RM×M is the within-trial covariance matrix for the
kth trial given as

Sk :=
1

N

N∑

n=1

(xk
n − µk)(xk

n − µk)⊤. (4)

Note that the solution of (2) is given by the generalized eigen-
vector corresponding to the smallest generalized eigenvalue of
the generalized eigenvalue problem described as

S1v = λS2v. (5)

It should be noted that solving (5) is equivalent to finding a
matrix, denoted by V , jointly diagonalizing both S1 and S2:

V ⊤S1V = Λ1, V ⊤S2V = Λ2, (6)

where Λ1 and Λ2 are diagonal matrices.

III. TRIAL SELECTION WITH SPARSE WEIGHTS FOR
COVARIANCE MATRICES

Ideally, Sk in (4) is invariant over trials up to noise since it
is a result of the same mental task. This motivates the simple
arithmetic averaging given in (3). However, as mentioned
above, the observed EEG is highly trial-variant even for the
same mental task. Moreover, the measurement environment
of EEG (electronic noise, electrode impedance, etc.) always
varies. Thus, we soften (3) and consider the weighted average
defined as

S∗
d =

∑

k∈Cd

wkS
k, (7)

where wk is the weight coefficient at the kth trial and holds
∑

k∈Cd

wk = 1, wk ≥ 0. (8)

We define the weight vector consisting of the weights of all
trials as

w := [w1, . . . , wKd ]
⊤ ∈ RKd .

Note that w is included by CH ∩ CN , where

CH := {w ∈ RKd | w⊤1Kd = 1},
CN := {w ∈ RKd | wk ≥ 0, ∀k},

and 1Kd is the vector of ones of size Kd. Note that, in the
CSP, wk = 1/Kd in the above equation. The underlying idea
behind the weighted average is illustrated in Fig. 1. Under
the constraints, the positive semi-definiteness, which is the
inherent property of covariance matrices, is guaranteed.
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Fig. 1: Covariance matrix of EEG for motor-imagery task is estimated by
weighted averaging over within-trial covariance matrices

A. Cost Function Promoting Sparsity
Thus, the underlying problem is to find a sparse set of wk

that can reject low-quality trials.
Since the CSP is designed for binary classification, we have

to determine the weights in (7) corresponding to each class.
For simplicity, we design the weight of Kd trial matrices Sk

(k ∈ Cd) for a single class d.
To find trial weights eliminating low-quality trials, we

introduce a weighted ℓ1-norm term with positive scalar qk:

Jℓ1(w) :=
1∑

k∈Cd
qk

∑

k∈Cd

qk|wk| =
1

tr(D1)
∥D1w∥1 ,

where D1 is defined as

D1 := diag [q1, . . . , qKd ] ∈ RKd×Kd .

Note that parameter qk is chosen to evaluate the quality of each
trial. The process of choosing this parameter is discussed in
the next subsection.

Assume that the ideal covariance matrix exists close to the
covariance matrix obtained by simple averaging. To evaluate
this, we define

Jℓ2(w) :=
1

2
∑

k∈Cd
∥Sk∥2F

∥∥∥∥∥
∑

k∈Cd

(
1

Kd
− wk

)
Sk

∥∥∥∥∥

2

F

=
1

2tr(G)
(w − 1Kd/Kd)

⊤G(w − 1Kd/Kd),

where G is defined as

G :=

⎡

⎢⎣
tr
[
S1S1⊤] · · · tr

[
S1SKd⊤

]

...
. . .

...
tr
[
SKdS1⊤] · · · tr

[
SKdSKd⊤

]

⎤

⎥⎦ ∈ RKd×Kd .

Following the above discussion, the proposed optimization
problem is given, with positive parameter α to control the

sparsity, as

min
w∈CH∩CN

αJℓ1(w) + Jℓ2(w). (9)

B. Trial Quality Deduced from Approximate Joint Diagonal-
ization

1) Quantification of Trial Quality: If the observed EEG is
stationary over the trial up to noise, Sk (k ∈ C1 ∪ C2) should
be diagonalized in the same way, even though Sd is substituted
with any Sk in (6). However, as mentioned above, this
assumption is not true. Hence, we do not consider the exact
joint diagonalization but an approximate joint diagonalization
given by

Sk = UΣkU⊤ +Ek (k ∈ C1 ∪ C2), (10)

where U is a common factor and Σk and Ek are respectively
a diagonal matrix and an error matrix at the kth trial. If the
desired EEG is not observed at some trial, the covariance
matrix of the EEG should be the outliers. In this situation,
residues resulting from the diagonalization of the covariance
matrices should be large.

Therefore, we detect trials, which are not jointly diagonal-
ized well, to assign those trials to smaller weights. That is, we
regard trials, where the Frobenius norms of Ek, ∥Ek∥F are
large, as low-quality trials and impose small weights on those
trials. Thus, we simply choose

qk := ∥Ek∥F .

2) Approximate Joint Diagonalization by FFDIAG: Various
approaches to the approximate joint diagonalization algorithm
can be considered. In this paper, we use the Fast Frobenius
Diagonalization (FFDIAG) algorithm [29]. This iterative algo-
rithm attempts to solve the following optimization problem.

min
B∈RM×M

F(B) :=
∑

k∈C1∪C2

∑

i̸=j

[
BSkB⊤]2

i,j
.

The FFDIAG algorithm for the above minimization problem
is summarized in Algorithm 1, which yields a common factor
B such that

Sk = B−1Λk(B−1)⊤ +B−1Rk(B−1)⊤,

where Λk and Rk are respectively a diagonal matrix and an
off-diagonal matrix at the kth trial. We adopt this decomposi-
tion as the joint diagonalization in (10), i.e., we adopt

U = B−1, Σk = Λk, Ek = B−1Rk(B⊤)−1.

C. Iterative Optimization Method

The optimization problem described in (13) can be solved
using projected gradient methods with a simplex projection
PCH∩CN [30]. However, in this case, it takes a great deal of
time to converge to the optimal solution due to the ill-condition
of G in Jℓ1 . To avoid this situation, we apply the Alternating-
Direction Method for Multipliers (ADMM) [31]–[33].
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Algorithm 1 Approximate Joint Diagonalization by using FFDIAG
Input Sk (k ∈ C1 ∪ C2).
A(1) = 0, B(1) = I .
repeat

1. Compute A(n) as follows:
yij =

∑

k

[Sk
(n)]j,j [S

k
(n)]i,j , zij =

∑

k

[Sk
(n)]i,i[S

k
(n)]j,j ,

[A(n)]i,j =
zijyji − ziiyij
zjjzii − z2ij

, [A(n)]j,i =
zijyij − zjjyji
zjjzii − z2ij

.

if ∥A(n)∥F > θ then
A(n) = θ

∥A(n)∥F
A(n).

end if
2. B(n+1) = (I +A(n))B(n).
3. Normalize columns of B(n).
4. Sk

(n+1) = (I +A(n))S
k
(n)(I +A(n))

⊤.
until converged.
B = B(n+1).
Store the diagonal part of Sk

(n+1) in Λk .
Store the offdiagonal part of Sk

(n+1) in Rk .
Ek = B−1Rk(B−1)⊤.
Output B and Ek (k ∈ C1 ∪ C2).

In the ADMM, we consider the following optimization
problem:

min
w∈RN ,z∈RM

f(w) + g(z),

subject to Lw − z = 0,
(11)

where f and g are proper lower semicontinuous convex1,
i.e., f ∈ Γ0(RN ), g ∈ Γ0(RM ), and a linear operator
L ∈ RM×N\{O} satisfies a mild condition [33].

Assume that L in (11) has full column-rank. For (11), the
ADMM consists of minimizing Lγ over w and over z, and
updating the Lagrange multiplier d.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(n+1) = argmin
w∈RN

Lγ(w, z(n),d(n))

z(n+1) = argmin
z∈RM

Lγ(w(n+1), z,d(n))

d(n+1) = d(n) + (Lw(n+1) − z(n+1))

, (12)

where Lγ is the augmented Lagrangian of index γ ∈ (0,∞)
defined by

Lγ(w, z,d) = f(w)+g(z)+
1

γ
d⊤(Lw−z)+

1

2γ
∥Lw−z∥22,

where d ∈ RM and γ are a Lagrange multiplier and a positive
scalar parameter, respectively. With the ADMM, the effect of
the ill-condition can be reduced to a certain degree by properly
tuning a parameter γ appearing in the steps given as in (12).

To apply the ADMM to the constrained minimization prob-
lem, we rewrite (9) with the indicator function as the following
unconstrained optimization problem.

min
w∈RKd

αw⊤ D1

tr(D1)
1Kd+Jℓ2(w)+ιCH (w)+ιCN (w), (13)

1A function f : RN → (−∞,∞] is called proper lower semicontinuous
convex if dom(f) := {x ∈ RN | f(x) < ∞} ̸= ∅, lev≤α(f) := {x ∈
RN | f(x) ≤ α} is closed for every α ∈ R, and f(λx + (1 − λ)y) ≤
λf(x)+(1−λ)f(y) for every x,y ∈ RN and λ ∈ (0, 1), respectively [34].
The set of all proper lower semicontinuous convex functions in RN is denoted
by Γ0(RN ).

where ιCH and ιCN denote the indicator functions2. Note that
in the above problem, the second linear term w⊤ D1

tr(D1)
1Kd is

a replacement of the ℓ1-norm in Jℓ1(w) since w is constrained
in CN . The steps of the above algorithm are shown in Algo-
rithm 2, which is derived by adopting the ADMM algorithm
with

f(w) := αw⊤ D1

tr(D1)
1Kd + Jℓ2(w) + ιCH (w),

g(z) := ιCN (z),

and L = I ∈ RKd×Kd in (11).

IV. EXPERIMENTAL RESULTS

Two experiments are conducted to support the proposed
method. The first one is an experiment in artificial situation to
confirm whether weights corresponding to low-quality trials
(nonstationary data) become relatively small values or zeros
by using the proposed method. The other one is an experiment
of classification of EEG signals during motor imagery to show
performance in accuracy with the proposed method.

A. EEG Data Description

We used dataset IVa from BCI competition III and dataset
1 from BCI competition IV, which were public datasets pro-
vided by Fraunhofer FIRST (Intelligent Data Analysis Group)
and Campus Benjamin Franklin of the Charité - University
Medicine Berlin (Department of Neurology, Neurophysics
Group) [35], [36], respectively. Aside from the public datasets,
we recorded the EEG of motor-imagery (called dataset JK-
HH 1). The experiment for obtaining JK-HH 1 was approved
by the research ethics committee of Tokyo University of
Agriculture and Technology.

1) Dataset IVa: This public dataset consists of EEG sig-
nals during right hand and right foot motor-imageries. The
EEG signals from 118 channels at positions of the extended
international 10/20-system were recorded from five subjects
assigned labels aa, al, av, aw, and ay. The measured signal
was bandpass-filtered with a passband of 0.05–200 Hz then
digitized at 1000 Hz with 16 bits (0.1 µV). In the experiment,
visual cues told the subject which imagery task (left hand,
right hand, or right foot) should be performed. The cue was
indicated for 3.5 seconds and the subject performed the motor
imagery for this period. The resting interval between two trials
was randomized from 1.75–2.25 seconds. Only EEG trials for
right hand and right foot were provided.

We also applied a bandpass filter whose passband was 7–
30 Hz and downsampled to 100 Hz to this dataset. The dataset

2A subset C ⊂ RN is called convex if for every x,y ∈ C and λ ∈ (0, 1),
λx+ (1− λ)y ∈ C. For a given nonempty closed convex subset C ⊂ RN ,
the indicator function ιC ∈ Γ0(RN ) is defined by

ιC(x) :=

{
0 (x ∈ C)
∞ (x /∈ C)

,

and the metric projection onto C is the mapping PC : RN → C : x +→
argminy∈C∥x − y∥2. The metric projection is also described, for any
γ ∈ (0,∞), as PC(x) = argminy∈RN ιC(y) +

1
2γ ∥x − y∥22, which is

a particular case of the proximity operator [34].
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Algorithm 2 Solver for optimization problem in (13)
Initialize w(1), z(1), and d(1).
repeat

1a. ξ =
1⊤
Kd

(γ G
tr(G) + I)−1

[
(z(n) − d(n)) + γ

(
G1Kd

Kdtr(G) − α
D11Kd
tr(D1)

)]
− 1

γ1⊤
Kd

(γ G
tr(G) + I)−11Kd

. (14)

1b. w(n+1) =

(
γ

G

tr(G)
+ I

)−1 [
z(n) − d(n) + γ

(
G1Kd

Kdtr(G)
− α

D11Kd

tr(D1)
− ξ1Kd

)]
. (15)

2. z(n+1) = PCN

(
w(n+1) + d(n)

)
. (See (20) for a specific form.) (16)

3. d(n+1) = d(n) +w(n+1) − z(n+1). (17)

until converged.

for each subject consisted of signals of 140 trials per class.
The signal in each trial was extracted 3.5 seconds after the
visual cue.

2) Dataset 1: This public dataset consists of EEG signals
during two motor-imageries, which were selected from three
classes; left hand, right hand, and foot (side chosen by the sub-
ject; optionally also both feet). The EEG signals were recorded
from four subjects assigned labels a, b, f, and g. The signals
from 59 EEG channels were measured, which were most
densely distributed over sensorimotor areas. The measured
signal was bandpass-filtered with a passband of 0.05–200 Hz
then digitized at 1000 Hz with 16 bits (0.1 µV). Additionally,
the data passed through the low-pass filter (Chebyshev Type
II filter of order 10 with stopband ripple of 50 dB down
and stopband edge frequency of 49 Hz) then downsampled at
100 Hz (calculating the mean of blocks of 10 samples). During
each experiment, visual cues were displayed for a period of
4.0 seconds during which the subject was instructed to perform
the cued motor imagery task (left hand, right hand, or right
foot). These periods were interleaved with 2.0 seconds of blank
screen and 2.0 seconds with a fixation cross shown in the
center of the screen.

We also applied a bandpass filter whose passband was 7–
30 Hz to this data. The dataset for each subject consisted of
signals of 100 trials per class. The signal in each trial was
extracted 4.0 seconds after the visual cue.

3) Dataset JK-HH 1: This original dataset consists of
EEG signals during two motor-imageries, right hand and
foot. They were recorded from five (5 males; averaged age
23.2 with SD 1.6) subjects assigned labels sa, sb, sc, sd,
and se. During the recording, the subjects performed the
motor-imagery tasks instructed by a visual cue. The cue
was given by an arrow on an LCD screen. The right and
down arrows instructed the subjects to perform the motor
imagery tasks of the right hand and the foot, respectively.
The subjects performed the tasks repeatedly with an interval
of around 3 seconds. The EEG signals were recorded with
Ag/AgCl active electrodes (g.LADYbird, g.LADYbirdGND,
and g.GAMMAearclip produced by Guger Technologies) and
a power supply (g.GAMMAbox produced by Guger Technolo-
gies). There were 29 electrodes, which were placed at F3, Fz,
F4, FC5, FC3, FC6, FCz, FC2, FC4, FC6, T7, C5, C3, C1, Cz,
C2, C4, C6, T8, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, Pz,
and P4 (the positions are represented by the notation of the
International 10-10 system [37]). The signals observed from

the electrodes were amplified using a bio-amplifier (MEG-
6116 produced by Nihon Kohden). The amplifier analog-
filtered the signals with a passband of 0.5–100 Hz. The signals
through the amplifier were sampled using an A/D converter
(AIO-163202F-PE produced by Contec) with a sampling rate
of 256 Hz. The converted signals were recorded with the
Data Acquisition Toolbox, which is one of the toolboxs of
MATLAB (MathWorks). We also applied to this dataset a
Butterworth lowpass filter, whose cutoff frequency was 50 Hz
and filter order was 4, and downsampled to 128 Hz.

We also applied to this dataset a bandpass filter whose
passband was 7–30 Hz. The dataset for each subject consisted
of signals of 100 trials per class. The signal in each trial was
extracted 4.0 seconds after the visual cue.

B. Confirmation of Sparsity in Artificial Situation

The following numerical experiments were conducted to
confirm whether the weights corresponding to the low-quality
trials (nonstationary data) are almost zeros when the proposed
method is applied.

1) Simulation Scenario: Suppose in this simulation that the
observed dataset of an EEG in class d consists of Kd trials,
where K0 trials out of Kd trials (i.e., K0 < Kd) are wide-
sense stationary observed with white Gaussian noise and the
remaining Kd − K0 trials are non-stationary with different
covariance matrices.

This scenario was implemented similar to [38], [39] as
follows. As a reference signal, we used a signal corresponding
to each class that was chosen randomly out of the dataset
of subject al. We assumed Xd ∈ RM×N as the pure EEG
signal in class d. Based on the signal, we produced Kd trials
Y k
d ∈ RM×N (k = 1, . . . ,Kd) as follows.

Y k
d =

{
Xd +Nk

1 (k = 1, . . . ,K0)

Xd +Nk
1 +Nk

2 (k = K0 + 1, . . . ,Kd)
,

where Nk
1 ∈ RM×N denotes Gaussian noise N (0,σ2

1I) and
Nk

2 ∈ RM×N stands for outlier noise generated from a normal
mixture distribution [40] such as

[Nk
2 ]:,n ∼ (1− ϵ)δ0 + ϵN (0,σ2

2I),

where n (n = 1, . . . , N ) is a time index, δ0 denotes a point
mass distribution located at zero, and ϵ > 0 is the occurrence
probability [39].
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TABLE I: Number of trials of which coefficients were zero, ♯(wk = 0) in
both classes when K0 = 111 (one non-stationary trial) and K0 = 102 (ten
non-stationary trials)

K0 = 111 K0 = 102
♯(wk = 0) in class 1 1 10
♯(wk = 0) in class 2 1 10

2) Results: We set Kd = 112, and chose σ1 = 1.0,
σ2 = 1.0× 103 for the noise distributions and ϵ = 1.0× 10−1

for the occurrence probability. Table I lists the resulting
zero weight coefficients for both classes when K0 = 111
(one non-stationary trial) and K0 = 102 (ten non-stationary
trials). In the parameter settings of Algorithm 2, we chose
α = 2.0× 10−1 and γ = 1.0× 10−3 in both cases.

C. Two-Class EEG Classification
1) Parameter Settings: The following three types of CSP

are used for feature extraction of motor-imagery EEG:
• A CSP with the empirically averaged covariance matrix,

as in (3).
• A CSP with the weight-averaged covariance matrix, as in

(7), with a simple weighting technique:

wk = η
∥∥Ek

∥∥−1

F
(k ∈ Cd), (18)

where η is a constant for normalization such that 1 =∑
k∈Cd

wk. The underlying idea is to simply give a small
weight corresponding to a large residue (a low qulity
trial).

• A CSP with the weight-averaged covariance matrix, as in
(7), with the proposed sparsity-aware estimation method.

It should be noted that more recent CSP-based methods
could be used in the experiments; however, the aim with this
study was to show the effectiveness of the proposed data
selection/rejection method, and that the choice of CSP was
not the issue.

We defined the following feature vector as the output of
feature extraction using CSP. Although the solution of (2) is
given by the eigenvector corresponding to the largest eigen-
value in (5), we can use the other eigenvectors for classifica-
tion [41]. The M eigenvectors can be obtained by solving (5)
as v̂1, . . . , v̂M , where v̂i is the eigenvector corresponding to
the ith smallest eigenvalue of (5). We used the 2r eigenvectors
to form the feature vector, denoted by y, for classification of
unlabeled data, X .

y = [σ2(X, v̂1), . . . ,σ
2(X, v̂r),

σ2(X, v̂M−r+1), . . . ,σ
2(X, v̂M )]⊤ ∈ R2r.

(19)

The feature is classified with linear discriminant analysis
(LDA) [42].

2) Results: In Table II, we list the classification accuracy
by CSP with the following weighting techniques: (i) the simple
average (wk = 1/Kd), (ii) the weighted average with wk ∼∥∥Ek

∥∥−1

F
, and (iii) the weighted average with the proposed

sparse weights. The results of the proposed data selection
method are the highest classification accuracy for each subject
among the accuracies obtained with several α. The results were
obtained by conducting 5-fold cross validation (CV). In the

table, ♯(wk ̸= 0) stands for the average number of trials of
which coefficients were not zero. In other words, ♯(wk ̸= 0)
was the average number of selected trials from the dataset.
In all cases, for simplicity of comparison, the number of the
associated spatial weights r in (19) was fixed to 3. For every
parameter α, we chose γ = 1.0× 105.

To see the sensitivity of parameter α, we measured the
classification accuracy for varying sparsity parameter α for
each subject in each dataset, as shown in Fig. 2. The more α
increased, the more sparsity was promoted. In the case of the
smallest α in the figures was 10−7, the term of the ℓ1-norm
in the cost function could be virtually ignored; therefore, we
observed that the resulting weights were identical. As also
shown in Fig. 2, there was no common trend in the change in
classification accuracy by the parameter among the subjects.
The results suggest that the number of low-quality samples
was different among the subjects.

V. DISCUSSION AND CONCLUSION

The main contribution of this paper was to establish new
methods for selecting or rejecting trials. A weight coefficient
was assigned to each within-trial covariance matrix to measure
the quality of the trial, and a sparse set of weights was
determined by the ℓ1 optimization problem.

The experiments to confirm sparsity in an artificial situation
have shown that the trials, where the residues yielded by
joint diagonalization were large, correspond to the low-quality
trials. As expected, only non-stationary trials (assumed to be
low-quality trials) were weighted with (almost) zero, and the
others were quite uniquely weighted, as shown in Table. I.

The results of classification accuracy shown in Table II
exhibit the advantage of the proposed method. Detailed dis-
cussion is given in the following. First of all, the simple non-
sparse weights determined by the error matrices obtained in
joint diagonalization do not help to improve the classification
accuracy. This implies that the error matrices should be utilized
for designing weight coefficients in more sophisticated ways.

In contrast, the proposed sparse weights led to noticeable
classification results. Subject av showed a large improvement
in accuracy by more than 7 % with the proposed trial rejection
method. It is well known in the BCI community that this
dataset of av always shows poor classification performance
with variants of CSP. From this table, the average number of
non-zero weights was 98.2, which implies that 126 trials out
of 224 were rejected by the ℓ1 optimization. This fact suggests
that the dataset of Subject av contains many low-quality trials.

Next, note that even with the standard CSP, Subject aw
showed a high accuracy of 97.66 %, and no trials were rejected
with the proposed method. This implies that the dataset of this
subject includes stationary signals.

On the other hand, Subject f showed a small improvement
of 1.00 %, even though a large number of trials was rejected,
i.e., only 62.8 trials out of 160 were selected on average. This
may contradict the above argument that a dataset consists
of stationary trials. However, as observed in Fig. 2b, the
accuracies of Subject f appeared inconsistent over parameter
α. In other words, the value of ♯(wk ̸= 0) did not mean
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TABLE II: Classification accuracy [%] from 5-fold cross validation. Highest classification accuracies for each subject among the accuracies obtained with
several α are listed. The figures with ± denote standard deviation. ♯(wk ̸= 0) stands for average number of trials of which coefficients were not zero.
K1 +K2 denotes number of trials in both classes. We regard trial weight coefficients of less than 10−5 as zeros.

❵❵❵❵❵❵❵❵❵Subject
Method Common Spatial Pattern (CSP) Method with several weighting techniques

(wk = 1/Kd) (wk ∼ 1/
∥∥Ek

∥∥
F

) (wk: ℓ1 sparse weights) ♯(wk ̸= 0) (K1 +K2)

dataset IVa

aa 75.71 ±12.66 76.43 ±11.32 80.36 ±12.81 94.4 (224)
al 93.57 ± 2.99 93.93 ± 5.14 95.36 ± 4.48 143.8 (224)
av 63.21 ± 5.14 65.36 ± 2.71 71.07 ± 7.08 98.2 (224)
aw 97.86 ± 1.96 95.71 ± 2.04 97.86 ± 1.96 224.0 (224)
ay 92.86 ± 3.79 93.21 ± 4.07 93.57 ± 2.99 214.8 (224)

Ave. 84.64 84.93 87.64 155.0 (224)

dataset 1

a 66.00 ± 9.78 66.50 ± 6.75 71.50 ± 9.75 133.2 (160)
b 71.50 ± 5.18 67.50 ± 4.33 75.00 ± 4.68 160.0 (160)
f 88.50 ± 6.75 89.50 ± 6.94 89.50 ± 4.47 62.8 (160)
g 89.00 ± 4.87 79.50 ± 6.47 90.00 ± 3.54 159.8 (160)

Ave. 78.75 75.75 81.25 129.0 (160)

JK-HH 1

sa 83.50 ± 6.02 78.50 ± 7.62 83.50 ± 6.02 160.0 (160)
sb 56.50 ± 3.79 54.00 ± 6.27 62.00 ± 5.42 148.0 (160)
sc 47.50 ±10.00 49.00 ± 6.75 56.50 ± 6.98 105.0 (160)
sd 49.00 ± 9.12 48.00 ±15.45 56.50 ± 7.42 85.6 (160)
se 85.50 ±10.37 85.50 ± 9.25 87.00 ±11.00 131.8 (160)

Ave. 64.40 63.00 69.10 126.1 (160)

the quality of trials in the dataset. Unlike Subject f, some
subjects exhibited a clear relation between α and accuracy.
For instance, Subject aw showed that increased sparsity led to
decreased accuracy.

The experiment of two EEG classification showed that
the proposed method is effective. What we would like to
emphasize is that the proposed method can be applied to
variants of CSP. By introducing the ℓ1 norm to the cost
function, we can obtain the sparse weights, which lead to the
rejection of low-quality trials.

Even though introducing sparse weight coefficients im-
proved classification accuracy, an important question arose:
Does a zero weight really correspond to a low-quality trial?
This paper established how to select or reject trials from a
dataset based on the sparse ℓ1 optimization. The established
method should be verified through a psychophisiological ex-
periment in which a subject is randomly distracted during a
motor-imagery mental task and the distribution of weight co-
efficients derived based on the proposed method is evaluated.
This important problem will be addressed in the future. The
analysis with such EEG data in which low-quality trials are
on purpose might help in developing a model for evaluating
the quality of EEG signals. We then can discuss the issue of
bias caused by ℓ1 regularization in the solution [43].

The limitation of the proposed method is that we have
to choose the regularization parameter. The simplest way to
choose the parameter is using a CV method with a dataset.
When the learning and test data are separated out of the dataset
for CV and the number of low-quality data in the learning
data is significantly different in each CV, the choice of the
parameter by CV might not work well. Therefore, we need a
method for estimating an appropriate regularization parameter
for each dataset or subject.

In this paper, we did not discuss the problem of how to reject
a low-quality test sample to be classified. However, how to
reject low-quality samples by real-time processing is crucial
for practical use of BMI. We will address this problem by
expanding the proposed method.

Moreover, the concept of the proposed method could be
extended as a method for rejecting each sample instead of each
trial. To reject samples, we need to design N × (K1 + K2)
coefficients as the weights. This can lead to additional com-
putational cost compared to that for finding the trial weights.
Additionally, a joint diagonalization with matrices whose rank
is 1 would be unstable. In this case, we need another method
to estimate {qk}N×(K1+K2)

k=1 . Although we should solve these
problems for extending the proposed method, the proposed
method can be used as a framework for rejecting samples not
only for rejecting trials.

APPENDIX A
DERIVATION OF STEPS IN ALGORITHM 2

We derive Steps 1 and 2 in Algorithm 2. Step 1 is derived
by solving the following optimization problem (also see (12)).

w(n+1) = argmin
w∈RKd

Lγ(w, z(n),d(n))

= argmin
w∈CH

αw⊤ D1

tr(D1)
1Kd + Jℓ2(w)

+
1

2γ
∥z(n) −w − d(n)∥22.

Using a multiplier, we define the Lagrangian as

L(w) :=
1

2
(w − 1Kd/Kd)

⊤ G

tr(G)
(w − 1Kd/Kd)

+ αw⊤ D1

tr(D1)
1Kd +

1

2γ
∥z(n) −w − d(n)∥22

+ ξ(w⊤1Kd − 1)

with ξ being the Lagrange multiplier for the constraint set CH .
Taking a gradient of L(w) with respect to w, we obtain the
requirement

∇L(w) =
G

tr(G)
(w − 1Kd/Kd) + α

D11Kd

tr(D1)

+
1

γ
(w + d(n) − z(n)) + ξ1Kd

= 0.
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Thus, the solution is obtained as (15). Plugging this solution
into the constraint w⊤1Kd = 1 leads to

1⊤
Kd

w(n+1)

= 1⊤
Kd

(
γ

G

tr(G)
+ I

)−1

×
[
z(n) − d(n) + γ

(
G1Kd

Kdtr(G)
− α

D11Kd

tr(D1)
− ξ1Kd

)]

− γξ1⊤
Kd

(
γ

G

tr(G)
+ I

)−1

1Kd

= 1,

which readily results in (14). Note that strict discussion about
the Lagrange method is written in, e.g., [34, Proposition
26.11].

Step 2 is derived as follows.

z(n+1) = argmin
z∈RKd

Lγ(w(n+1), z,d(n))

= argmin
z∈RKd

ιCN (z) +
1

2γ
∥z − (w(n+1) + d(n))∥22

= PCN (w(n+1) + d(n)),

where PCN is the metric projection onto CN defined by

PCN : RKd → CN : [x]i .→
{
0 if [x]i ≤ 0

[x]i otherwise
. (20)
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Fig. 2: Classification accuracy for varying parameter α for each subject in
datasets IVa and JK-HH 1
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