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1. Introduction

Optimal investment strategy for insurer has recently become
an important subject. The insurer can participate in the financial
market to avoid risk. More recently, many literatures have stud-
ied maximizing the utility of terminal value or minimizing the
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probability of ruin for the insurer. Browne (cf. Browne, 1995) ini-
tiated the study of explicit solution for a firm to maximize the ex-
ponential utility of terminal wealth and minimize the probability
of ruin with its surplus process given by the Lundberg risk model.
For different claim sizes of insurers, the optimal strategywas given
by the Bellman equation in Hipp and Plum (2000) to minimize the
ruin probability. Wang, Xia and Zhang (cf. Wang et al., 2007) effi-
ciently applied martingale method to study the optimal portfolio
selection for insurer under the mean–variance criterion as well as
the expected constant absolute risk aversion (CARA) utility maxi-
mization. The readers are referred to, for example, Yang and Zhang
(2005), Wang (2007), Liu and Yang (2004), Bai and Guo (2008) and
references therein.

In addition to the risk of market, the insurer also takes into
account the risk of insurance. The risk of insurance cannot be
avoided by singly investing in the bond and other assets in the
market. However, the business of reinsurance provides a way for
the insurer to hedge this risk, and this way has also recently drawn
much concern. The business of reinsurance comes up in different
forms. Quota-share reinsurance and investment were originally
considered by Promislow and Young (cf. Promislow and Young,
2005). Proportional reinsurancewas accessible in Bäuerle (2005) in
which the authorminimized the expected quadratic distance of the
terminal value over a positive constant and successfully solved the
relatedmean–variance problem. Zeng and Li (cf. Zeng and Li, 2011)
essentially got themean–variance efficient frontier of the diffusion
model with multiple risky assets in the case of proportional
reinsurance. The stock price in the above models generally follows
a geometric Brownian motion and the market price of the risk
correlated with the stock is constant. But in the real market,
the stock price may have other features, for example, stochastic
volatility. Liang, Yuen and Guo (cf. Liang et al., 2011) characterized
the instantaneous rate of the stock by Ornstein–Uhlenbeck process
and derived the optimal reinsurance and investment strategies.
The constant elasticity of variance (CEV) model was established
in Gu et al. (2012) in which the insurer can buy excess-of-loss
reinsurance. In Bäuerle and Blatter (2011), both the surplus of
the insurer and the stock index in the market followed the Lévy
process, and optimal investment and reinsurance policies were
explicitly derived. Moreover, the optimal investment strategy was
beautifully solved by Badaoui and Fernández (cf. Badaoui and
Fernández, 2013) when the instantaneous rate and the volatility
were related with a common stochastic factor.

Based on the investment and reinsurance strategy, the insurer
can successfully avoid its risk. However, the time of investment
may be long for the insurer, so it is natural to take the risk of in-
terest rate into account. So far, few literature is available for in-
surer under stochastic interest rate. Elliott and Siu (cf. Elliott and
Siu, 2011) used the so called game theoretic approach to find the
best allocations in the market when the interest rate was given
by a regime-switching model. In fact, most of the work of in-
vestment under stochastic interest focus on portfolio selection.
In the case of stochastic interest rate, zero coupon bonds, deliv-
ering a fixed return of $1 at maturity, are issued in the market
to hedge the risk of interest rate. With the help of zero coupon
bonds, we can establish a complete market. Bajeux-Besnainou
and Portait (cf. Bajeux-Besnainou and Portait, 1998) first solved
the portfolio selection problem when the instantaneous interest
rate was stochastic. They introduced the pricing kernel and de-
rived the mean–variance efficient frontier under the generalized
Vasicek model. Bajeux-Besnainou, Jordan and Portait (cf. Bajeux-
Besnainou et al., 2003) considered a case when the interest rate
followed an Ornstein–Uhlenbeck process and got the optimal in-
vestment strategies to maximize CRRA and hyperbolic absolute
risk aversion (HARA) utility for investors by martingale methods.
Mean–variance problem with extended Cox–Ingersoll–Ross (CIR)
stochastic interest rate model was studied by Ferland and Waiter
(cf. Ferland andWaiter, 2010). Besides, Boulier, Huang and Taillard
(cf. Boulier et al., 2001), Josa-Fombellida and Rincón-Zapatero (cf.
Josa-Fombellida andRincón-Zapatero, 2010) solved the optimal in-
vestment problem under stochastic interest rate in defined contri-
bution (DC) and defined benefit (DB) pension plans, respectively.

Also, the inflation risk is an important factor in the long run of
investment. To hedge the inflation risk, in the case of optimal as-
set allocationwith inflation, Treasury Inflation Protected Securities
(TIPS) are needed. There are many TIPS in practice, in which peo-
ple often use inflation-indexed zero coupon bond in the market.
The model of inflation often includes nominal interest rate, real
interest rate and the inflation index. The inflation index is also a
factor to characterize the connection between the nominal mar-
ket and the real market. The most famous equation between them
is given by the famous Fisher equation. Jarrow and Yildirim (cf.
Jarrow and Yildirim, 2003) made a breakthrough in establishing
the Jarrow–Yildirim (JY) model to characterize the inflation index,
the forward nominal interest rate and forward real interest rate.
Brennan and Xia (cf. Brennan and Xia, 2002) modeled the inflation
index in a different framework and obtained the optimal invest-
ment strategies under inflation. Besides, Zhang, Korn and Ewald
(cf. Zhang et al., 2007) extended the Fisher equation under the risk-
neutral measure and used themartingalemethod to derive the op-
timal allocations. Later, Han and Hung (cf. Han and Hung, 2012)
first introduced the risks of inflation and interest rate in a DC pen-
sion fund model.

Unfortunately, as far as we are concerned, no literature of
insurer cares about the above two important risks of market at
the same time. But when we concern the optimal reinsurance and
investment strategies for a long time, the both risks of interest
rate and inflation should be included. More precisely, in this paper,
we will concentrate on studying the optimal reinsurance and
investment problem for an insurer under risks of interest rate and
inflation. The objective of the insurer is to maximize the expected
CRRA utility of the terminal real wealth, where we assume that the
nominal interest rate follows an Ornstein–Uhlenbeck process, the
connections among real interest rate, nominal interest rate and the
inflation index are given by the famous Fisher equation. To make
the market complete and hedge the risk of market, zero-coupon
bonds, TIPS and stocks are also included in the financial market.
Moreover, we also assume that the proportional reinsurance is
allowed. By using the stochastic dynamic programming method,
we first derive the Hamilton–Jacobi–Bellman (HJB) equations for
the problem, and then solve it by employing a variable change
technique, finally get the closed-forms of the optimal reinsurance
and investment strategies in the dynamic optimization problem.
However, since the existence of insurance, we will not get a self-
financingwealth process and thismakes the problemvery difficult.
To handle this situation, auxiliary process will be introduced to
make the market also self-financing, and the auxiliary process will
help to solve the optimal reinsurance and investment problem for
insurers.

The paper is organized as follows. The model of proportional
reinsurance with stochastic nominal interest rate and inflation
index is presented in Section 2, and the dynamics of zero coupon
bonds and TIPS are also given. Section 3 introduces an auxiliary
problem and derives the optimal reinsurance and investment
strategies by stochastic dynamic programming. Section 4 provides
a sensitivity analysis to clarify the behavior of our model. Section 5
is a conclusion.

2. The risk model

In this section, we obtain a financial market for an insurer
with risks of inflation and interest rate. (Ω, F , {Ft}t∈[0,T ], P) is a
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filtered complete probability space, where Ft is the collection of
information in themarket until time t . [0, T ] is a fixed timehorizon.
All the processes involved below are presumed to be adapted to
{Ft , t ∈ [0, T ]}.

2.1. Market

We study an insurer whose surplus process is modeled by the
classical Lundberg model

dX(t) = cdt − d
 Nt

i=1

Yi,


where c is the premium rate of the insurer, Yi is the ith claim, the
number of claims up to time t is denoted by the homogeneous
Poisson process Nt with intensity λ > 0, and N = {Nt} is inde-
pendent of {Yi}. All the claims Yi, i = 1, 2, 3, . . . are assumed to
be independent and identically distributed (i.i.d.) with E[Yi] = µ1
and E[Y 2

i ] = µ2. To prevent the insurer from bankruptcy immedi-
ately, c > λµ1 is required. For simplicity, we set c = λµ1(1 + η)
according to the expected value principle (cf. Kaas et al., 2009),
where η > 0 is the safety loading. In addition, reinsurance is al-
lowed and we consider the proportional reinsurance here. Denote
the reinsurance proportion by a(t), which means that 100(1 −

a(t))%(a(t) ≥ 0) of the insurance risk is divided to a reinsurer
at t . When the ith claim Yi occurs, the insurer pays only a(t)Yi
while the reinsurer pays the rest. However, based on the expected
value principle, the insurer has to pay a premium at the rate of
(1 + θ)λµ1(1 − a(t))(θ > 0) to the reinsurer due to the rein-
surance business. In general, θ > η, otherwise, arbitrage will exist.
The insurer can hedge its insurance risk by the reinsurance strat-
egy a(t). If a(t) is small, the insurer takes a little risk of insurance by
himself and divides most of the risk to the reinsurer. a(t) > 1 im-
plies taking new reinsurance business from the insurance market.
In this case, the surplus process X(t) takes the following form:

dX(t) = λµ1[a(t)(1 + θ) − (θ − η)]dt − a(t)d
 Nt

i=1

Yi


. (2.1)

Following the same process as in Grandll (1991), Liang and Huang
(2011) and Liang and Sun (2011), the above process can be approx-
imated by the following drifted process:

dX(t) = λµ1(η − θ)dt + λµ1θa(t)dt +


λµ2a(t)dW0(t), (2.2)

whereW0(t) is a standard Brownian motion on (Ω, F , {Ft}t∈[0,T ],
P).

In themarket, risks of interest rate and inflation are considered.
To simplify the model, we assume that the instantaneous nominal
rate rn(t) and the inflation index I(t) are stochastic processeswhile
the instantaneous real rate rr(t) is a deterministic function of t . The
stochastic nominal rate rn(t) is mean-reverting and driven by the
following Ornstein–Uhlenbeck equation:

drn(t) = a(b − rn(t))dt − σrndWrn(t),

where a, b, σrn are positive constants and Wrn(t) is a standard
Brownian motion, and it is independent ofW0(t).

The original Fisher equation only describes the relationships
among the real interest rate, nominal interest rate and the inflation
risk in the discrete time case. We formulate the continuous time
model of inflation index, based on the extended Fisher equation
given by Zhang (cf. Zhang et al., 2007), as follows:

rn(t) − rr(t) = lim
1t→0

1
1t
E[i(t, t + 1t)|Ft ],

i(t, t + 1t) =
I(t + 1t) − I(t)

I(t)
,

(2.3)
whereE is the expectationwith respect to the risk neutralmeasureP . i(t, t+1t) denotes the inflation rate within time horizon [t, t+
1t], and the stochastic inflation index I(t) is given by the following
stochastic differential equation:

dI(t)
I(t)

= (rn(t) − rr(t))dt + σI1dWrn(t) + σI2dWI(t), (2.4)

where Wrn(t) and WI(t) are two standard Brownian motions with
respect to the risk-neutral measureP .

Assume that the market price of risk of WI(t) is λI , then by the
Girsanov theorem we know that the stochastic inflation index I(t)
under the original measure P can be defined by

dI(t)
I(t)

= (rn(t) − rr(t))dt + σI1 [λrndt + dWrn(t)]

+ σI2 [λIdt + dWI(t)]. (2.5)

The risk-free asset price S0(t) evolves according to

dS0(t) = S0(t)rn(t)dt, S0(0) = 1. (2.6)

Tomake themarket complete, zero-coupon bonds are issued in the
market to hedge the risk of nominal interest rate. A zero-coupon
bond Bn(t, T ) is a contract at time t with final payment of $1 at
maturity T , and we assume that Bn(t, T ) satisfies the following
partial differential equation:

∂Bn(t, T )

∂t
+ [a(b − rn) + λrnσrn ]

∂Bn(t, T )

∂rn

+
1
2
σ 2
rn

∂2Bn(t, T )

∂r2n
= rnB(t, T ),

B(T , T ) = 1,

(2.7)

where λrn is the market price of risk on Wrn(t). Then Bn(t, T ) has
the following closed-form:

Bn(t, T ) = exp[rn(t)C(t, T ) − A(t, T )], (2.8)

where C(t, T ) =
e−a(T−t)

−1
a , A(t, T ) = −

 T
t [(ab+λrnσrn)C(s, T )+

1
2σ

2
rnC(s, T )2]ds.
In addition, Bn(t, T ) also satisfies the following backward

stochastic differential equation (BSDE):
dBn(t, T )

Bn(t, T )
= rn(t)dt + σB1(T − t)[λrndt + dWrn(t)],

Bn(T , T ) = 1,
(2.9)

where σB1(t) =
1−e−at

a σrn .
We can invest into the asset B(t, T ) by selling B(t − dt, T ) at

t − dt and purchasing B(t, T ) at time t . Hence, the maturity of
zero coupon bond we invest in changes over time. However, as is
stated in Boulier, Huang and Taillard (cf. Boulier et al., 2001), there
may not exist zero-coupon bonds with any maturity t > 0 in the
market, so we need to introduce a rolling bond with a constant
maturity K1. The rolling bond BK1(t) is of the form

dBK1(t)
BK1(t)

= rn(t)dt + σB1(K1)[λrndt + dWrn(t)]. (2.10)

The relationship between BK1 and Bn(t, T ) is given by

dBn(t, T )

Bn(t, T )
=


1 −

σB1(T − t)
σB1(K1)


dS0(t)
S0(t)

+
σB1(T − t)
σB1(K1)

dBK1(t)
BK1(t)

. (2.11)
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We see that the stochastic inflation index model in this paper
is a particular case of the JY model in Jarrow and Yildirim (2003)
when the nominal interest rate is an Ornstein–Uhlenbeck process
and the real interest rate is non-random. To reduce the risk of
inflation, TIPS is available in the market. We consider a particular
TIPS named indexed zero coupon bond P(t, T ) which delivers real
money of $1, i.e. I(t) atmaturity T . Using the general pricing theory
of derivatives, we know that the bond P(t, T ) satisfies

∂P
∂t

+
P

∂rn
[a(b − rn) + λrnσrn ] + PI I(rn − rr)

+
1
2
Prnrnσ

2
rn +

1
2
PII I2(σ 2

I1 + σ 2
I2) − PIrn IσrnσI1 = rnP,

P(T , T ) = I(T ).

(2.12)

The closed-form of P(t, T ) is given by

P(t, T ) = I(t) exp

−

 T

t
rr(s)ds


. (2.13)

Moreover, the P(t, T ) satisfies the following BSDE:
dP(t, T )

P(t, T )
= rn(t)dt + σI1 [λrndt + dWrn(t)]

+σI2 [λIdt + dWI(t)],
P(T , T ) = 1.

(2.14)

We also consider a rolling indexed bond PK2(t) with constant
maturity K2 satisfying

dPK2(t)
PK2(t)

= rn(t)dt + σI1 [λrndt + dWrn(t)]

+ σI2 [λIdt + dWI(t)]. (2.15)

The relationship between PK2(t) and P(t, T ) is

dP(t, T )

P(t, T )
=

dPK2(t)
PK2(t)

. (2.16)

It is easy to see that the differential of TIPS P(t, T ) is not correlated
with its maturity T .

Furthermore, there is a stock in themarket, andwe assume that
the price of the stock follows the following stochastic differential
equation:

dS1(t)
S1(t)

= rn(t)dt + σS1(λrndt + dWrn(t))

+ σS2(λIdt + dWI(t)) + σS3(λSdt + dWS(t)), (2.17)

where λS is the market price of risk of a standard Brownian
motionWS(t) on (Ω, F , {Ft}t∈[0,T ], P), and the standard Brownian
motions {W0(t)}, {Wrn(t)}, {WI(t)} and {WS(t)} are independent.

Thus, in the above market, the wealth X(t) of the insurer must
satisfy the following SDE:

dX(t) = λµ1(η − θ)dt + λµ1θa(t)dt +


λµ2a(t)dW0(t)

+ θ0(t)
dS0(t)
S0(t)

+ θB(t)
dBK1(t)
BK1(t)

+ θP(t)
dPK2(t)
PK2(t)

+ θS(t)
dS1(t)
S1(t)

, (2.18)

where θ0(t), θB(t), θP(t), θS(t) are the money invested in the cash,
zero coupon bond, TIPS and the stock, respectively. The wealth of
our model is X(t) = θ0(t) + θB(t) + θP(t) + θS(t), and u(t) ,
(a(t), θB(t), θP(t), θS(t))T is called a strategy. u(t) is a combination
of the reinsurance strategy and the investment strategy. We say
u(t) is an admissible strategy if u(t) is adapted to the filtration
F = {Ft}t∈[0,T ] and the reinsurance strategy a(t) in u(t) is not
less than zero.Moreover, thewealth process X(t) corresponding to
u(t) should satisfy X(t) ≥ 0. Substituting (2.6), (2.10), (2.15) and
(2.17) into the last equation, we can rewrite X(t) in the following
compact form:

dX(t) = λµ1(η − θ)dt + u(t)Tσ [Λdt + dW (t)], (2.19)

where

Λ ,


λµ1θ
√

λµ2

λrn
λI
λS

 , σ ,




λµ2 0 0 0
0 σB1(K1) 0 0
0 σI1 σI2 0
0 σS1 σS2 σS3

 ,

dW (t) ,

dW0(t)
dWrn(t)
dWI(t)
dWS(t)

 .

2.2. The optimization problem

In this paper, we intend to maximize the expected utility of the
terminal wealth by continuously arranging the allocations in the
assets and the reinsurance proportion within time horizon [0, T ].
Because inflation risk exists in the market, we need to maximize
the expected utility of the real value of the terminal wealth X(T ).
So the optimization problem can be written asmax


E

U

X(T )

I(T )


subject to: X(0) = x, u(t) admissible.

(2.20)

The CRRA utility function is

U(x) =
x1−γ

1 − γ
, γ > 0, γ ≠ 1 (2.21)

and γ is the relative risk aversion.

3. Solution of the optimization problem

The optimization problem (2.20) is not a classical self-financing
problem. In the insurance market, the insurer has a continuous
income of the premium. Somaybewe cannot solve the problem via
the classical methods. Besides, the problem involves reinsurance
strategy and investment strategies, so it is not a single investment
problem. The existence of reinsurance can affect the solution of
the optimal strategy. However, similar to that of the single-agent
consumption and investment problem in Karatzas and Shreve
(1998), we have the following lemma on the X(t) defined by (2.19).

Lemma 3.1. Let H(t) = exp{
 t
0 (rn(s)+ 1

2∥Λ∥
2)ds+

 t
0 ΛTdW (s)}.

Then H(t) satisfies the following SDE:

dH(t)
H(t)

= [rn(t) + ΛTΛ]dt + ΛTdW (t), H(0) = 1.

Moreover, the X(t) must be the following form:

X(t) = E

−

 T

t

λµ1(η − θ)H(t)
H(s)

ds +
X(T )H(t)

H(T )

Ft


,

t ∈ [0, T ].
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Proof. Applying Itô formula to the process {
X(t)
H(t) }, we have

d

X(t)
H(t)


= λµ1(η − θ)H−1(t)dt

+ [H−1(t)ūT (t) − X(t)H−1ΛT
]dW (t). (3.1)

And so

d

X(t)
H(t)

−

 t

0

λµ1(η − θ)

H(s)
ds


= [H−1(t)ūT (t) − X(t)H−1ΛT
]dW (t). (3.2)

Then {
X(t)
H(t) −

 t
0

λµ1(η−θ)

H(s) ds, 0 ≤ t ≤ T } is a martingale. This lemma
follows. �

Similar to the general investment problem, H(t) may act as the
pricing kernel of the financial market. Because of the existence
of reinsurance risk, H(t) is in fact the combination of risk of
reinsurance and the financial market. In addition, in the self-
financing case, we simply have X(t) = E[ X(T )H(t)

H(T )
|Ft ], whichmeans

that X(t) is a martingale under the risk neutral measure. However,
we can see that the wealth of the insurer is a supermartingale
under a certain measure in the proof of Lemma 3.1. The term
λµ1(η − θ)dt in (2.19) acts as a continuously outcome of the
wealth. When the insurer chooses the reinsurance and investment
strategies, the effect of the outcome should also be considered. We
denote F(t) = E[

 T
t

λµ1(η−θ)H(t)
H(s) ds|Ft ], and it can be seen as the

discounted expected value of the continuous outcome λµ1(η −

θ)dt of the wealth X(t), and we have the following lemma to
calculate F(t).

Lemma 3.2. The discounted value F(t) can be written as F(t) =

λµ1(η − θ)
 T
t Bn(t, s)ds, and F(t) satisfies the following BSDE:

dF(t) = −λµ1(η − θ)dt + F(t)[rn(t) + λrnσF (t, T )]dt
+F(t)σF (t, T )dWrn(t),

F(T ) = 0,
(3.3)

where σF (t, T ) =
 T
t

λµ1(η−θ)σB1 (s−t)Bn(t,s)
F(t) ds.

Proof. Since

F(t) = λµ1(η − θ)

 T

t
E

H(t)
H(s)

Ft


ds, (3.4)

it suffices to calculate E[H(t)
H(s) |Ft ], s > t . By the independence of

W0(t), Wrn(t), WI(t) and WS(t), it easily follows

E

H(t)
H(s)

Ft


= E


−

 s

t


rn(u) +

1
2
∥Λ∥

2

du

−

 s

t
ΛTdW (u)|Ft


= E


−

 s

t


rn(u) +

1
2
λ2
rn


du −

 s

t
λrndWrn(u)|Ft


= Ẽ


−

 s

t
(rn(u))|Ft


= Bn(t, s).

(3.5)

So F(t) = λµ1(η − θ)
 T
t Bn(t, s)ds. Differentiating it directly, we

obtain the second equation. �

3.1. An auxiliary problem

In this paper, we consider an auxiliary process Y (t) defined by
Y (t) = X(t) + F(t) with initial value F(0) = f . By (2.19) and (3.3),
we have

dY (t) = dX(t) + dF(t)

= rn(t)Y (t)dt +


a(t)

θB(t) +
F(t)σF (t, T )

σB1(K1)

θP(t)
θS(t)


T

× σ [Λdt + dW (t)]

= rn(t)Y (t)dt + u(t)Tσ [Λdt + dW (t)], (3.6)

where u(t) = u(t)+(0, F(t)σF (t,T )

σB1 (K1)
, 0, 0)T . Since F(T ) = 0 andwhat

we care about is the terminal value at time T , we can transform the
original problem (2.20) into the following auxiliary self-financing
problem:max E


U

Y (T )

I(T )


subject to: Y (0) = x + f and u(t) is admissible.

(3.7)

It is easy to see that, to get the self-financial problem, the insurer
should buy more zero-coupon bond to hedge the risk of market
due to the outcome of the wealth. In addition, Y (0) ≥ 0 should
be satisfied in our model, otherwise, bankruptcy may take place
within [0, T ].

3.2. Solution to the auxiliary problem

As the problem introduced above is a self-financing problem, it
is solvable. There are mainly two methods to solve it, one is the
stochastic dynamic programmingmethod, and the other one is the
martingale method. In this paper, we will solve it by the former.
Define

V (t, rn, I, y)

, max
u(t)


E

U

Y (T )

I(T )

rn(t) = rn and I(t) = I, Y (t) = y


.

We have the following.

Theorem 3.3. The associated HJB equation of the auxiliary prob-
lem (3.7) is

sup

Vt + Vy[rny + u∗T (t)σΛ] + Vrna(b − rn)

+VI I(rn − rr + σI1λrn + σI2λI)

+
1
2
Vyyu∗T (t)σσ Tu∗(t) +

1
2
Vrnrnσ

T
r σr

+
1
2
VII I2σ T

I σI + Vyrnu
∗T (t)σσr

+VyI IσσI + VIrn Iσ
T
r σI


= 0,

(3.8)

where σr = (0, −σrn , 0, 0)
T , σI = (0, σI1 , σI2 , 0).

Proof. The proof is very standard, see Merton (1969), Fleming and
Soner (1993), Vigna and Haberman (2001), He and Liang (2009)
and references therein, which we omit it here. �

We can get the optimal feedback function u∗(t, y):

u∗(t, y) = −
VyΣ

−1σΛ

Vyy
−

VyI IΣ−1σσI

Vyy
−

VyrnΣ
−1σσr

Vyy
, (3.9)

where Σ , σσ T . Substituting u∗(t, y) into the HJB equation,
we can get the closed-form of V (t, rn, I, y) and thus the optimal
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strategy u∗(t) = u∗(t, Y ∗(t)), where {Y ∗(t)} is the unique solution
of the SDE (3.6) with replacing the coefficient u(t) there by
u∗(t, Y ∗(t)). So we have the following.

Proposition 3.4. The optimal reinsurance–investment strategy u∗(t)
is

u∗(t) =
Y ∗(t)

γ
Σ−1σΛ +


1 −

1
γ


Y ∗(t)Σ−1σσI

=
X∗(t) + F(t)

γ



µ1θ

µ2

λrn

σB1 (K1)
−

λIσP1

σB1(K1)σP2
+

λS(σP1σS2 − σS1σP2 )

σB1 (K1)σP2σS3

λI

σP2
−

λSσS2

σP2σS3

λS

σS3



+


1 −

1
γ


(X∗(t) + F(t))


0
0
1
0

 . (3.10)

The closed-form of V (t, rn, I, y) is

V (t, rn, I, y) =
1

1 − γ

y
I

1−γ

h(t) (3.11)

and

h(t) = exp

 T

t
(γ − 1)


−rr(s) + σI1λr + σI2λI −

1
2γ

ΛTΛ

−


1 −

1
γ


ΛTσI −

1
2γ

σ T
I σI


ds


.

Proof. See Appendix.

The first term in u∗(t) is the general formof the optimal strategy
in self-financing framework. The second term is to invest only in
the TIPS and it will be used to hedge the risk of inflation. Since, in
our model, the nominal interest rate and the inflation are closely
correlated and what we concern about is the real value and the
real interest rate is deterministic, we only need to hedge the risk
of inflation, and the risk of interest rate can be ignored. Besides, the
optimal utility V (t, rn, I, y) is also not correlated with the nominal
interest rate.

3.3. Solution to the original problem

Once we obtain the solution of the auxiliary problem, we
can easily derive the solution of the original problem (2.20). The
optimal reinsurance–investment strategies of the original problem
are

u∗(t) = u∗(t) −


0,

F(t)σF (t, T )

σB1(K1)
, 0, 0

T

, (3.12)

i.e., since there is a continuously outcome in ourmodel, we have to
borrow F(t)σF (t,T )

σB1 (K1)
zero coupon bond to get the optimal utility.

3.4. The optimal strategies

We observe that Y ∗(t) exists in the optimal strategies u∗(t). In-
deed, in the market, Y ∗(t) is not observable. Noting that F(t) =

λµ1(η − θ)
 T
t Bn(t, s)ds in Y ∗(t) = X∗(t) + F(t), we can ap-

proximate F(t) by zero coupon bondswith differentmaturities and
thus obtain Y ∗(t). However, wemay not have somany zero coupon
bonds in the market, the method does not work. So we transform
Y ∗(t) in terms of the assets and indexes in the market. By observ-
ing the values of the assets and indexes in themarket, we can easily
get Y ∗(t) and thus the optimal strategies. Substituting (3.10) into
(3.6), we have

dY ∗(t) = Y ∗(t)


rn(t) +

1
γ

ΛTΛ +


1 −

1
γ


σ T
I Λ


dt

+


1
γ

ΛT
+


1 −

1
γ


σ T
I


dW (t)


. (3.13)

The formula indicates thatY ∗(t) follows a geometric Brownianmo-
tion. Because in the market we do not have any assets to represent
the insurance risk, in order to represent Y ∗(t), we first need to in-
troduce a fictitious asset Z(t) defined by

dZ(t)
Z(t)

=
λµ1θ

γ
√

λµ2
dW0(t). (3.14)

By conjugation, we rewrite Y ∗(t) as

Y ∗(t) = (x + f )emt

S0(t)
S0(0)

α1

BK1(t)
BK1(0)

α2

PK2(t)
PK2(0)

α3

×


S1(t)
S1(0)

α4 Z(t)
Z(0)

. (3.15)

Differentiating Y ∗(t), and then comparing it with (3.13), the pa-
rameters satisfy the following equations:

α2
α3
α4


=

1
λ


σB1(K1) σI1 σS1

0 σI2 σS2
0 0 σS3

−1 
λrn
λI
λS



+


1 −

1
γ

σB1(K1) σI1 σS1
0 σI2 σS2
0 0 σS3

−1 
σI1
σI2
0


. (3.16)

Moreover,

α1 = 1 − α2 − α3 − α4,

m =
1
γ

ΛTΛ +


1 −

1
γ


σ T
I Λ − α2λrσB1(K1)

−
1
2
α2(α2 − 1)σB1(K1)

2
− α3(σI1λr + σI2λI)

−
1
2
α3(α3 − 1)(σ 2

I1 + σ 2
I2) − α4(σS1λrn

+ σS2λI + σS3λS) −
1
2
α4(α4 − 1)(σ 2

S1 + σ 2
S2 + σ 2

S3)

− α2α3σB1(K1)σI1 − α2α4σB1(K1)σS1
− α3α4(σI1σS1 + σI2σS2).

With these parameters, we can express Y ∗(t) in terms of S0(t),
BK1(t), PK2(t) and Z(t). Because Z(t) is a fictitious asset, it does
not exist in the market. However, it can be observed by the claims
in the insurance market. In fact, we can arrive it by the following
closed-form:

Z(t) = Z(0) exp

−

λµ2
1θ

2

2γ 2µ2
t +

λµ1θ

γ
√

λµ2
W0(t)


. (3.17)

Since the initial value of Z(t) can be arbitrarily chosen, for simplic-
ity, we set Z(0) = 1. As we can approximate the claims by W0(t)
in the preceding research, we are also able to approximate Z(t) by
the claims and so Z(t) can be observable in the market. Moreover,
following Grandll (1991), we calculate Z(t) by

Z(t) = exp

−

λµ2
1θ

2

2γ 2µ2
t +

λµ2
1θ

γµ2
t +

µ1θ

γµ2

Nt
i=1

Yi


. (3.18)
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Table 1
Values of the parameters in our model.

Text interpretation Symbol Value

Risk aversion γ 2
Proportional reinsurance
Insurance intensity λ 3
Mean of the claim µ1 0.08
Second moment of the claim µ2 0.05
Safety loading of insurer η 0.05
Safety loading of reinsurer θ 0.1
Nominal interest rate
Initial value r0 0.05
Mean reversion a 0.1
Mean rate b 0.03
Volatility of nominal interest rate σrn 0.01
Real interest rate rr 0.045
Volatility of inflation index (σI1 , σI2 ) (0.08, 0.05)
Maturity of rolling zero coupon bond K1 10
Volatility of stock (σS1 , σS2 , σS3 ) (0.1, 0.08, 0.1)
Time horizon T 20
Initial money x0 1
Initial value of inflation index I(0) 1

4. Sensitivity analysis

In this section, some numerical examples are given to show
how the optimal strategies and optimal utility vary. In contrast to
the case of self-financial problem, neither the optimal investment
amounts nor the optimal proportions are deterministic. We can
only study the exact amounts of mean allocations or mean
proportions. First, we have the following proposition.

Proposition 4.1. The expectation of Y (t) is

E[Y ∗(t)] = Y0 exp

(r0 − b)

1 − exp(−at)
a

+ bt +
1
γ

ΛTΛt

+


1 −

1
γ


σ T
I Λt +

σ 2
rn

2a2


t +

2 exp(−at)
a

−
exp(−2at)

2a
−

3
2a


− σrn


1
γ

λrn +


1 −

1
γ


σI1


t
a

−
1
a2

+
e−at

a2


.

Proof. See Appendix.

Next, we analyze the sensitivity of the optimal investment and
reinsurance strategies. Unless otherwise stated, the basic data we
adopt for the model are presented in Table 1.

4.1. Sensitivity analysis of the optimal investment strategies

First, we reveal the evolution of the optimal reinsurance and
investment strategies in some cases and study the impact of the
parameters on them. Fig. 1 shows that we invest heavily in the
zero-coupon bond, growing greatly over time, i.e., the zero-coupon
bond curve goes fast from 0.55 at time 0 to 0.95 at time 20, and
however the TIPS has been relatively stable. Contrary to Fig. 1, Fig. 2
shows that in fact the proportion of zero-coupon bond diminishes
over time, while the proportion of stock increases slowly. The
reinsurance proportion increases slowly to about 0.18 at time 20,
which means that we are dividing less insurance risk as time goes
by. It is also illustrated in Fig. 1 that the risk of inflation is not so
important to us and we only need to short a few TIPS to hedge the
risk of inflation. Moreover, the proportions of cash, stock and TIPS
change slightly in the figure.

Fig. 3 shows the optimal mean allocation and reinsurance
strategies when γ = 4. In this case, the money invested in TIPS
Fig. 1. γ = 2.

Fig. 2. γ = 2.

Fig. 3. γ = 4.

is the largest, increasing fast from 0.41 to 0.89. In addition, the
proportion of TIPS grows greatly too. The mean allocation of cash
stays steady after increasing for a while via comparing with the
case when γ = 2. We also have little demands of cash and stock.
The difference between the above two cases is mainly due to the
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Fig. 4. γ = 4.

Fig. 5.

risk aversion γ . Higher γ makes the insurer more sensitive to the
risk in the market. So the insurer will buy more TIPS to avoid the
risk of inflation and givemore insurance risk to the reinsurer. Since
TIPS is correlated with the nominal interest rate, we can hedge a
part of the interest risk and so the mean allocation of zero coupon
bond indeeddecreaseswhenγ changes from2 to 4. The two figures
also describe the effect of γ on the optimal reinsurance (see Fig. 4).
Higher γ means higher aversion of the risk, so in this situation the
insurerwill expect to reduce greatly its insurance risk and thuswill
purchase more reinsurance business.

4.2. Sensitivity analysis of the optimal reinsurance strategy

The reinsurance policy is essential in our model and we are also
concerned with how the parameters affect the reinsurance strat-
egy. Fig. 5 shows the connection between the optimal reinsurance
policy and the expectation of one claim µ1. The reinsurance strat-
egy increases with µ1, causing more risk of insurance for the in-
surer. In fact, we see from the formula of wealth that, for a larger
µ1, to cover the risk we shall take from insurance, we can get more
income from the premium. Thus, we will take more insurance risk.

As the insurer controls its insurance risk by reinsurance, the op-
timal reinsurance strategywill also depend on the secondmoment
µ2 of the claim. In the market, µ2 can be interpreted as the risk
of insurance. The reinsurance strategy has a positive relationship
Fig. 6.

Fig. 7.

with µ2, which is shown in Fig. 6. In other words, if the risk of in-
surance becomes larger, the insurer should give more risk to the
reinsurer to gain the optimal wealth. Moreover, the safety loading
parameter θ is also an important factor that can affect the reinsur-
ance strategy. θ measures the cost to hedge the risk of insurance.
With higher θ , the insurer should cost more to hedge the risk of in-
surance, i.e., the insurerwill takemore risk of insurance by himself.
So the reinsurance strategy is positively correlated with the safety
loading of reinsurer θ , which is shown by Fig. 7. It can be also seen
from Figs. 8–10 that the mean reinsurance policy is an increasing
function of time t .

4.3. Sensitivity analysis of the optimal utility

This section presents how the parameters influence the opti-
mal utility. The closed-form of optimal utility is given by Proposi-
tion 3.4. We see from the expressions of optimal investment and
reinsurance strategies that the real interest rate rr is not corre-
latedwith them. So, in themarket with different real interest rates,
we will adopt the same optimal strategies. However, rr in fact af-
fects the optimal utility. Fig. 8 states that the optimal utility is pos-
itively linked with rr . When the real interest rate becomes bigger,
the real moneywe own is worthmore and thuswe can get a bigger
utility. Besides, if the initial nominal interest rate r0 increases, we
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Fig. 8.

Fig. 9.

Fig. 10.

will make more money by investment, and also get greater utility,
as shown in Fig. 9. The parameter λ means the intensity of claims,
so if λ increases, then we may have more claims in a fixed time
horizon, i.e., we will lose moremoney and the utility will decrease.
5. Conclusion

In this paper, we consider the optimal reinsurance and
investment problems under stochastic nominal interest rate and
stochastic inflation index. The nominal interest rate is modeled by
the Ornstein–Uhlenbeck process and the inflation index is derived
through the Fisher equation. The surplus process of the insurer is
given by the classical Lundberg model first and approximated by
a diffusion process. We can invest in the cash, zero coupon bonds,
TIPS and a stock to hedge the risk. Because the original problem
is not self-financing, we introduce an auxiliary self-financing
problem and solve it by the stochastic dynamic programming.
Finally, we get the optimal reinsurance and investment strategies
under maximizing CRRA utility in Section 3. The optimal strategies
consist of a strategy to gain the optimal utility, the optimal
investment to hedge the risk of inflation and an investment in
zero coupon bonds to counteract the effect of outcome of the
wealth. We also find that the real interest rate has no effect on
the optimal reinsurance and investment strategies. Moreover, we
present sensitivity analysis at the end of this paper to show the
economic behavior of the optimal strategies and optimal utility.
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Appendix

A.1. Proof of Proposition 3.4

The boundary condition for V (t, y, rn, I) is V (T , y, rn, I) =
1

1−γ
(
y
I )

1−γ . We guess that the term y in V (t, y, rn, I) can be
separated and V (t, y, rn, I) has the following form:

V (t, y, rn, I) =
1

1 − γ

y
I

1−γ

h(t, rn), and h(T , rn) = 1. (A.1)

Substituting (A.1) into (3.9), we see that the optimal strategy u∗(t)
is

u∗(t) =
y
γ

Σ−1σΛ +


1 −

1
γ


yΣ−1σσI

+
1
γ

hrn

h
yΣ−1σσr . (A.2)

Next, we substitute the last formula into (3.4), and then find that
h(t, rn) satisfies the following equation:

ht

h
+

hrn

h
[ab − arn + (γ − 1)σ T

r σI ] −
γ − 1
2γ

h2
rn

h2
σ T
r σr

−
hrn

h


γ − 1

γ
ΛTσr +

(1 − γ )2

γ
σ T
I σr


+

1
2
hrnrnh
h

σ T
r σr + (γ − 1)(−rr + σI1λr + σI2λI)

+
1
2
(γ − 1)(γ − 2)σ T

I σI − (γ − 1)

×


1
2γ

ΛTΛ +
(1 − γ )2

2γ
σ T
I σI +


1 −

1
γ


ΛTσI


= 0.
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The solution h(t, rn) must be the following form:

h(t, rn) = exp[q1(t)rn + q2(t)], (A.3)

and the q1(t) and q2(t) satisfy the boundary conditions q1(T ) =

q2(T ) = 0. Thus we derive the explicit forms of q1(t) and q2(t):

q1(t) = 0,

q2(t) =

 T

t
(γ − 1)


−rr(s) + σI1λr + σI2λI −

1
2γ

ΛTΛ

−


1 −

1
γ


ΛTσI −

1
2γ

σ T
I σI


ds.

Once we get the explicit form of h(t, rn), the explicit forms of
u∗(t) and V (t, y, rn, I) can be easily derived, thus the proposition
follows.

A.2. Proof of Proposition 4.1

In order to calculate E[Y ∗(t)], first we have the following
observations about rn(t):

Lemma A.1. The Ornstein–Uhlenbeck process satisfied by rn(t) is a
solvable equation and the explicit form of rn(t) is

rn(t) = (r0 − b) exp(−at) + b − σrn exp(−at)

×

 t

0
exp(as)dWrn(s). (A.4)

Furthermore, the integral of rn(t) has the following expression, t

0
rn(s)ds = (r0 − b)

1 − exp(−at)
a

+ bt

−

 t

0
σB1(t − s)dWrn(s). (A.5)

Hence, the
 t
0 rn(s)ds is a random variable with normal distribution,

i.e.,
 t
0 rn(s)ds ∼ N[(r0 − b) 1−exp(−at)

a + bt,
σ 2
rn
a2

[t +
2 exp(−at)

a −

exp(−2at)
2a −

3
2a ]].

Proof. We easily find that the solution of the Ornstein–Uhlenbeck
equation is the first formula. For the second formula, we have t

0
rn(s)d(s) =

 t

0


(r0 − b) exp(−as) + b

− σrn exp(−as)
 s

0
exp(au)dWrn(u)


ds

= (r0 − b)
1 − exp(−at)

a
+ bt

− σrn

 t

0
exp(−as)

 s

0
exp(au)dWrn(u)ds

= (r0 − b)
1 − exp(−at)

a
+ bt

− σrn

 t

0

1 − exp(−a(t − s))
a

dWrn(s)

= (r0 − b)
1 − exp(−at)

a
+ bt

−

 t

0
σB1(t − s)dWrn(s). (A.6)

And so the distribution of
 t
0 rn(s)ds follows.
Next, we derive the mean of Y ∗(t). In fact, Y ∗(t) has the
following expression:

Y ∗(t) = Y0 exp


1
γ

ΛTΛt +


1 −

1
γ


σ T
I Λt −

1
2


1
γ

ΛT

+


1 −

1
γ


σ T
I


1
γ

Λ +


1 −

1
γ


σI


t

+

 t

0
rn(s)ds +


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


.

So

E[Y ∗(t)] = Y0 exp

1
γ

ΛTΛt +


1 −

1
γ


σ T
I Λt

−
1
2


1
γ

ΛT
+


1 −

1
γ


σ T
I

 
1
γ

Λ +


1 −

1
γ


σI


t


· E exp
 t

0
rn(s)ds +


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


= Y0 exp


1
γ

−
1

2γ 2


ΛTΛt +


1 −

1
γ

2

ΛTΛt

−
1
2


1 −

1
γ

2

σ T
I σI t



· E exp
 t

0
rn(s)ds +


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


. (A.7)

We only need to calculate E

exp{

 t
0 rn(s)ds + [

1
γ
ΛT

+ (1 −

1
γ
)σ T

I ]W (t)}

.

Denote Qt =
 t
0 rn(s)ds + [

1
γ
ΛT

+ (1 −
1
γ
)σ T

I ]W (t). Then Qt

is a normally distributed random variable and exp
 t

0 rn(s)ds +

[
1
γ
ΛT

+ (1 −
1
γ
)σ T

I ]W (t)

has a lognormal distribution. It follows

E exp
 t

0
rn(s)ds +


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


= exp


E(Qt) +

1
2
Var(Qt)


, (A.8)

where

E{Qt} = E
 t

0
rn(s)ds


= (r0 − b)

1 − exp(−at)
a

+ bt,

Var{Qt} = Var
 t

0
rn(s)ds +


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


= Var

 t

0
rn(s)ds


+ Var


1
γ

ΛT

+


1 −

1
γ


σ T
I


W (t)


+ 2Cov

 t

0
rn(s)ds,

1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


.

Because

Var


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


=


1
γ

ΛT
+


1 −

1
γ


σ T
I

 
1
γ

Λ +


1 −

1
γ


σI


t,
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Var
 t

0
rn(s)ds


=

σ 2
rn

a2


t +

2 exp(−at)
a

−
exp(−2at)

2a
−

3
2a


and

Cov
 t

0
rn(s)ds,


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


= E

 t

0
rn(s)ds ·


1
γ

ΛT
+


1 −

1
γ


σ T
I


W (t)


=


1
γ

λrn +


1 −

1
γ


σI1


E
 t

0
rn(s)ds · Wrn(t)


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
1
γ
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
1 −

1
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
σI1


× E

 t

0
σB1(t − s)dWrn(s)

 t

0
dWrn(s)


= −


1
γ

λrn +


1 −

1
γ


σI1

  t

0
σB1(t − s)ds

= −σrn


1
γ

λrn +


1 −

1
γ


σI1

 
t
a

−
1
a2

+
e−at

a2


,

we obtain

E[Y ∗(t)] = Y0 exp

(r0 − b)

1 − exp(−at)
a

+ bt +
1
γ

ΛTΛt

+


1 −

1
γ


σ T
I Λt +

σ 2
rn

2a2


t +

2 exp(−at)
a

−
exp(−2at)

2a
−

3
2a


− σrn


1
γ

λrn +


1 −

1
γ


σI1


t
a

−
1
a2

+
e−at

a2


.
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