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Abstract—The number of seismological studies based on artificial neural networks has been increasing. How-
ever, neural networks with one hidden layer have almost reached the limit of their capabilities. In the last few
years, there has been a new boom in neuroinformatics associated with the development of third-generation
networks, deep neural networks. These networks operate with data at a higher level. Unlabeled data can be
used to pretrain the network, i.e., there is no need for an expert to determine in advance the phenomenon to
which these data correspond. Final training requires a small amount of labeled data. Deep networks have a
higher level of abstraction and produce fewer errors. The same network can be used to solve several tasks at
the same time, or it is easy to retrain it from one task to another. The paper discusses the possibility of apply-
ing deep networks in seismology. We have described what deep networks are, their advantages, how they are
trained, how to adapt them to the features of seismic data, and what prospects are opening up in connection

with their use.
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INTRODUCTION

Artificial neural networks (NNs) are widely used
for the processing of seismic data (Bose et al., 2008;
Gravirov et al., 2012; Lin et al., 2012; Kislov and Gra-
virov, 2017). It is possible to train the NN to solve such
complex tasks as pattern recognition, signal detection,
nonlinear modeling, classification, and regression
using a training sample in which the correct answer is
known for each example (supervised learning). How-
ever, the expansion of neural network technologies is
constrained by a large number of heuristic rules for
network design and training. The main thing is that, in
this case, it is never known whether the architecture of
the constructed network is optimal or whether it has
been trained in the best way, i.e., whether the global
minimum of the error function is found.

Although an NN with one hidden layer can
approximate any function with any accuracy, it can be
considered to be a lookup table for the training sample
with the more or less correct interpolation of interme-
diate values and extrapolation at the edges (Cybenko,
1989). The main limitations of the applicability of the
NN are also associated with the problems of overfit-
ting, stability-plasticity tradeoff, and the curse of
dimensionality (Friedman, 1994). Obviously, differ-
ent methods are developed to bypass these difficulties,
but they are mostly heuristic.

A trained NN works fast, but the learning process
requires an indefinite time. In addition, the prepara-
tion of the training sample is usually a time-consum-
ing process in itself (Gravirov and Kislov, 2015). Some
solutions for this problem have also been found. For
example, some NNs can cluster examples with an
unknown answer (unsupervised learning), which
reduces preparatory work (Kohler et al., 2010).

Preparation of the training sample (study, evalua-
tion, analysis, and preprocessing) is time-consuming,
but it largely determines the efficiency of the network.
It should be added that this is almost an art, and the
result depends heavily on the experience of the
researcher.

The choice of the model and the data representa-
tion method also depends on their type. Seismic
records differ significantly from other types of data.
Time windows, which are usually used for data analy-
sis, often contain a lot of noise and are of high dimen-
sionality, while the data is redundant (impulse signals
can be located anywhere in the window). The data can
be represented by either one or several channels. If we
compare two similar signals, it is difficult to determine
how close they are in the feature space. Because of
this, it is difficult to identify the number of shared
areas and, consequently, to apply heuristic rules for
calculating the required number of network neurons
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and the required number of learning examples. In
addition, seismic signal record sometimes occupy a
significant time interval in the data. Thus, we should
either use a very wide time window, or the model
should have a memory of past input vectors. Finally,
the data can reflect several seismic events simultane-
ously.

In order to overcome these difficulties, specific
methods are used to form a feature vector, as well as
different methods for reducing the dimensionality of
the data and the preliminary filtering of noise (Gravi-
rov et al., 2013; Gravirov and Kislov, 2014; Madureira
and Ruano, 2009). Nevertheless, there is a danger
that, as a result of this preprocessing, useful informa-
tion can be lost.

Tasks that have high-dimensional time series con-
taining noise at the input cannot be solved qualita-
tively by the traditional shallow methods. Such net-
works perform only a small number of nonlinear trans-
formations and cannot accurately simulate complex
data.

DEEP NEURAL NETWORKS

In recent years, the theory and practice of NNs has
received a new impulse caused by the successful appli-
cation of deep learning methods. Deep artificial neu-
ral networks (DNNs) have won numerous contests for
pattern recognition, classification, and regression.
Complex tasks are already being solved using DNNs.

DNN is a network with two or more hidden layers.
If the layers are smaller, these are small networks and
shallow learning methods. If there are more than ten
layers, this is so-called very deep learning. Currently,
very deep learning is rare. Additional layers make it
possible to extract data features from the lower layers,
i.e., to extract features from features, which creates the
potential to model complex data with fewer neurons
than in a shallow network (Schmidhuber, 2015).

Deep learning is a set of algorithms based on learn-
ing multiple levels of presentation of the data (abstrac-
tion levels). Training sample features are automatically
and simultaneously detected on a large number of lev-
els, which makes it possible to use these representa-
tions to create an output signal; the deeper the learn-
ing, the higher the degree of abstraction. Thus, DNNs
have a more compact representation (Le Roux and
Bengio, 2008). At the same time, remembering almost
all of the training examples does not lead to a loss of
generalizing ability, i.e., there is no overfitting
(Tat’yankin and Dyubko, 2015).

At least intuitively, it was clear earlier that DNNs
have some advantages. What prevented their develop-
ment? Training a network with several hidden layers
using the backpropagation method is associated with
the need to overcome the problem of vanishing gradi-
ents. The error signal (gradient) and, consequently,
the correction of the synaptic weights decreases expo-
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nentially with an increasing number of layers. This can
lead to a situation where the gradient becomes so small
that the training either slows down a lot or ceases to
work. Conversely, the gradient in the earlier layers is
sometimes too large. In this case, gradients can
explode. Thus, when using the backpropagation
method in the DNN training, the gradient is unstable
and, in the earlier layers, tends to either explode or
vanish.

This problem was solved using a greedy algorithm
for the layer-by-layer pretraining of the network using
unlabeled data, i.e., unsupervised learning. A
restricted Boltzmann machine (RBM) is most often
used as a greedy algorithm. The RBM network con-
sists of two layers (Fig. 1), i.e., the visible v (input)
layer and the hidden h layer. It is necessary to adjust
the model parameters so that the generated vector is as
close as possible to the input vector. The generated
vector is the vector obtained by probabilistic inference
from the hidden layer, the values of which are in turn
obtained by the probabilistic inference from the visible
layer, i.e., from the original vector.

RBM neurons are treated as stochastic. The output

signal of this neuron can be +1 or —1. The probability
is determined by the following sigmoid function

1
1+exp(—x/T)’

where T is the so-called neuron temperature, which
determines the inclination of the sigmoid.

By analogy with the Boltzmann distribution known
from statistical mechanics (also sometimes called
the Gibbs distribution), the joint probability (the
probability of a system state for given parameters) is
defined as

P(x) =

P(x,h) = %exp(—E(x,h)),

where Zis the normalizing function. The energy of the
system (e.g., for a binary-binary RBM) is

n m

E(v,h) ==Y av, =Y bh, -

i=l j=1 i=l j
h are the values of visjible and hidc{en neurons; a, b, W
are adjustable parameters, including the bias weights
(offsets) of the visible and hidden neurons and the
weight matrix; # is the number of visible neurons; and
m is the number of hidden neurons.

In order for the model to fully reflect the data set,
it is necessary to find such parameters (a, b, W) that
the probability of the visible layer (probability of the
image generated by the model)

v:h., where v,

Wyvilj,
=1

M M
P = 3 p(vh) =3 exp(~ E(v.h)

is maximal, where M is the number of all possible
states of the hidden layer. The rule for updating
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Hidden layer h

Visible layer v

Fig. 1. Restricted Boltzmann machine (RBM).

parameters is calculated based on the Contrastive
Divergence Learning Algorithm. For practical calcu-
lations, it is convenient to use the log-likelihood func-
tion InP (Hinton et al., 2006).

In addition to the RBM, the greedy algorithm can
be based on the autoencoder. The autoencoder (auto-
coder, autoassociator) is the NN with one hidden layer
(Fig. 2), trained by the backpropagation method to
reconstruct its own inputs (y = x). The input and out-
put layers have an equal number of neurons. The input
x is mapped to the hidden layer z (so-called latent vari-

ables) z = f;(Wx + a), where f is the element-wise
activation function (e.g., the sigmoid function). Then,
z is mapped to the output layery = f,(W'z + b). Thus,
the autoencoder also learns to minimize the recovery
error  (e.g., the root-mean-square error)

E(xy) =[x = y|" =[x = L(W(/i(Wx +a)) +b)].
The hidden layer should contain fewer neurons than
the input layer (dimensionality reduction). Sparse
activation is also used. In this case, the hidden layer is
larger than the input one. In the case of sparse activa-
tion, the number of active neurons is significantly
smaller than that of inactive neurons that produce a
low signal, e.g., for the hyperbolic tangent activation
function, the inactive neuron output should be close
to —1. Both the dimensionality reduction and sparse
activation help in the learning process to identify use-
ful structures in the input data.

By using the autoencoder or RBM in the greedy
algorithm, it is possible to model complex structures
in the data. The greedy pretraining algorithm consists
of the successive learning of hidden layers starting
from the input, as described below.

(1) Conduct unsupervised learning of the autoen-
coder or RBM on a large training sample.

(2) After learning, keep the responses of the hidden
network layer for the entire training sample.

(3) Train another autoencoder or RBM taking
these responses (step 2) as a new training sample.

(4) Repeat steps 2, 3 the required number of times.

(5) Assemble the DNN as shown in Fig. 3. Hidden
layers of the autoencoder or RBM are simply used to
construct an DNN.

(6) Fine-tune the obtained deep architecture. The
backpropagation method is most commonly used for a
small number of labeled data (supervised learning).
During the fine-tuning, only one or two of the last lay-
ers of the network are often final trained.

Several other algorithms can be used.

The fact that the greedy layer-by-layer unsuper-
vised learning algorithm can be applied to the DNN
optimization has been confirmed experimentally. The
weights of the hidden layers neurons are usually in a
state that corresponds to the global minimum of the
error function and are fine-tuned very quickly. In this
case, a large number of parameters are revealed, i.e.,
the range of tasks that the DNN can solve becomes
wider.

The autoencoder minimizes the error according to
some performance functional by considering noise to
be information, while the RBM is a generative model
(as opposed to discriminative), which learns to gener-
ate the representation with the greatest probability.
For simple tasks, e.g., for classification by a small
number of classes, a discriminative model is sufficient.
This model will simulate a training sample, even if the
data is noisy, while the generative model will assign a
low probability to spikes. The generative model is
more robust to noise and more capable of generaliza-
tion.

In addition to the presented algorithm, other DNN
training and coding methods are being developed in
order to reduce the pretraining time (Schmidhuber,
2015).
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Fig. 2. Autoencoder.
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Fig. 3. Deep neural networks with weights pretrained by (a) RBM and (b) autoencoder.

Deep networks achieve a high degree of generaliza-
tion, i.e., they try to guess the most probable result.
When a new layer is added to the model, the lower
bound of the log likelihood (InP) is lifted (Hinton,
2007). Unfortunately, it is unknown how much this
improves the result. Therefore, the number of hidden
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layers is determined by trial and error or using some
heuristic rules.

The more layers the NN has, the greater the com-
putational costs it requires for training. Just recently, a
supercomputer was required to train the NN. If the
input vector size, model parameters, and the training
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Fig. 4. Recurrent NN. Three time steps are shown. 7 is time, in lengths of the time window. Neurons of the first hidden layer are
connected to the input of the current time window and the neurons of the first hidden layer from the previous time window.

sample are large, a graphics processor (GPU) can be
used to reduce learning time. It can carry out matrix
and vector calculations and has a high throughput,
which speeds up the training significantly (by several
orders of magnitude). Before choosing the speedy
learning algorithm, it makes sense to consider the pos-
sibility of the training hardware acceleration.

FEATURES OF SEISMIC DATA ANALYSIS

The DNN unsupervised learning is successfully
used in the study of sets of static data, e.g., images.
When analyzing seismic data, their temporal nature
should be taken into account. The need to study long
signals with a specific sequence of features (phases and
coda waves of earthquake) requires the use of a huge
input vector, which can be impractical. In this case, it
is necessary to use a model that remembers its previ-
ous states. In different models, memory is imple-
mented differently. A typical example is a recurrent
network.

In the recurrent NN, states of neurons in the cur-
rent time window depend on the input vector and on
the state of the neurons in the previous window (see,

e.g., Fig. 4). This can create an effect of a wave with a
potentially infinite period (Hochreiter et al., 2001;
Mikolov et al., 2010). These networks are usually
trained iteratively using a procedure known as the
backpropagation-through-time algorithm.

Another example is a convolutional neural network
(CNN). They are usually used for image processing.
Nevertheless, CNNs can be used to analyze seismic
data.

Usually, CNNs consist of three types of layers. In
the convolutional layer, each neuron of the hidden
layer is not connected to all neurons of the previous
layer, but receives signals from only a few neurons
located in a small neighborhood (Fig. 5). Neurons use
the same sets of weights to communicate with the pre-
vious layer and are combined into feature maps. While
processing time series data, the network performs con-
volution on overlapping windows. This makes it possi-
ble to detect signal features regardless of their position
in the input vector.

Another type is pooling layers, which are also
called subsampling layers. One neuron of this layer
replaces several neurons of the previous layer in one
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Fig. 5. Two-layer convolutional neural network.

way or another. The goal of the pooling is to achieve
the invariance of small local distortions and reduce the
dimensionality of the feature space. Thus, adding a
new layer increases the memory length.

The third type is a fully connected layer, which,
based on the features identified in the previous layers,
performs proper classification. The outputs of all neu-
rons of the previous layer are fed to the input of each of
the neurons of the fully connected layer.

Layers of different types can alternate in any order
to handle large input vectors in which there is a tem-
poral relationship between the individual inputs. The
output layer is typically fully connected. A number of
different DNN architectures, as well as different algo-
rithms for pretraining and coding their parameters,
can be used to process seismic data. Obviously, there is
a need for the further development of deep learning
algorithms, which can take into account the specifics
of temporal relationships in the data (Wiskott and
Sejnowski, 2002).

MULTITASK LEARNING

Seismic record analysis can be carried out for dif-
ferent purposes and tasks. For example, at the initial
stage, any seismologist learns to work with seismic
data and read seismograms. Something similar hap-
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pens in the case of unsupervised DNN learning. The
ability to adapt the model to several tasks (multitask
learning) is very important. Deep architecture reveals
intermediate representations that can be used to solve
different tasks. Good representations can be applied to
a variety of tasks, since each requires a subset of data
features. The trunk of the network tree (Fig. 6) learns
to work with a certain type of data, while the branches
are designed to perform certain tasks. DNN transfer
learning can be carried out easily and quickly while
maintaining the overall configuration of the trunk.

If an object, process, or phenomenon that interests
us can be investigated by different methods involving
different types of data, it would be highly desirable to
combine these data in a single analysis system. For
example, seismic, gravimetric, electrometric, magne-
tometric, radiometric, and other data are used in geo-
physical methods for the exploration of hydrocarbon
deposits. Multitask learning with different input
parameters creates a model that is fully capable of
investigating a process, object, or phenomenon and
can solve different problems that use all of the avail-
able information (Fig. 7). The deep architecture can
be used both as a discriminative model for analyzing
the input data (using a bottom-up processing) and as a
generative model for producing new data samples
(using a top-down processing).
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Fig. 6. Multitask learning.

RESULTS AND DISCUSSION

Deep learning makes it possible to identify higher
levels of abstraction, which improves the network’s
generalization ability. The following advantages of
DNNs can be distinguished:

unlabeled data can be used to pretrain the DNN
(unsupervised learning);

learning how to solve a particular problem requires
a small amount of labeled data (supervised learning);

Task 1

Task 2

higher learning speed and fewer errors occur during
operation;

they are simple to retrain to solve other Tasks.

Nevertheless, deep learning methods often look
like a black box, and most of the rules for building an
DNN are empirical rather than theoretical. Two main
questions related to the development and training of
DNN are (1) how many neurons are needed on each
hidden layer and (2) how many hidden layers are nec-
essary and sufficient for the successful operation.
Until now, these problems have been solved by trial
and error. On the other hand, there are already some
algorithms and methods that can be used. On the
Internet, there is software (including free software)
that can be used to build and train DNNs (Perervenko,
2014).

The process of extracting features of the source
data has already been well demonstrated for static
problems. The use of the DNN for tasks focused on
the time series analysis requires some caution. Tested
models (see above) are well suited for the processing of
raw (unprocessed) seismic data (or data that has been
slightly preprocessed). In general, in the case of the
DNN, less attention should be paid to the problem of
preliminary data processing and it is necessary to con-
centrate more on identifying their features (Langkvist
etal., 2014).

As soon as the size of the training sample exceeds a
certain limit, the DNN qualitatively surpasses other
neural network architectures. In particular, a lot of
data for DNN pretraining is required if it is supposed
to be retrained from one task to another. For unsuper-
vised learning, it will be correct to use not thousands,
but millions or even billions of examples. Moreover,

Task 3

C Output ) C Output )

C Input layer ) C

Input layer ) C

Input layer )

Fig. 7. Multitask learning with different input parameters.
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the size of the training sample is often more important
than the network architecture. In this case, it is impos-
sible to advance from the simple to the complex. For
example, pretraining on 5000 versus 50000 examples
can be equally inefficient. The point at which a quali-
tative jump will occur is unknown in advance.

This imposes some limitations on the range of tasks
that can be solved using the DNN. For example, stud-
ies of large earthquakes should be conducted with cau-
tion, since there are relatively few records of these
events. On the other hand, deep learning becomes one
of the most powerful methods, and DNNs can
become a very convenient tool for investigating low-
magnitude events and noise, as well as for mineral
exploration.

This interesting apparatus for data analysis has not
yet received significant attention from geophysicists.
In (Holdaway, 2015), it is proposed to use an DNN
with five hidden layers to remove noise from seismic
data. We have not seen any other works yet.

CONCLUSIONS

Deep artifical neural networks offer a better selec-
tion of features in the time series data compared to
shallow NNs and take into account more features.
Obviously, not all existing DNN architectures and
their training options are presented in the paper. For
example, a promising direction is the development of
models that change their architecture in the learning
process.

Practical research work is now far ahead of mathe-
maticians’ ability to prove anything about the DNN.
There are many versions of deep architecture and, in
most cases, there is no mathematical proof why they
are good or better than others. Deep training is a rap-
idly developing field, and new architectures, versions,
and algorithms appear almost daily.

The DNN formula for success is as follows:

(1) Pretraining algorithms make it possible to find
a good starting point for fine-tuning conducted by the
backpropagation method from which the gradient
descent method makes it possible to achieve a good
local minimum (and most often a global minimum).

(2) Processing huge data sets makes the training
procedure reliable, but the DNN becomes less subject
to overfitting. .

(3) GPU makes it possible to build very deep net-
works. When a powerful GPU is used, the DNN can
contain tens of millions of neurons.

The overall result is that the DNN is a promising
tool for analyzing seismic data.
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