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In this paper, a supply chain is represented as a two-input, three-stage queuing network.
An input order to the supply chain is represented by two stochastic variables, one for
the occurrence time and the other for the quantity of items to be delivered in each order.
The objective of this paper is to compute the minimum response time for the delivery of
items to the final destination along the three stages of the network. The average number
of items that can be delivered with this minimum response time constitute the optimum
capacity of the queuing network. After getting serviced by the last node (a queue and its
server) in each stage of the queuing network, a decision is made to route the items to
the appropriate node in the next stage which can produce the least response time.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Overview

Queuing models have been used to investigate supply chain problems for many years. In the 1940s, queuing models were
used to solve a variety of machine interference problems, i.e., how many repair persons are needed to be assigned to properly
maintain a system, or how many telephone operators are required to handle traffic calls. Queuing models are used to analyze
tradeoffs concerning the number of servers versus the waiting time of the customers. Clearly, if the number of servers is high,
the cost of the servers is high, but the waiting time (cost of customer idle time) is low.

Queuing models calculate the optimum number of customer/order service points (servers) to minimize cost for business.
It considers the average arrival rate of orders, the average customer service rate, the cost to the business of order waiting
time (customer dissatisfaction), and the cost to operate customer service points. Queuing models are used to obtain apriori
information not only about important performance measures like queue lengths, response times, and waiting times, but also
other performance measures like: (a) probability that any delay will occur, (b) probability that the total delay is greater than
a predetermined value, (c) probability that all service facilities will be idle, (d) expected idle time of the total facility, and (e)
probability of turnaways due to insufficient waiting accommodation. Some kind of queuing problems involve determining
the appropriate number of service facilities to cover expected demand, as well as determining the efficiency of servers
and the number of servers of different types at the service facilities [1]. Suri suggested [2] the use of queuing theory to pro-
vide quick solutions to supply chain problems.

Current generation enterprizes such as global supply chains, virtual enterprizes and e-businesses are driving research in
the area of enterprize modeling framework suitable for a distributed environment. Supply Chain (SC) is a concept which can
. All rights reserved.
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be considered analogous to a pipeline of physical and informational flows between suppliers and customers. From an oper-
ational point of view, this pipeline works like a process of activities, and these activities are distributed. So, the term ‘‘chain”
could be replaced by the term ‘‘network” [3]. Each company is at the center of a network of suppliers and customers.

The supply chain could be defined as a network of connected and interdependent organizations mutually and co-operatively
working together to control, manage, and improve the flow of materials and information from suppliers to end users [4]. Since the
supply chain management (SCM) is a market-driven concept, it is necessary to adopt the customer’s point of view. For this
reason, the concept ‘‘process” has been introduced in logistics for strategic reasons [5]. The definitions for ‘‘process” and
‘‘activity” have been specified in [6]. The activities represent the system functionality. They can be scheduled, and they need
time and resources. The term ‘‘process” represents the global behavior of the industrial system. It is a logical sequence of
activities to realize a predefined objective. A process can be planned, but rarely scheduled. The objective is generally ex-
pressed in terms of delay, quantity and quality. Among these attributes, the delay is generally the most critical one. In this
paper, we refer to the central process of any industrial system as ‘‘treatment of orders”. It reflects the fact when considering
the performance of a SCM system that the inputs are the ‘‘orders” and the outputs are the ‘‘goods”.

A process is composed of activities that use resources which are network-configured. There are other processes in indus-
trial systems, such as supply or maintenance, that can be considered to be collaborative processes of the main process. Fig. 1
illustrates how the logical concept is mapped to the ‘‘physical system”. In this figure, successive activities represent stages
(or steps) in a given process. Each of them is realized in a site with specific resources. In the general case, from a given activ-
ity output, there are many possible connections to the next activity. If sites are geographically scattered (sites of the same
company, subcontractors), a transport activity must be inserted between two transformation activities. In manufacturing
systems, the production nomenclature means ‘‘assembling of components” and ‘‘convergence of physical flows” to a final
point.

When the treatment of orders is made, their evaluation consists in a comparison between the objective and the result. The
global challenge of the process approach is: (a) to initialize correctly, each process objective with a realistic delay value. The
delay objective to be assigned represents the expected value of the delay (or lead-time) plus a security margin. It can be de-
rived from the statistics (average response time) or from the actual state of the system in terms of waiting times and service
times at the nodes. In this case, it is necessary to convert all waiting activities and services to be executed in a global
throughput time, and to choose the route that minimizes the lead-time. The same evaluation results may also be useful
for (b) a negotiation with a potential client during an e-business or an e-commerce transaction. For the company, it repre-
sents the lead-time promised for a given order.

The main challenge of the SCM system is to improve the performance while reducing the costs (generally in terms of
trade-offs). The challenge addressed in this paper is to represent a physical network of resources with a queuing model. Each
resource is modeled as a server and waiting activities are in a queue. More precisely, an activity is a logical object which
contains attributes such as: reference process (order number), quantity to produce, and objective delay. Throughout this pa-
per, we assume that a process will correspond to each order. By the virtualisation induced using process approach, the object
process tracks the physical flow. Among classical performance measures obtained by a queuing representation (average
queue length, average response time, etc.), this will lead to estimating a minimum lead-time. The computing challenge is
to determine the best strategy to setup a process in terms of delay measures. This efficiency is measurable with the number
of processes which fulfil their objective.
A1 A2 A3 A4

Physical
start

Final
delivery

Logical form

Physical flows

Order
inputs

Process closed

A1, A2, A3, A4 are Activities

Fig. 1. Physical flow diagram in the supply chain.



2076 V. Bhaskar, P. Lallement / Applied Mathematical Modelling 34 (2010) 2074–2088
All processes are supervised and need to be controlled. The control is generally performance-centric, which means that
during the life of a process cycle, a drift situation can be detected between the result and the objective, and corrections can
be applied. Since processes are in competition to access resources, and since resources are capacity-limited, the drift situa-
tion can be due to breakdown problem of a resource, set-up times, and activities (inventory, transport) of interfaces. One of
the correction variables is the possibility to re-route the physical flow from one node to an alternative resource for the next
activity (if several ways are possible). This local challenge is similar to point (a), except that the route includes the break-
point. This is a routing problem and is similar to those that have been addressed in the field of telecommunication networks.
1.2. Organization of the paper

The objective of this paper is to compute the minimum response time for the delivery of an item to the final destination
along the three stages of the queuing network. The average number of items that can be delivered with this response time
constitute the capacity of the network. Section 2 describes the supply chain (textile manufacturing system) and discusses the
literature review in detail. Section 3 presents a queuing network approach to model a textile manufacturing system. Closed-
form expressions are derived for utilizations for each node (queue and server) in the network. Section 4 derives, plots and
discusses performance measures like average response times, average queue lengths, and average waiting times of individ-
ual nodes and different paths in the network. This section also discusses the average queue lengths, average response times,
and equivalent service rate of the equivalent single queue, single server network. Section 5 describes the numerical results.
Finally, Section 6 presents the conclusions.
2. Supply chain description and literature review

2.1. Textile manufacturing system

The supply chain constitutes some basic activities. They are (i) Knitting, (ii) Making, and (iii) Distribution (central ware-
housing). The Warehouse corresponds to an European Warehouse. For performance evaluation, the supply chain is modeled
by a process with these three activities (three stages). In fact, these activities may be supported by operational resources
physically distributed in many sites and interlinked by transportation. Consider Fig. 2.

� Knitting locations are in L1 (France) and L2 (Morocco).
� Making locations are in L1 and L2, L3 (Morocco), and L4 (Tunisia). The warehouse location is in L1.

There are routing choices for the physical flows at two steps of the processes. They are at:

� Knitting: From S0 to (L1 or L2).
� Making: From L1 to (L1 or L3), (or) from L2 to (L2 or L4).

Each resource is modeled as a queue where batches are waiting to be processed (see Fig. 2). The routing decision may be
performed considering the estimated throughput delay from S0 to S1. This delay includes the manufacturing delay (depend-
ing on the batch quantities to be processed) and the total waiting times in all the downstream queues. Comparing with the
routing problem in telecommunication networks (IP networks), the problem is not a hop by hop problem, but we consider
the whole route to make the decision.

We can easily separate the global problem to the example given in this paper by providing this example as an illustration
of a more general issue. It is interesting to focus on processes which use resources that are network-configured. In other
words, those orders which follow a particular distribution on the arrival rate will be configured to the network. We can thus
propose an interest to queuing modeling by considering the arrival and departure processes modeled using a particular
distribution.

For each output of L1 and L2 in Stage I, there are two possible connections (two routes), and this example is like any
assembling system. The output of L1 of Stage I is connected to nodes L1 and L3 of Stage II, whereas the output of L2 of Stage
I is connected to nodes L2 and L4 of Stage II. Finally, the departures from servers, A11 and A13 arrive at S1, and the departures
from servers A12 and A14 arrive at S1. Thus, the nodes in different paths are not cross-linked. It is important to deal with this
special case to accommodate the case of ‘‘urgent orders” and ‘‘regular orders”. Urgent orders correspond to orders which re-
quire quick processing and regular orders correspond to orders which require normal processing. The orders can be routed
appropriately to L1 and L2 of Stage I, and subsequently to L1, L2, L3, and L4 of Stage II for processing.

In order to make a comparison of this special industrial system to a more generic supply chain, the service times and or-
der arrivals can have a different distribution than that considered in this paper. For example, the service time could be mod-
eled as a Lognormal distribution proposed to model supplier delay. A G/M/1 or G/G/1 queue could be used to model a generic
supply chain. The global challenge is to be able to estimate an ‘‘apriori” performance measure which is necessary to propose
a suitable Quality of Service (QoS) (for eg., minimum response time) to the client.
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Fig. 1: Queuing formulation of the network of processes
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The various kinds of difficulties in modeling the SCM system using queues other than M/M/1 queue are described as
follows:

(1) M/M/1 queues have Poisson arrival process and exponentially distributed service times. State description for M/M/1
queuing model is simple as one needs just a number in the system denoting the system state. This is possible because
the exponential service-time distribution is memoryless. For M/G/1 queues, where the arrival process is Poisson, but
service times have a general (arbitrary) distribution, the general state description would require specifications on both
the number in the system and the amount of service already provided to the customer currently being served.

(2) The G/M/1 queue is the dual of M/G/1 queue, where the arrival process is a general one, but the service times are expo-
nentially distributed. The state descriptions are found under equilibrium conditions at the time instants just before job
arrivals to the system. The state distributions are also valid for the departure instants (just after a job leaves the sys-
tem) as Kleinrock’s principle is applicable to this system. The state distributions are not valid at arbitrary time instants
(or ergodic, time-average results), since Poisson Arrival See Time Averages (PASTA) will not be applicable to the sys-
tem (i.e., the arrival process is not Poisson).

(3) For M=Ek=1 or Ek=Ek=1 queues, where Ek is the Erlang distribution with k phases, the probability of packet loss or the
probability of packet delay can be determined according to various assumptions made to find if the blocked orders are
aborted (Erlang B) or blocked orders are queued until served (Erlang C) (Erlang B and Erlang C formulas are in everyday
use for traffic modeling or transportation applications).

(4) For G/G/1 and G/G/m queues (m is the number of servers), only when the offered traffic is high (i.e., utilization, q, gets
close to 1), the distribution of the waiting time will be approximately exponentially distributed. The waiting times
become very large as q � 1. For other values of offered traffic, the distribution of the waiting time has a general dis-
tribution, thus making state descriptions not valid at arbitrary time instants. Thus, it is reasonable to use M/M/1
queues to offer a simple and feasible solution to the given SCM problem.

The importance of minimum response time estimation in the supply chain network is given below:
In a distributed hard real-time system, such as the supply chain problem considered in this paper, communication be-

tween tasks on different processors must occur in bounded time. The inevitable communication delay is composed of both
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the delay in transmitting a message on the communication media, and also the delay in delivering the data to the destination
task. A simple delivery approach is considered in this paper, the arrival of an ‘‘order” generates an interrupt called ‘‘on-
demand” approach. As soon as the order arrives at the source node, it is routed to all intermediate nodes leading to the des-
tination node. The objective is to find the path between the source node and the destination node which provides the min-
imum response time.

The shortest path problem in the dynamic supply chain network considered in this paper is a problem of sending an order
from an origin node to a destination node with the least delay over a network that has no perfect, permanent fixed structure,
and which is subjected to varying volumes of traffic. The optimal path connecting the origin and destination nodes through
several intermediate nodes is called the shortest path since it produces the least response time. Once a shortest path is iden-
tified, care should be taken to see that all incoming orders are not dumped onto this path, thereby causing congestion on the
shortest path route. So, it is advisable to increase the service rate or reduce the service time of servers on all non-shortest
path routes, thereby redistributing the incoming orders to balance the load (offered traffic).

2.2. Literature review

There has been quite a number of research papers published in the area of modeling e-businesses, enterprize systems,
assembly and manufacturing systems using queuing networks.

The contributions and applications of queuing theory in the field of discrete part manufacturing is discussed in [7]. Pro-
vided are concise, descriptive summaries, rather than detailed mathematical models of the various queuing theory results in
the manufacturing context. In [8], a discrete-time Markov chain is developed to model the routing of new emails through a
contact center. An open queuing network is used to model the email customer contact center. The fundamental matrix of the
absorbing Markov chain developed in [8], is used to obtain the average number of visits an email makes to a particular node
before getting resolved. In [9], the joint equilibrium distribution of queue sizes in a network of queues containing N service
centers and R classes of customers is derived. Also, the equilibrium state probabilities for both open and closed queuing net-
works are derived.

Queuing network model is a very useful tool to analyze the performance of a system from an abstract model. In [10], a
transformation technique is proposed from Unified Modeling Language (UML) to queuing network model. This approach
avoids the need for a prototype implementation since we can determine the overall performance from the architectural de-
sign description. A man–machine system is modeled and analyzed in [11] using graphical simulation software package. The
validated model is used for evaluating alternate routings to find out the optimum route. The goal of research in [12] is to
develop a simulation model for overhead monorail conveyor systems and statistical methods for the analysis and multi-
objective optimization of the manufacturing process. Such systems provide connectivity to large area and buffering to
streamline the material flow between machinery. In [13], the authors analyze the memory interference caused by several
processors simultaneously using several memory modules. The assumptions and results of the simple model are tested
against some measurements of program behavior and simulations of systems using memory references from real programs.
In [14], the problem of assigning the best service rate to minimize the expected delay under a cost constraint is considered.
Also studied are systems with several types of customers, general service-time distributions, stochastic or deterministic
routing, and a variety of service regimes.

A model of a closed queuing network within which customer routing between queues depends on the state of the net-
work, is presented in [15]. The routing functions allowed may be rational functions of the queue lengths of various down-
stream queues which reside within special subnetworks called p-subnetworks. In [16], the focus is on characterizing the
average end-to-end delay and maximum achievable per node throughput in random access multihop wireless adhoc net-
works with stationary nodes. The random access multihop wireless networks can be modeled as a G/G/1 queuing network
model, and uses the diffusion approximation to evaluate closed-form expressions for the average end-to-end delay. For
closed product-form queuing networks with n customers, the Sevcik–Mitrani arrival theorem in [17] states that an arriving
customer would see the network in equilibrium with one less customer. Muppala et al. use the stochastic reward nets (SRN)
for the compact specification, automatic generation and solution of large Markov chains in [18]. This allows them to solve
large and complex models. Closed-form solutions have been derived for the response time distributions through a particular
path in open product-form queuing networks in [19]. A multi-layered queuing network that models a client–server system
where clients and servers communicate via synchronous and asynchronous messages is discussed in [20]. The queuing net-
work is approximately analyzed using a decomposition algorithm.

In [21], the authors compute approximations for response time distributions for queuing networks with Poisson or phase-
type arrival processes and general service-time distributions. In [22], the performance evaluation of an assembly system
with components or sub-assemblies feeding into a kitting and assembly stage framework is studied. In that example, the
quantity of the orders were considered as a constant. This could be the case in some supply chains when orders are generated
by important applicants (for eg., supermarkets). In [23], Whitt described the Queuing Network Analyzer (QNA), a software
package developed at Bell Laboratories to calculate approximate congestion measures for a network of queues. Congestion
measures for the network as a whole are obtained by assuming as an approximation that the nodes are stochastically inde-
pendent given the approximate flow parameters.

A lot of focus on queuing models of manufacturing systems, and many approximations for evaluating the performance of
queuing networks are carried out in [24–28]. When the clients are heterogeneous goods (simple customers, shops, stores,



V. Bhaskar, P. Lallement / Applied Mathematical Modelling 34 (2010) 2074–2088 2079
etc.), the quantity of orders may vary largely and they have to be modeled as a stochastic variable. Without any additional
information about the economical context, the best way is to assume a uniform distribution for the quantity of orders, thus
characterizing the quantity of orders to lie between a minimum and a maximum value. In this case, any input (order) to the
queuing system has to be represented by two stochastic variables, one for the time of occurrence, and one for the quantity to
deliver. This constitutes the main improvement of this paper over [29].
3. Queuing network description

We shall consider one type of product (tee-shirt) in the supply chain given in Fig. 2. Orders arrive in one portal, but pro-
cesses can start in two places. There are three stages (i.e., three activities in any process): Knitting, Making and Delivery,
which can be realized in four sites. Because of the network structure, different routes are possible depending on the traffic,
which implies transport activity is necessary. All physical flows converge to a central warehouse. The analysis of the two-
input, three-stage queuing network is made as follows:

There are 2-inputs in the queuing network considered in Fig. 2. The two-input queuing network receives orders from cli-
ents, and the orders are waiting to be served. The quantity of items to be delivered in each order is assumed to be uniformly
distributed. The arrival rates at the 2-inputs are k1 and k2, respectively. The arrival rate at source ðS0Þ is kð0Þ. The probability of
arrivals at Q4 and Q5 are q1 and q2, respectively. It is clear that q1 þ q2 ¼ 1. Let k1 ¼ kð0Þq1 be the arrival rate of the jobs at Q 4,
and let k2 ¼ kð0Þq2 be the arrival rate at Q 5. Let the service rates of servers, A4 and A5 be l1 and l01, respectively. After getting
serviced by server A4, the jobs arrive at the queues Q 8 and Q 15 with probabilities p1 and p2, respectively, where p1 þ p2 ¼ 1.
So, the arrival rate at Q 8 is k1p1 and the arrival rate at Q 15 is k1p2. After getting serviced by server A8, the jobs arrive at queue
Q 11 with arrival rate k1p1. The service rates of servers A8 and A11 are l2 and l5, respectively.

Now, queues Q 15 and Q7 are in serial connection. So, the jobs which are serviced by server A15 are again serviced by ser-
ver A7, after waiting at Q7. The service rates of servers A15 and A7 are l3 and l4, respectively. The arrival rate at Q7 is k1p2.
After getting serviced by server A7, the jobs arrive at queue Q13 with the same arrival rate, k1p2, and get serviced by server
A13. The service rate of server A13 is l6. After getting serviced by server A5, the jobs arrive at the queues Q 17 and Q 18 with
probabilities p3 and p4, respectively, where p3 þ p4 ¼ 1. So, the arrival rate at Q17 is k2p3, and the arrival rate at Q18 is k2p4.

Now, queues Q 17 and Q9 are in serial connection. So, the jobs which are serviced by server A17 are again serviced by ser-
ver A9, after waiting at Q9. The service rates of servers A17 and A9 are l02 and l03, respectively. The arrival rate at Q9 is k2p3.
After getting serviced by server A9, the jobs arrive at queue Q 12 with the same arrival rate, k2p3, and get serviced by server
A12, whose service rate is l06.

Similarly, queues Q 18 and Q 10 are in serial connection. So, the jobs which are serviced by server A18, are again serviced by
server A10, after waiting at Q 10. The service rates of servers A18 and A10 are l04 and l05, respectively. The arrival rate at Q 10 is
k2p4. After getting serviced by server A10, the jobs arrive at queue Q 14 with the same arrival rate, k2p4, and get serviced by
server A14, whose service rate is l07. Finally, jobs after service completion at servers, A11, A12, A13 and A14, arrive at the sink,
S1, with departure rate kð0Þ. From Fig. 2, we have:
k1 ¼ kð0Þq1; k2 ¼ kð0Þq2;

k1 þ k2 ¼ kð0Þ; and p1 þ p2 ¼ p3 þ p4 ¼ q1 þ q2 ¼ 1:
For satisfactory management and control requirements, it can be assumed that l1 ¼ l01 and l2 ¼ l03 ¼ l4 ¼ l05. Fig. 3 rep-
resents the overall system in terms of (i) Production and (ii) Delivery.

A node is defined by a queue and its corresponding server.

� The nodes in Stage I are ðQ 4;A4Þ, ðQ 5;A5Þ.
� The nodes in Stage II are ðQ 8;A8Þ, ðQ 17;A17Þ, ðQ9;A9Þ, ðQ15;A15Þ, ðQ 7;A7Þ, ðQ 18;A18Þ, ðQ 10;A10Þ.
� The nodes in Stage III are ðQ 11;A11Þ, ðQ12;A12Þ, ðQ13;A13Þ, ðQ 14;A14Þ.

Each activity belongs to a specific process. Each activity is an object which describes a specific task that the resource has
to do. Here, Ai’s are the differential activities carried out in this supply chain. The activities, A4 and A5 are called ‘‘Knitting”,
OVERALL SYSTEM

PRODUCTION
(a) Knitting
(b) Making

DELIVERY
(c)

GLOBAL SERVICE

Fig. 3. Overall system.
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activities A8, A9, A7 and A10 are called ‘‘Making”, and activities A17, A15, A18, A11, A12, A13 and A14 are called ‘‘Transport-
ing”. Let the service rates of A4, A8, A15, A7, A11, A13 be l1, l2, l3, l4, l5 and l6, respectively.

From the client’s point of view, a supply chain is equivalent to a queue. The queue is receiving orders. These orders are
waiting to be served. The service is a production center and the results are products, items, etc.

Orders are characterized by (i) Occurrence, (ii) Quantity, and (iii) Delay.

(i) Occurrence (k): This could be stochastic in nature (Poissonian) or deterministic.
(ii) Quantity: This is the quantity of items to be delivered. They are stochastic in nature (uniform distribution).

(iii) Delay: This is the main QoS indicator.

Since the occurrence (k) is stochastic in nature with Poissonian distribution, and the quantity of jobs to be processed (for
each occurrence of k) is uniformly distributed, we have an equivalent random variable Z that is a function of both X and Y,
where

X , random variable denoting the occurrence time of an order,
Y , random variable denoting the number of items in each order, and
Z , XY denotes the occurrence time along with the number of items in each order.

The cumulative distribution function of Z is [30]:
FZðzÞ ¼ PðZ 6 zÞ ¼
Z

Az

Z
fXYðx; yÞdxdy; ð1Þ
where Az is a subset of R2 given by Az ¼ fðx; yÞjUðx; yÞ 6 zg. Since fXðxÞ and fY ðyÞ are independent (we assume that with each
occurrence, the number of items are random), we have fXYðx; yÞ ¼ fXðxÞfYðyÞ. Hence,
FZðzÞ ¼
Z

Az

Z
fXðxÞfY ðyÞdxdy: ð2Þ
Let X be exponentially distributed random variable, and Y be a random variable, uniformly distributed between a and b
(b > a). So,
f XðxÞ ¼
ke�kx; x P 0
0; x < 0

�
;

and f YðyÞ ¼
1

b�a ; a < y < b

0; otherwise

(
:

The region DDz such that z < xy < zþ dz is the portion of the curve lying between the outer boundaries of the two rect-
angular hyperbolas, y ¼ z

x and y ¼ zþdz
x . The coordinates of a point in this region are z

x ; x and j dz
dy j ¼ jxj. So, j dy

dz j ¼ 1
jxj. The area of a

differential equals 1
jxjdxdz. Since the random variables X and Y are independent, the probability density function of Z is given

by Papoulis [31] and Rohatgi [32]:
fZðzÞ ¼
k

b� a

Z z=c

z=d

e�kx

jxj dx 8 0 < z <1: ð3Þ
Making change of variables in the integral of (3) by substituting t ¼ kx and dt ¼ kdx, we have:
fZðzÞ ¼
k

b� a
E1

kz
b

� �
� E1

kz
a

� �� �
; ð4Þ
where E1ðxÞ ¼
R1

x
e�u

u du is the exponential integral defined by EnðxÞ ¼
R1

1
e�xt

tn dt at n ¼ 1 [33]. Now, E1ðxÞ ¼ �Eið�xÞ, where
EiðxÞ ¼ �

R1
�x

e�t

t dt is the exponential integral function [33]. Substituting the relation between EiðxÞ and E1ðxÞ in (4), we have:
fZðzÞ ¼
k

b� a
Ei �

kz
a

� �
� Ei �

kz
a

� �� �
: ð5Þ
The mean value of the occurrence time, EðZÞ is given by
EðZÞ ¼
Z 1

0
zfZðzÞdz ¼ k

b� a

Z 1

0
z Ei �

kz
a

� �
� Ei �

kz
b

� �� �
dz: ð6Þ
From [34], the integral shown in (6) can be evaluated as
EðZÞ ¼ k
b� a

z2

2
Ei �

kz
a

� �
� Ei �

kz
b

� �� �
þ az

2k
þ a2

2k2

� �
exp � kz

a

� �
� bz

2k
þ b2

2k2

 !
exp � kz

b

� �" #1
0

¼ bþ a
2k

� �
: ð7Þ
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Thus, the inter-arrival times of the orders (occurrence and quantity) are exponentially distributed with mean EðZÞ. Service
times of orders are independent identically distributed random variables, the common distribution being exponential with
mean 1

l, where l is the service rate.
Assume that orders are served in their sequence of arrivals (FCFS scheduling). If the ‘‘order” denotes a job arriving into a

computer system, then the server represents the computer system. Let NðtÞ denote the number of orders in the system (those
queued plus the one in service) at time t. Then fNðtÞjt P 0g is a birth–death process with minimum arrival rate:
Kk ¼ kð0Þ ¼ 1
EðzÞ ¼

2k
bþ a

; ð8Þ
and service rate lk ¼ l; k P 1. The ratio:
q ¼ mean service time
mean interarrival time

¼ Kk

lk
¼ 1

lEðzÞ ¼
2k

lðbþ aÞ 8 a; b > 0; b > a: ð9Þ
The quantity, q, is an important parameter, called the traffic intensity of the system. Traffic intensity is usually expressed
in Erlangs. From the birth–death process for continuous-time homogeneous Markov chains, the steady-state probability of
having k jobs in the system with batch arrivals is given by Tran and Do [35]:
Pk ¼ exp �ð1� qÞð Þð ÞkP0 ¼ exp �kð1� qÞð ÞP0 8 a; b > 0; b > a: ð10Þ
Summing (10) from 0 to1 and equating the result to 1, we have P0 ¼ expð1� qÞ � 1 provided q < 1, i.e., when the traffic
intensity is less than unity. The server utilization is U0 ¼ 1�P0 ¼ 2� expð1� qÞ. It can be shown that the mean and var-
iance of the number of customers in the system are
E½N� ¼
X1
k¼0

kPk ¼ P0

X1
k¼0

k exp �kð1� qÞð Þ ¼ 1
1� exp �ð1� qÞð Þ ; ð11Þ
and
r2
N ¼

X1
k¼0

k� EðNÞð Þ2Pk ¼
exp � 1� qð Þð Þ

1� exp � 1� qð Þð Þð Þ2
; ð12Þ
respectively.
Let the random variable R denote the response time (defined as the time elapsed from the instant of job arrival until its

completion) in the steady-state. In order to compute the average response time E½R�we use the well-known Little’s theorem,
which states that the mean number of jobs in a queuing system in the steady-state is equal to the product of the arrival rate
and mean response time. When applied to the present case, Little’s formula gives us E½N� ¼ kE½R� [30]. Hence:
E½R� ¼ E½N�
k
¼ 1

kð1� exp �ð1� qÞð ÞÞ : ð13Þ
Note: Congestion is present in the system, and hence the mean response time, E½R�, builds rapidly as the traffic intensity, q
increases.

Let the random variable W denote the waiting time in the queue. The average waiting time:
E½W� ¼ E½R� � 1
l
¼

l� kþ k exp � 1� 2k
lðbþaÞ

� �� �
kl 1� exp � 1� 2k

lðbþaÞ

� �� �� � ; ð14Þ
8 a; b > 0, b > a. If now, let the random variable Q denote the number of jobs waiting in the queue (excluding those, if any,
in service), then, to determine the average number of jobs E½Q � in the queue, we apply Little’s formula to the queue excluding
the server to obtain:
E½Q � ¼ kE½W� ¼
l� kþ k exp � 1� 2k

lðbþaÞ

� �� �
l 1� exp � 1� 2k

lðbþaÞ

� �� �� � : ð15Þ
Note that the average number of jobs found in the server is
E½N� � E½Q � ¼ kl� lþ k� k exp � 1� qð Þð Þ
kl 1� exp � 1� qð Þð Þð Þ : ð16Þ
Stage I: A4;A5! Knitting
Stage II: A7;A8;A9;A10!MakingA15;A17;A18! Transport
Stage III: A11;A12;A13;A14! Transport.



Case (i): Nodes A4, A8, A15, A7, A11 and A13 constitute the nodes visited from Input 1

The service rates of the servers A4;A8;A15;A7;A11, and A13 are l1;l2;l3;l4;l5, and l6, respectively. The arrival rates at
the queues of these servers are k1; k1p1; k1p2; k1p2; k1p1, and k1p2, respectively. The utilizations of these servers are
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qðjÞi ¼
kð0Þwi

li
¼ 2k

bþ a
wi

li
; ð17Þ
8j ¼ A4;A8;A15;A7;A11 and A13, corresponding to i ¼ 1;2;3;4;5, and 6, respectively, w1 ¼ q1, w2 ¼ w5 ¼ q1p1,
w3 ¼ w4 ¼ w6 ¼ q1p2.

Case (ii): Nodes A5;A17;A9;A18;A10;A12 and A14 constitute the nodes visited from Input 2
The service rates of the servers A5;A17;A9;A18;A10;A12;A14 are l01;l02;l03;l04;l05;l06, and l07, respectively. The arrival
rates at the queues of these servers are k2; k2p3; k2p3; k2p4; k2p4; k2p3, and k2p4, respectively. The utilizations of these serv-
ers are
q0ðjÞi ¼
kð0Þhi

l0i
¼ 2k

bþ a
hi

l0i
; ð18Þ
8j ¼ A5;A17;A9;A18;A10;A12 and A14 corresponding to i ¼ 7;8;9;10;11;12, and 13, respectively, h1 ¼ q2,
h2 ¼ h3 ¼ h6 ¼ q2p3, h4 ¼ h5 ¼ h7 ¼ q2p4.

Note 1: Throughout this paper, we will associate the index j for servers A4;A8;A15;A7;A11, and A13, corresponding to
i ¼ 1;2;3;4;5, and 6 for the average queue lengths, E½NðjÞi �, the average response times, E½RðjÞi �, and the average waiting
times, E½W ðjÞ

i �.
Note 2: Also in this paper, we will associate the index j for servers A5;A17;A9;A18;A10;A12, and A14, corresponding to
i ¼ 1;2;3;4;5;6, and 7 for the average queue lengths, E½N0ðjÞi �, the average response times, E½R0ðjÞi �, and the average waiting
times, E½W 0ðjÞ

i �.

The difference between the performance measures in Note 1 and Note 2 is the notation for the queuing model perfor-
mance measures, such as, average queue lengths, average response times, and average waiting times for different sets of
servers but having the same subscript index i.

4. Performance measures

The performance of the single-server system is measured by the average queue lengths, average waiting times, average
response times, and the average number of orders in the system [30].

4.1. Average queue lengths, average response times, and average waiting times

The average queue lengths, average response times, and average waiting times at the nodes A4;A8;A15;A7;A11, and A13,
are
E NðjÞi

h i
¼ 1

1� exp � 1� qðjÞi

� �� � ;

E RðjÞi

h i
¼

E NðjÞi

h i
kð0Þwi

¼ bþ a

2kwi 1� exp � 1� qðjÞi

� �� �� � ;

E W ðjÞ
i

h i
¼ E RðjÞi

h i
� 1

li
¼
ðbþ aÞli � 2kwi 1� exp � 1� qðjÞi

� �� �� �
2kwili 1� exp � 1� qðjÞi

� �� �� � : ð19Þ
The average queue lengths, average response times, and average waiting times at the nodes A5;A17;A9;A18;A10;A12,
and A14, are
E N0ðjÞi

h i
¼ 1

1� exp � 1� q0ðjÞi

� �� � ;

E R0ðjÞi

h i
¼

E N0ðjÞi

h i
kð0Þhi

¼ bþ a

2khi 1� exp � 1� q0ðjÞi

� �� �� � ;

E W 0ðjÞ
i

h i
¼ E R0ðjÞi

h i
� 1

l0i
¼
ðbþ aÞl0i � 2khi 1� exp � 1� q0ðjÞi

� �� �� �
2khil0i 1� exp � 1� q0ðjÞi

� �� �� � : ð20Þ
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4.2. Average queue lengths in different paths

The average number of jobs in path V1ðA4;A8;A11Þ, path V2ðA4;A15;A7;A13Þ, path V3ðA5;A17;A9;A12Þ and path
V4ðA5;A18;A10;A14Þ are
E NV1

� �
¼ E NðA4Þ

1

h i
þ E NðA8Þ

2

h i
þ E NðA11Þ

5

h i
;

E NV2

� �
¼ E NðA4Þ

1

h i
þ E NðA15Þ

3

h i
þ E NðA7Þ

4

h i
þ E NðA13Þ

6

h i
;

E NV3

� �
¼ E N07

ðA5Þ
h i

þ E N08
ðA17Þ

h i
þ E N09

ðA9Þ
h i

þ E N012
ðA12Þ

h i
;

E NV4

� �
¼ E N07

ðA5Þ
h i

þ E N010
ðA18Þ

h i
þ E N011

ðA10Þ
h i

þ E N013
ðA14Þ

h i
; ð21Þ
respectively.

4.3. Average response times in different paths

The global throughput delay from S0 to S1 in Fig. 2 can be chosen to be the minimum of the response times of the four
paths shown below. The global throughput delay represents the order’s cycle. This can be done by

� considering that orders are independently and equally routed from S0 to S1, and
� optimizing the route by taking into account the present state of the network.

The average response times in path V1ðA4;A8;A11Þ, path V2ðA4;A15;A7;A13Þ, path V3ðA5;A17;A9;A12Þ and path
V4ðA5;A18;A10;A14Þ are
E RV1

� �
¼ E RðA4Þ

1

h i
þ E RðA8Þ

2

h i
þ E RðA11Þ

5

h i
;

E RV2

� �
¼ E RðA4Þ

1

h i
þ E RðA15Þ

3

h i
þ E RðA7Þ

4

h i
þ E RðA13Þ

6

h i
;

E RV3

� �
¼ E R01

ðA5Þ
h i

þ E R08
ðA17Þ

h i
þ E R09

ðA9Þ
h i

þ E R012
ðA12Þ

h i
;

E RV4

� �
¼ E R01

ðA5Þ
h i

þ E R010
ðA18Þ

h i
þ E R011

ðA10Þ
h i

þ E R013
ðA14Þ

h i
; ð22Þ
respectively.

4.4. Equivalent network

From [29], the queue lengths and response times of the equivalent network (Fig. 4) are given by
)0(λ
A

Equivalent queue of the industrial system

sysμ

Service A:  Production & Delivery

Orders

Occurrence: Poissonian law justified

Quantity: Stochastic

Delay: QoS

Average Waiting time:
sysW

Service time:
sysμ

1

Service time is initialized when the first production
operation begins. It is closed when the items are

available in the delivery stocks.

Average Queue Length:
sysN

Average Response time: sysR

)0(λ

Fig. 4. Equivalent queue of the supply chain.
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E Nsys
� �

¼ E Nð10Þ
eq

h i
þ E Nð11Þ

eq

h i

¼ k1

l1 � k1
þ

k1p1 l2 þ l5 � 2k1p1

	 

l2 � k1p1

	 

l5 � k1p1

	 
þ k2

l01 � k2

þ
k1p2 l3 þ l4 � 2k1p2

	 

l6 � k1p2

	 

þ l3 � k1p2

	 

l4 � k1p2

	 
� �
l3 � k1p2

	 

l4 � k1p2

	 

l6 � k1p2

	 

þ

k2p3 l02 þ l03 � 2k2p3

	 

l06 � k2p3

	 

þ l02 � k2p3

	 

l03 � k2p3

	 
� �
l02 � k2p3

	 

l03 � k2p3

	 

l06 � k2p3

	 

þ

k2p4 l04 þ l05 � 2k2p4

	 

l07 � k2p4

	 

þ l04 � k2p4

	 

l05 � k2p4

	 
� �
l04 � k2p4

	 

l05 � k2p4

	 

l07 � k2p4

	 
 ; ð23Þ
and
E Rsys
� �

¼
E Nsys
� �

k

¼ q1

l1 � k1
þ

q1p1 l2 þ l5 � 2k1p1

	 

l2 � k1p1

	 

l5 � k1p1

	 
þ q2

l01 � k2

þ
q1p2 l3 þ l4 � 2k1p2

	 

l6 � k1p2

	 

þ l3 � k1p2

	 

l4 � k1p2

	 
� �
l3 � k1p2

	 

l4 � k1p2

	 

l6 � k1p2

	 

þ

q2p3 l02 þ l03 � 2k2p3

	 

l06 � k2p3

	 

þ l02 � k2p3

	 

l03 � k2p3

	 
� �
l02 � k2p3

	 

l03 � k2p3

	 

l06 � k2p3

	 

þ

q2p4 l04 þ l05 � 2k2p4

	 

l07 � k2p4

	 

þ l04 � k2p4

	 

l05 � k2p4

	 
� �
l04 � k2p4

	 

l05 � k2p4

	 

l07 � k2p4

	 
 ; ð24Þ
respectively, where k1 ¼ kð0Þq1; k2 ¼ kð0Þq2, and kð0Þ is as shown in (8). From the results of Bhaskar and Lallement [29], the ser-
vice rate of the equivalent server is given by
lsys ¼ kþ 1
D12aþ D12bþ D12c þ D12dþ D12eþ D12f

; ð25Þ
where

� D12a ¼ q1
l1�k1

,

� D12b ¼ q1p1ðl2þl5�2k1p1Þ
ðl2�k1p1Þðl5�k1p1Þ

,

� D12c ¼ q2
l01�k2

,

� D12d ¼ q1p2 ½ðl3þl4�2k1p2Þðl6�k1p2Þþðl3�k1p2Þðl4�k1p2Þ�
ðl3�k1p2Þðl4�k1p2Þðl6�k1p2Þ

,

� D12e ¼ q2p3 ½ðl02þl03�2k2p3Þðl06�k2p3Þþðl02�k2p3Þðl03�k2p3Þ�
ðl02�k2p3Þðl03�k2p3Þðl06�k2p3Þ

, and

� D12f ¼ q2p4 ½ðl04þl05�2k2p4Þðl07�k2p4Þþðl04�k2p4Þðl05�k2p4Þ�
ðl04�k2p4Þðl05�k2p4Þðl07�k2p4Þ

.

5. Numerical results

5.1. Queue lengths with and without weights for the most optimal path in the 2-input network

5.1.1. No weights
Let k be the total number of arrivals in the 2-input queuing network. In the example considered in this section, the arrival

rate, k ¼ 2;4; . . . ;20. The values of a and b are 2 and 10, respectively. The other specifications include:

(a) Probability of arrivals at queues Q 4 and Q 5 are ðq1; q2Þ ¼ ð0:5;0:5Þ, respectively.
(b) The service rate specifications of different servers in the network are l2 ¼ l03 ¼ l4 ¼ l05 ¼ lc ¼ 9, l1 ¼ l01 ¼ 15,

l02 ¼ 7, l3 ¼ 6, l04 ¼ 5, l5 ¼ 11, l06 ¼ 5, l6 ¼ 8, and l07 ¼ 9.
(c) The probabilities ðp1; p2Þ and ðp3; p4Þ are ð0:3;0:7Þ and ð0:4;0:6Þ, respectively.

For each value of k, the utilizations, average queue lengths, average response times, and average waiting times in all the
nodes of the 2-input queuing network are computed. The average queue lengths in paths V1, V2, V3, and V4, respectively, are
computed from (21). The average response times in paths V1, V2, V3 and V4, respectively, are computed from (22).
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The minimum of the average response times of the nodes in all the paths is computed. It is found that for all arrival rates,
the minimum response time corresponds to path V2. Consequently, path V2 is declared as the ‘‘optimal path”. The optimal
path is the path in which the sum of the average response times in each node is the minimum as compared to those of the
other paths. The nodes in path V2 are ðQ4;A4Þ, ðQ 15;A15Þ, ðQ7;A7Þ and ðQ 13;A13Þ. The average queue length corresponding to
path V2 is noted for arrival rates, k ¼ 2;4; . . . ;20.

5.1.2. Including weights
When weights are incorporated, the service rates of A4, A5, A8, A9, A7 and A10 are halved from their original values given

in part (1) (no weights section). All other specifications remain unchanged. The arrival rate, k ¼ 2;4; . . . ;20. The values of a
and b are 2 and 10, respectively. The utilizations, average queue lengths, average response times and average waiting times
in all the nodes are computed for each value of k. It is found that for all arrival rates, the minimum response time corresponds
to path V2. The nodes in path V2 are ðQ4;A4Þ, ðQ 15;A15Þ, ðQ 7;A7Þ, and ðQ13;A13Þ. It is found that as the arrival rate increases,
the queue length also increases.

The queue lengths for nodes in path V2 for both cases (with and without weights) in the 2-input network are plotted in
Fig. 5. From the figure, it is clear that the average queue lengths for the case when weights are included, is larger than that for
the no weight case for a particular arrival rate. This is because, when weights are included, the service rates of some servers
are halved, which means that the service time is doubled. Because of this reason, lesser number of customers are served for a
particular arrival rate.

5.1.3. Analysis of bottleneck servers in the queuing network
Bottleneck analysis using queuing network models is an important technique for the performance analysis and capacity

planning of computer and communication systems. For the set of specifications considered in Section 5.1.1 on the probabil-
ities of entering the individual branches of the queuing network, total arrival rate, arrival rates in individual branches, and
service rates of different servers in the network for the no weight case, the utilizations of servers A4, A8, A15, A7, A11, A13,
A5, A17, A9, A18, A10, A12, and A14 as a function of the arrival rates are shown in Table 1. From Table 1, the maximum uti-
lization among the servers, A4, A8, A15, A7, A11 and A13 occurs for server A15 when k ¼ 20, and that value is qðA15Þ

3 ¼ 7
36 < 1.

Similarly, the maximum utilization among the servers, A5, A17, A9, A18, A10, A12, and A14 occurs for server A18 when
k ¼ 20, and that value is q0ðA18Þ

4 ¼ 0:2 < 1.
For the case including weights, the service rates of servers, A4, A8, A7, A5, A9, A10 are halved from their original values.

Thus, the utilizations of these servers are doubled from their corresponding previous values. The maximum utilization
among the servers, A4, A8, A15, A7, A11, and A13 occurs for server A7 when k ¼ 20, and that value is qðA7Þ

4 ¼ 7
27 < 1. Similarly,

the maximum utilization among the servers, A5, A17, A9, A18, A10, A12, and A14 occur for server A10 when k ¼ 20, and that
value is q0ðA10Þ

11 ¼ 2
9 < 1. Since the respective maximum utilizations for the case including weights are much lesser than unity,

the queuing model with the given set of specifications is feasible to implement.
For the severs in the no weight case as well as in the case incorporating weights, to act as a bottleneck, the utilizations of

these servers must be high and close to 1. Since none of the servers have utilizations close to unity for arrival rates,
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Fig. 5. Queue lengths for nodes in path V2 in the 2-input network with and without weights.



Table 1
Utilization of different servers in the network.

Utilizations Arrival rate (k ¼ 2;4; . . . ;20)

qðA4Þ
1

k
180

qðA8Þ
2

k
360

qðA15Þ
3

7k
720

qðA7Þ
4

7k
1080

qðA11Þ
5

3k
1320

qðA13Þ
6

7k
960

q0ðA5Þ
7

k
180

q0ðA17Þ
8

k
210

q0ðA9Þ
9

k
270

q0ðA18Þ
10

k
100

q0ðA10Þ
11

k
180

q0ðA12Þ
12

k
150

q0ðA14Þ
13

k
180
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k ¼ 2;4; . . . ;20, the queuing model with the given specifications is feasible to implement. The limitations of our data formu-
lation occur only when any or some of the utilizations become high and get closer to unity. This can occur when

(a) the arrival rates become much higher than those considered, or
(b) when specifications like probabilities and service rates are initialized to values such that the utilizations get close to

unity.
5.2. Queue lengths with and without weights in the equivalent single queue–single server network

5.2.1. No weights
Let k be the total number of arrivals at the equivalent single-queue single-server system as shown in Fig. 4. In the example

considered in this section, the arrival rate is k ¼ 2;4; . . . ;20. The service rate specifications of different servers in the network
are l2 ¼ l03 ¼ l4 ¼ l05 ¼ lc ¼ 9, l1 ¼ l01 ¼ 15, l02 ¼ 7, l3 ¼ 6, l04 ¼ 5, l5 ¼ 11, l06 ¼ 5, l6 ¼ 8, and l07 ¼ 9. The probabilities,
ðp1; p2Þ, ðp3; p4Þ, and ðq1; q2Þ are (0.3, 0.7), (0.4, 0.6) and (0.5, 0.5), respectively.

For each value of k, the average queue length of the equivalent queue, and the average response time of the equivalent
queue are computed from (23) and (24), respectively. The service rate of the equivalent server is computed from (25). The
average queue length of the equivalent queue increases as the arrival rate increases.
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Fig. 6. Queue lengths in the equivalent single queue–single server network with and without weights.
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5.2.2. Including weights
When weights are incorporated, the service rates of A4, A5, A8, A9, A7 and A10 are halved from their original values in part

(1) (no weights section). All other specifications remain unchanged. The arrival rate is k ¼ 2;4; . . . ;20. The average queue
length and average response time of the equivalent queue are computed from (23) and (24), respectively for each value
of k. The service rate of the equivalent server is computed from (25).

The queue lengths in the equivalent single queue–single server network for both cases (with and without weights) are
plotted in Fig. 6. Again, it can be observed that the average queue lengths for the case when weights are included, is larger
than that for the no weight case for a particular arrival rate. Lesser number of customers are served in a system with a lower
service rate as compared to a system with a higher arrival rate. The equivalent service rate for the system when weights are
not included is lsys ¼ 8:4735 and for the case when weights are included, it is lsys ¼ 5:5024, which also explains the behav-
ior of the curves in Fig. 6.
6. Conclusions

In this paper, the most optimal path for routing items is path V2 because it produces the least response time for the given
set of specifications (probability of entering a new path, arrival rate and service rates). The nodes in the optimal path, V2, are
ðQ4;A4Þ, ðQ 15;A15Þ, ðQ 7;A7Þ, and ðQ13;A13Þ. The choice of the optimal path depends on the arrival rate at each queue, service
rate of each server, and the probability of entering a particular node. The corresponding total number of items in all the
nodes of the most optimal path constitutes the capacity of the 2-input network. Decision for routing is made at the last node
in each stage of the network as to which path to choose to obtain the least response time. Performance measures such as
average queue lengths are derived and plotted. Performance measures such as average response times, average waiting
times and steady-state probabilities are also derived.

The supply chain is modeled as an equivalent single queue–single server system. Performance measures such as average
queue lengths and average response times are derived and plotted for the equivalent single queue–single server network.
The service rates of the equivalent server with and without weights are also derived and computed numerically.
Appendix

In this section, the expressions for the steady-state probability of having a certain number of jobs in the system for each of
the two cases is presented.

Case (i): The steady-state probability of having ki jobs at node i is PiðkiÞ ¼ ð1� qiÞq
ki
i [30]. The steady-state probabilities at

the nodes (A4, A8, A15, A7, A11, and A13) in the queuing network are
PðjÞi ðkiÞ ¼ 1� qðjÞi

� �
qðjÞi

� �ki
¼ 1� 2k

bþ a
wi

li

� �
2k

bþ a
wi

li

� �ki

; ð26Þ
8 j ¼ A4;A8;A15;A7;A11, and A13 corresponding to i ¼ 1;2;3;4;5, and 6, respectively, w1 ¼ q1, w2 ¼ w5 ¼ q1p1,
and w3 ¼ w4 ¼ w6 ¼ q1p2.

Case (ii): The steady-state probabilities at the nodes (A5, A17, A9, A18, A10, A12 and A14) in the queuing network are
P0ðjÞi ðk
0
iÞ ¼ 1� q0ðjÞi

� �
q0ðjÞi

� �k0i ¼ 1� 2k
bþ a

hi

l0i

� �
2k

bþ a
hi

l0i

� �k0i

; ð27Þ
8j ¼ A17;A5;A9;A18;A10;A12, and A14 corresponding to i ¼ 1;2;3;4;5;6, and 7, respectively, h1 ¼ q2,
h2 ¼ h3 ¼ h6 ¼ q2p3, and h4 ¼ h5 ¼ h7 ¼ q2p4.
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