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The main purpose of Emergency Medical Service systems is to save lives by providing quick response to
emergencies. The performance of these systems is affected by the location of the ambulances and their
allocation to the customers. Previous literature has suggested that simultaneously making location and
dispatching decisions could potentially improve some performance measures, such as response times.
We developed a mathematical formulation that combines an integer programming model representing
location and dispatching decisions, with a hypercube model representing the queuing elements and con-
gestion phenomena. Dispatching decisions are modeled as a fixed priority list for each customer. Due to
the model’s complexity, we developed an optimization framework based on Genetic Algorithms. Our
results show that minimization of response time and maximization of coverage can be achieved by the
commonly used closest dispatching rule. In addition, solutions with minimum response time also yield
good values of expected coverage. The optimization framework was able to consistently obtain the best
solutions (compared to enumeration procedures), making it suitable to attempt the optimization of alter-
native optimization criteria. We illustrate the potential benefit of the joint approach by using a fairness
performance indicator. We conclude that the joint approach can give insights of the implicit trade-offs
between several conflicting optimization criteria.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Emergency Medical Service (EMS) systems are a public service
that provides out-of-hospital acute care and transport to a place
of definitive care, to patients with illnesses and injuries that consti-
tute a medical emergency. The ultimate goal of EMS systems is to
save lives. The ability of these systems to do this effectively is im-
pacted by several resource allocation decisions including location
of servers, districting of demand zones and dispatching rules for
the servers. Common objectives are minimizing the mean response
time and/or maximizing coverage. The relationship between mini-
mizing response time and improving survivability has been re-
ported by several works such as Sanchez-Mangas, García-Ferrer,
de Juan, and Arroyo (2010) and McLay and Mayorga (2010,
2011). A demand zone is said to be covered if there is at least
one facility within a predefined distance/time threshold from the
demand zone. The concept of coverage is related to the availability
of a satisfactory facility rather than the best possible one (Farahani,
Asgari, Heidari, Hosseininia, & Goh, 2012). Li, Zhao, Zhu, and Wyatt
(2011) pointed out that the coverage maximization approach is the
most widely used by practitioners, researchers and regulators.

Traditionally, location and dispatching decisions have been ap-
proached separately, even though various studies have shown that
the servers’ busy probabilities (and therefore the response time
and coverage, among other performance indicators) are sensitive
to the server locations and the choice of server dispatching strate-
gies (Batta, Dolan, & Krishnamurthy, 1989; Larson & Odoni, 1981).
Ambulance dispatch is the process of assigning a particular ambu-
lance to answer an emergency call. An ambulance dispatch policy
can be formed using various dispatch methods and there is no sin-
gle policy that fits all systems (Li et al., 2011). The same authors
emphasized that a dispatch policy has to be designed to fulfill
the particular objectives and performance indicators defined by
EMS providers and regulators. In our work we consider dispatch
policies in which there is a single list associated with each demand
zone that ranks the available servers (ambulances), or a subset of
them, in order of dispatch preference. This type of list is commonly
referred to as a contingency table.

The most common dispatching policy for EMS calls is rather
simple in that the closest idle vehicle is usually dispatched to at-
tend the call (Andersson & Varbrand, 2006; Goldberg, 2004). The
rationale behind that policy is related to the idea of having the
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objective of minimizing the mean system response time. The
works on allocation of distinguishable servers by Jarvis (1981)
and Katehakis and Levine (1986) pointed out that under light traf-
fic conditions using a myopic allocation policy (i.e. assigning al-
ways the closest available sever) will lead to an optimal solution,
when the objective is to minimize the long run average cost (re-
sponse time). For heavy traffic the same works mentioned that
the optimal policy can deviate from the myopic policy. However,
even in the latter case using the myopic policy still might lead to
solutions that are close the optimum (Katehakis & Levine, 1986).
Related literature applied to EMS systems planning included argu-
ments against the closest dispatching rule as a way to minimize
the response time. Arguments were made originally by Carter,
Chaiken, and Ignall (1972) and thereafter supported by Cuningh-
ame-Green and Harries (1988) and Repede and Bernardo (1994).
In the referred works the locations of the servers are assumed to
be known. We have not found references addressing the relation-
ship between a myopic dispatching policy and expected coverage.
There is usually a trade-off between response time and coverage,
so that improving one of them implies a sacrifice in the other.

In this work, first we present a mathematical model that inte-
grates the location and dispatching decisions for an EMS system.
It is a non-linear mixed integer optimization model in which even
generating some of the equations is computationally intensive,
therefore making it hard to solve. The Hypercube model is used
providing an exact model of the stochastic queuing dynamics.
The mathematical model is accompanied by the analysis of ran-
domly generated small instances whose purpose is twofold: (i) gi-
ven the small size it is possible to fully enumerate all feasible
solutions hence also identifying the optimal, that can be used later
for comparison purposes against faster/smarter solution strategies
than enumeration; and (ii) after solving a variety of random in-
stances it is also possible to point out some general trends ob-
served in the optimal solutions (with respect to response time
and coverage). Second, we present an optimization framework to
solve the joint location and dispatching problem based on Genetic
Algorithms (GAs). We present a heuristic solution procedure to
solve the exact model of the system. Our work is different from
previous approaches to the problem, for although we assume the
general form of the dispatching policy, as a fixed preference list,
we do not assume a priori any particular dispatching order (based
on distance, for example). Instead, we model the location and dis-
patching decisions in a single mathematical model, and develop an
optimization framework for its solution. In fact, since a district is
the union of the demand zones assigned to a particular server, it
can be said that an indirect result of our model is also a districting
strategy: for each available server, all the zones having it as its first
preferred server would form the server’s district.

Our findings are that in fact the common dispatching rule based
on the closest available server leads to the best solutions when the
objective is minimizing the mean response time and locations are
optimized simultaneously. Conversely, if the objective is maximiz-
ing expected coverage, then the optimal solution could deviate
from the use of the closest dispatching rule. However, the best
solutions based on coverage offer an increase of that indicator
(with respect to the coverage attained by minimizing the mean re-
sponse time) that is rather small (3.15% average increase – 95% CI:
2.75–3.55%) compared to the sacrifice in response time (65.2%
average increase – 95% CI: 56.33–74.24%). Although these numbers
correspond to the average results for the small instances, bigger in-
stances showed similar behavior. The optimization procedure pro-
posed has consistently obtained good solutions, i.e. within 1% gap
compared to the best solutions obtained by full or partial enumer-
ation procedures, which are computationally more intensive.

While our main goal was the development of the optimization
framework for the solution of the joint location/dispatching prob-
lem, we discovered that little benefit can be gained from the inte-
grated approach when using the two most commonly used criteria,
namely response time and expected coverage. Thus we considered
two additional criteria related to fairness, and we used one of them
to illustrate the potential benefits of the joint approach. In partic-
ular we tested the variance of the individual response times as a
measure of fairness from the point of view of the users of the sys-
tem (demand zones). We found that in this case using a myopic
policy would result in a potential deviation from the optimal policy
aimed at reducing disparities, as measure by the variance of the re-
sponse times. We also illustrate the trade-offs among the pre-
sented optimization criteria.

The rest of the paper is organized as follows. In Section 2 we
provide the presentation of the problem as well as a review of re-
lated literature. Next, in Section 3 we introduce the mathematical
model. Section 4 presents a small case study, as well as a summary
of its results and implications. Section 5 provides a detailed
description of the optimization framework based on GAs and Sec-
tion 6 introduces the case studies to which the optimization proce-
dure is applied, as well as the results obtained. The last two
sections, 7 and 8 are the discussion of the results and the conclu-
sions, respectively. As part of the conclusions possible extensions
of the present work are mentioned.
2. Problem presentation and related literature

In Goldberg’s review of models for deployment of EMS vehicles
(Goldberg, 2004), it is mentioned that little work had been done on
dispatching of ambulances. Similar opinion is shared by Lee (2011),
mentioning that the contributions in ambulance dispatching are
sparse. In turn, Galvao and Morabito (2008) and Iannoni, Morabito,
and Saydam (2011) mention as an interesting extension of their
work the use of different dispatch preference lists, instead of
assuming that for a given set of locations the dispatching order is
based on the closest dispatching rule.

The most widely used dispatching rule under a fixed preference
scheme is to send the closest unit, looking to minimize the re-
sponse times (Andersson & Varbrand, 2006). The first argument
against the use of such a policy was made by Carter et al. (1972).
They present a case where two units, A and B, have equally large
areas of responsibility, but A’s area has a significantly higher call
frequency. In those conditions, the mean response time will de-
crease if B is allowed to respond to some of the calls for which A
is the closest unit. The result was generalized for cases involving
more than two units by Cuninghame-Green and Harries (1988).
Repede and Bernardo (1994) also supported the argument. The
works by Jarvis (1981) and Katehakis and Levine (1986) studied
the optimal allocation of distinguishable servers on Markovian
queuing systems, reaching a different conclusion. For a given loca-
tion of the servers, so that the cost of assigning a server to a partic-
ular customer is known (the cost in EMS planning is usually related
to the amount of time that it takes for the EMS system to effec-
tively respond to a call), these two works showed that under light
traffic conditions (traffic is measured by the ratio between the
mean arrival rate and the mean total service rate) the use of a myo-
pic policy always would lead to an optimal solution, i.e. minimiz-
ing the long run average cost (response time). For heavy traffic
the use of a myopic policy will deviate from the optimal, however
the deviation is rather small (2–3%). Katehakis and Levine (1986)
used 0.38 as an indicator of light traffic and 1.94 for the case of
heavy traffic.

We propose a mathematical model that combines location and
dispatching decisions for EMS vehicles, initially looking for optimal
solutions according to maximum coverage or minimum response
time. The dispatching decisions are modeled as a fixed preference
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scheme, meaning that there is a single list associated with each
costumer that ranks the available servers (ambulances) ir order
of dispatch preference. That list does not change as a result of
changes in the state of the system. However, the particular unit
that will be dispatched to attend each call from a demand zone
is not known in advance, since the assignment depends on the
availability of the servers (system’s state) when the call is received.
Katehakis and Levine (1986) pointed out some results from Markov
Decision Theory indicating that, when the number of states of the
system as well as the number of actions available to perform in
every state (allocation of the servers) are finite, it suffices to con-
sider only deterministic policies; a deterministic policy is one
which, whenever the system is in particular state, the set of avail-
able actions to perform is deterministic and depends only of the ac-
tual state (in our case, which servers are busy, and which are idle).

The servers in a typical EMS system are: (i) spatially distributed
in the region; (ii) share the system workload due to cooperation
among them and (iii) have different operational characteristics,
such as different preferential regions (Galvao & Morabito, 2008).
Those characteristics have been progressively included in different
approaches used for planning EMS systems. Congestion is also a
typical phenomena related to EMS systems. According to Galvao,
Chiyoshi, and Morabito (2005) the volume of calls for service
may keep ambulances busy from 20% to 30% of the time.

Brotcorne, Laporte, and Semet (2003) provided a review focused
on location models and their particular application to EMS. They
classified the location models that evolved over the past 30 years
into two main categories, deterministic and probabilistic, recogniz-
ing that the most recent models were more concerned with the
representation of the stochastic nature of the systems. Location
models were also distinguished in coverage and median type prob-
lems. The first class attempts to locate the servers so as to maxi-
mize the fraction of the demand that has at least one server unit
within a predefined maximum distance or time. The latter type
minimizes the average or total travel time/cost between servers
and demand zones.

The two seminal attempts to develop basic coverage models
were the set covering location problem (SCLP) by Toregas, Swain,
ReVelle, and Bergman (1971) and the maximal coverage location
problem (MCLP) by Church and ReVelle (1974). Extensions to those
basic models were developed later. TEAM and FLEET models, by
Schilling, Elzinga, Cohon, Church, and ReVelle (1979), considered
several types of servers; Marianov and ReVelle (1992) improved
the MCLP model. Multiple coverage of demands were considered
in BACOP1 and BACOP2 by Hogan and Revelle (1986) and other
extensions, DSM and DDSM were added by Gendreau, Laporte,
and Semet (1997, 2001). The p-median problem was introduced
by Hakimi (1964). The use of the p-median model in the planning
and location of facilities for EMS can be found in Carbone (1974)
and Carson and Batta (1990).

Basic location models are deterministic in nature and therefore
do not represent the system accurately (Brotcorne et al., 2003; Jia,
Ordóñez, & Dessouky, 2007a). Basic coverage models might make
sense when the location of facilities are fixed, but in the case of
an EMS system, as soon as a unit leaves its home base to attend
a request for service, other demand points that are supposed to
be covered by that unit may no longer be covered. The work by
Snyder (2004) reviewed several models that address variations in
the inputs, such as demands and travel times, as a way to take
uncertainty into account. The same work pointed out the impor-
tance of addressing congestion. Daskin (1983) developed the max-
imum expected coverage location model (MEXCLP) including the
modeling of congestion elements. Hogan and Revelle (1986) devel-
oped the maximal availability location problem (MALP I and II) and
later Marianov and ReVelle (1996) improved it. Farahani et al.
(2012) present an extensive up to date review on covering prob-
lems in facility location. Arabani and Farahani (2012) developed
a survey on facility locations dynamics.

It was the work by Larson (1974) that first used queueing the-
ory elements in facility location models by introducing the hyper-
cube model. Larson (1975) later developed an approximation for
the hypercube model due to the fact that exact calculations were
prohibitive. Chiyoshi, Galvao, and Morabito (2001) pointed out,
after comparing several models, that the hypercube was the only
one with the capabilities for an accurate representation of the sys-
tem. There is a variety of applications and extension of the hyper-
cube model to EMS system such as the works by Brandeau and
Chiu (1989), Mendona and Morabito (2001), Atkinson, Kovalenko,
Kuznetsov, and Mykhalevych (2008), Iannoni and Morabito
(2007), Iannoni, Morabito, and Saydam (2008), Galvao and Morab-
ito (2008) and Geroliminis, Karlaftis, and Skabardonis (2009),
among others. It is well documented that the hypercube model is
a descriptive tool allowing scenario analysis, not designed as an
optimization model. However, it is possible to embed it into an
optimization framework. Batta et al. (1989) combined MEXCLP
with the hypercube into an iterative, local search algorithm. Aytug
and Saydam (2002) replaced the local search by a genetic algo-
rithm. Iannoni and Morabito (2007) as well as Iannoni et al.
(2008) and Geroliminis, Kepaptsoglou, and Karlaftis (2011) have
embedded the hypercube model into genetic algorithms to solve
the location problem. In this paper we also use the hypercube
model as it exactly models the system. While hypercube approxi-
mations (Jarvis, 1985; Larson, 1975) may lead to faster solution
procedures, they do not provide an exact solution. Thus, as men-
tioned earlier, our approach is to find a heuristic solution to an ex-
act problem as opposed to an exact solution to an approximate
problem. Future work, related to scalability issues of the proposed
method is mentioned in Section 8.
3. Mathematical model

Our model is different from existing literature in that we inte-
grate location and dispatching decisions into a single framework,
whereas the mentioned references assumed the use of a priori dis-
patching policy, particularly based on the closest relationship.
3.1. Assumptions

It is assumed that the system provides service to a certain geo-
graphical region J that is partitioned into service regions -demand
zones, cells or atoms are other terms that have been use for these
partitions. A given number of servers are located at points i 2 I � J.
Demands occur solely at the center of each service region by time
homogeneous Poisson requests for service and are attended at
exponential service rates. Larson and Odoni (1981) have shown
that reasonable deviation from this last assumption do not signif-
icantly alter the accuracy of the model.

Each service region j generates a fraction fj of the total demand
ð
P

jfj ¼ 1Þ. The total demand is then k and the demand of each zone
is kj � kfj. A server’s primary response area (district) consists of
those service regions to which the server would be dispatched if
available. When a request for service arrives, if the primary respon-
sible server is available, it is dispatched immediately. The server
travels to the place of the incident, spends some time at scene
and then returns to its base location before being assigned to the
next request. If the responsible server is busy when a request for
it arrives, another server will be assigned, following a fixed priority
list with respect to the servers for each demand zone. The priority
list can include all the servers available in the system (total back-
up) or only a subset of them (partial backup). If all the servers are
busy, the request is considered to be lost (this typically means that
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it will be served by an external system). The basic model also as-
sumes that the servers are identical and that the service time of
any response unit for any call for service has an exponential distri-
bution with mean 1/l (This assumption is reasonable if the travel
times are short compared to the total service time, which is usually
the case in urban areas). The service time for a call includes the set
up time, the travel time from the base to the incident location, the
on-scene time, a possible related follow up-time and the travel
time back to the base. The response time interval is the time from
when an ambulance is dispatched until it arrives at the scene.

Each server can be busy or free (idle), generating 2N possible
states for the system (where N = number of servers); the states
can be mapped to the vertices of a hypercube (strictly a cube for
the case of exactly three servers) named Bj(j = 1,2, . . . ,2N) of dimen-
sion N. Each vertex, or state, is denoted by an ordered set of N one
digit binary numbers taking the value of 1 if the server is busy and
0 if not (Bj � {b1,b2, . . . ,bN}). It is assumed that only one step tran-
sitions occur, i.e. two servers cannot be assigned simultaneously.
Using the convention proposed by Larson (1974), transitions are
only allowed between states with Hamming distance equal to 1,
where the Hamming distance dij between two vertices Bi and Bj

is the number of digits by which the two vertices differ (or the
‘right angle’ distance between two vertices of the hypercube).
The terms ‘‘upward’’ and ‘‘downward’’ Hamming distance, dþij and
d�ij , refer to the number of binary digits switching from 0 to 1
and 1 to 0. The model of the system corresponds to a finite-state
continuous time Markov process. Steady-state probabilities are
determined from equations of detailed balance that express a con-
servation of flow between consequent states. This set of balance
equations depends on both, the location of the servers and the dis-
patching policy.

3.2. Formulation

In the following formulation J represents the service regions; I
are the potential location sites, jIj 6 jJj; N is the total number of re-
sponse units (servers); tnj is the mean response time for server n to
reach region j, when available; k is the total network-wide demand
(requests/unit time); fj is the fraction of network-wide workload
generated from region j 2 J; Enj is the set of states where server n
is the preferred server for region j; CN are the vertices of a N-
dimensional hypercube; d�ij ; d

þ
ij are the ‘‘downward’’ and ‘‘upward’’

Hamming distances between vertices Bi and Bj, d�ij þ dþij ¼ dij

� �
and

kij, lij are the upward and downward mean rates at which transi-
tions are made from state i to state j, corresponding to vertices Bi

and Bj, given that the system is in state i. Finally, we have the deci-
sion variables:

xi ¼
1 if we locate a vehicle at potential site i

0 otherwise

�

yl
ij ¼

1 if vehicle located at i has priority l to zone j

0 otherwise

�

The following are auxiliary decision variables: qnj is the fraction of
dispatches sending unit n to region j, n = 1,2, . . . ,N; P(Bk) is the stea-
dy-state probability of state corresponding to vertex Bk,
k = 1,2, . . . ,2N.

Eq. (1) is the objective function, Mean Response Time (MRT);
constraint (2) determines the number of servers to be located
and constraint (3) is the integrality constraint for the decision var-
iable xi. Constraint (4) calculates the fraction of all dispatches that
send server n to region j using standard queueing theory argu-
ments and assuming a zero-line capacity system (calls that arrive
when all the servers are busy are lost); Eq. (5) represents detailed
balance equations determining steady-state probabilities of the fi-
nite-state continuous time Markov process model with N servers.
Note that even though it was assumed that the service rate is equal
for all servers since they were identical, the general expression gi-
ven by this equation allows for different service rates for different
servers. For details on calculating kij and lij, see Geroliminis et al.
(2009).

Constraint (6) ensures that the sum of probabilities is equal to
one. Eq. (7) is the integrality constraint for the decision variable
yl

ij; constraint (8) states the logical relationship between the loca-
tion decision and the assignment of a location within the priority
list of a demand zone and finally, constraints (9) and (10) assure
that there is a complete priority list for each demand zone, and that
within the priority list of each demand zone each server appears
only once. The full model given by (1)–(10) represents the basic
optimization problem in which the location of the servers and
the dispatching rule for each demand zone are the decisions to
be made. Also note that the steady-state probabilities are auxiliary
variables that change for every full combination of location and
dispatching decision.

The optimization problem is formulated as:

Minimize MRT ¼
XN

n¼1

XJ

j¼1

qnjtnj ð1Þ

s:t :

XI

i¼1

xi¼N ð2Þ

xi 2f0;1g; i2 I ð3Þ

qnj¼ fj

P
Bi2Enj

PðBiÞ
1�PðB2N Þ n¼1; . . . ;N; j2 J ð4Þ

PðBjÞ
X

i
Bi 2CN : dþij ¼1

kijþ
X

i
Bi 2CN : d�ij ¼1

lij

2
666664

3
777775

¼
X

i
Bi 2CN : d�ij ¼1

lijPðBiÞþ
X

i
Bi 2CN : dþij ¼1

kijPðBiÞ j¼1; . . . ;2N ð5Þ

X2N

i¼1

PðBiÞ¼1 ð6Þ

yl
ij 2f0;1g i2 I; j2 J; l¼1; . . . ;N ð7Þ

xi P yl
ij i2 I; j2 J; l¼1; . . . ;N ð8Þ

XN

l¼1

yl
ij¼1 i2 I; j2 J ð9Þ

XI

i¼1

yl
ij¼1 j2 J; l¼1; . . . ;N ð10Þ

Formally, the presented model corresponds to an NP-Hard problem
(Geroliminis et al., 2009). It is a non-linear mixed integer program-
ming model that has embedded a queuing sub-model correspond-
ing to the finite-state continuous time Markov process. Given a
particular set of locations for the servers available and a preference
list for each demand zone with respect to the same servers, it is nec-
essary to first solve the flow balance equations given by (5), (6), be-
fore being able to calculate the value of the objective function.
Although compactly written, those equations are neither easily
determined nor easily solved. The number of flow balance equa-
tions equals 2N, therefore the number of equations to solve the sub-
problem grows exponentially with respect to the number of servers.
It has been mentioned by Galvao and Morabito (2008) that in fact
the computer time required to generate the coefficients of the linear
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system may be even higher than the time required to solve it. That
is because of the complex relationships imposed by the combined
location and dispatching decisions. The flow balance equations lead
to a linear system of equations, whose exact solution requires the
calculation of the inverse for the matrix of coefficients. The size of
this matrix grows exponentially, therefore the time that it takes
to perform a single iteration to evaluate a candidate solution can
be prohibitive.

It was mentioned that maximizing coverage is the most com-
monly used approach to planning EMS systems. Instead of the
standard coverage, we use the concept of expected coverage as
presented by Ingolfsson, Budge, and Erkut (2008), which takes into
account the congestion of the system and potentially the variabil-
ity in responses times. The following equations details how to cal-
culate the expected coverage:

Ex: Cov ¼
XJ

j¼1

fj

XN

n¼1

Pj;jðnÞð1� PjðnÞÞ
Yn�1

u¼1

PjðuÞ ð11Þ

where Pj,i is the probability that station i covers node j, Pi corre-
sponds to the busy probability of the ambulance in station i and
j(n) refers to the nth preferred station for demand node j. Note that
Pj,i can be used as a binary variable, indicating whether or not the
coverage threshold is satisfied by the available servers, but it can
also be used as the probability of that coverage being possible with-
in the given threshold, accounting for variability in travel times. In
this particular case it has been used as a binary variable. Eq. (11) re-
places Eq. (1) in the optimization model for the cases in which we
are looking at maximum expected coverage.

4. Toy case study

In this section we introduce a case study that is small enough
that we can enumerate all the possible solutions, also identifying
the optimal. Because of the small size we also use the exact solu-
tion for the embedded hypercube model. For this example we
use a square region on the cartesian plane and assume that we
have five demand zones, that are also candidate locations for three
available servers. The locations of the demand zones can be in any
integer ordered pair within a grid, starting at (0,0) and extending
up to (10,10) on the plane. The demand for each zone ranges be-
tween 1 and 20 calls/period-time.

To generate different instances we use random numbers as fol-
lows. The coordinates (x,y) for each of the five demand zones are
obtained by generating uniform integers between 0 and 10. For
each one of the demand zones the demand is obtained by generat-
ing uniform integers between 1 and 20. The distances between de-
mand zones correspond to right angle distances. Optimal locations
are nevertheless insensitive to the choice of a distance metric (Ben-
veniste, 1985). The service rate for the servers is assigned based on
assuming a particular value for the overall utilization of the sys-
tem, namely q = k/3l. As in the works by Budge, Ingolfsson, and Er-
kut (2009) and Chiyoshi et al. (2001), where q is varied between
0.1 and 0.9, three different scenarios of utilization are evaluated
for each combination of location of demand zones and demands,
Table 1
Spatial locations and demand - one random instance.

Locations

Index x-Coord y-Coord Demand

1 10 5 20
2 1 1 18
3 7 9 12
4 2 7 8
5 6 1 6
by using q = 0.1,0.5,0.9. The server’s speed is assumed to be 1.0
distance-units/time. The maximum threshold used for coverage
was 7.0 distance units. 100 different set of locations are generated,
and since for each one of them three scenarios are considered for
the service rates, we generate 300 different instances.

One of such randomly generated problem (Table 1) and its
respective optimal solution for MRT (Table 2) after enumeration
is detailed next. It is worth noticing the number of possible solu-

tions: 77,760. There are 5
3

� �
¼ 10

� �
possible locations. Each de-

mand zone has an ordered list of the servers, and since there are
three servers, each customer can have 3! unique lists. The total
number of solutions is then 10 � 3!5 = 77,760. Note that the inclu-
sion of another demand zone would increase the number of solu-
tions to 466,560. In other words, the number of possible solutions
increase by a factor of 3!. Hence, the search space for a real size
problem is huge, and enumeration is no longer an alternative.

In Table 2, St. Cov refers to the basic calculation of coverage,
hence each demand zone is considered covered if there is at least
one ambulance located at a distance of 7.0 or less distance units;
St. Cov = 1.0 means full coverage. However, this definition of cover-
age does not take into account the congestion of the system, hence
we used Ex. Cov (Eq. (11)). MRT (Eq. (1)) is the mean system re-
sponse time. The 5th column corresponds to the probability of
the system being busy (all the servers are attending calls), and
therefore new calls would be rejected. The last column indicates
the optimal locations of the servers.

At first sight results in Table 2 correspond to what was ex-
pected. On one hand, the increase of the overall utilization, which
basically means reducing the service rates while keeping the call
rates constant, causes an increase in the expected response time,
as well as an increase in the busy probability. On the other hand,
we can see that the standard coverage is not able to take into ac-
count the congestion phenomena. The expected coverage given
by (11) is clearly affected by the increase of the overall utilization.
The more congested the system, the lower the expected coverage.

We have solved by enumeration a total of 300 small size prob-
lems, for both minimum response time and maximum expected
coverage. As expected according to the arguments expressed in
Section 2, for each one of the 300 problems, the optimal solution
that minimizes MRT was the same as a solution where the loca-
tions were optimized and a dispatching list based on the closest
vehicle was used. We have also observed that, when there are ties
(several servers are at the exactly same minimum distance from a
given demand zone), only one of the combinations leads to the
optimal solution, although the use of other dispatching ranking,
which would still be based on the closest rule (because of the ties),
causes an increase on the objective function value that in the worse
case is below 2%. Note that the change of the preference list of a
single demand zone, even if for that demand zone several servers’
locations are tied, changes the overall performance indicators of
the system.

Next we looked for maximum expected coverage (Ex. Cov), as
given by Eq. (11). Once again, we enumerated all the possible solu-
tions for all 300 instances to be able to identify the ones that gen-
Table 2
Optimal (MRT) solution information.

Performance indicator

q St. Cov. Ex. Cov. MRT P[111] Optimal locations

0.1 1.0 0.954 2.123 0.003 1–2–3
0.5 1.0 0.721 4.340 0.134 1–2–3
0.9 1.0 0.517 5.355 0.309 1–2–4



Fig. 1. Swapping mutation operator.
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erate the maximum coverage. In this case we have noticed that the
optimal solutions do not follow the closest dispatching rule. We
have also observed that there are several solutions that exhibit
the same maximum coverage for a particular instance, and that
the associated response time of those solutions present great var-
iation. Since minimizing the response time is also important, in
cases where there were several optimal solutions with respect to
coverage we have selected the one with the minimum associated
response time. Although the optimal solutions with respect to ex-
pected coverage do not follow a myopic allocation policy we have
also noticed that the use of such a policy would cause a decrease in
expected coverage that in all cases is below 3.8%. In fact for half of
the cases it is below 1.0%.

Since both objectives are important, we compare the optimal
solutions obtained with each optimization criteria. We noticed that
for every instance of the problem, the maximum coverage identi-
fied is in fact greater than the coverage associated with the mini-
mum response time solution. However, the increase in coverage
is small on average, ranging from 0.18% to 17.4%, with a mean in-
crease of 3.15% (95% CI: 2.75–3.55%). On the other hand, the in-
crease in coverage (obtained by changing the objective function)
comes as a result of worsening the response time. The increase
in MRT ranges from 1.5% to 117%, averaging 65.2 (95% CI: 56.33–
74.24%)%. As expected, there is a trade-off between response time
and expected coverage. These results seem to indicate that focus-
ing on minimizing the response time yields solutions that are ro-
bust with respect to the expected coverage. There were only 4
cases (out of 300) in which the proportional improvement in cov-
erage (when maximizing coverage) was in fact higher than the cor-
responding increase in response time. In all the other cases the
trade-off between improved coverage but increased response time
is not appealing. These results are aligned with those reported by
Geroliminis et al. (2009), who mentioned that the optimal loca-
tions obtained by using MCLP (a coverage maximization approach)
performed up to 40% worse when the response time was evaluated
by using the hypercube model. In the next section we introduce an
optimization framework that allows us to solve bigger size prob-
lems, hence allowing us to check if the observed behavior of the
small instances holds for more real-world sized problems.

5. Genetic Algorithm based optimization framework

Next we develop an optimization framework to solve the com-
bined location and dispatching decision problem for EMS systems.
The optimization is based on GAs. In his review, Goldberg (2004)
suggest that the use of spatial queuing (hypercube model) or sim-
ulation procedures embedded within a heuristic search offers the
greatest utility for real world EMS planning applications. Aytug
and Saydam (2002) also comment on the success of GAs in solving
combinatorial problems, which make them strong candidates to
solve the ambulance location/allocation problem. Iannoni and
Morabito (2007) as well as Iannoni et al. (2008) and Geroliminis
et al. (2011) have also embedded the hypercube model into genetic
algorithms to solve the location problem. As mentioned by Geroli-
minis et al. (2009) the objective function MRT, as a function of the
location space, has many local minima, making it suitable for a glo-
bal search procedure such as GAs. Jia, Ordóñez, and Dessouky
(2007b) proposed a GA to solve the problem of locating facilities
to attend large scale emergencies. Shariff, Moin, and Omar (2012)
used a GA for solving the MCLP problem applied to healthcare facil-
ity location in Malaysia.

Genetic Algorithms were first introduced by Holland (1975) and
popularized later by (Goldberg, 1989). GAs are general-purpose,
population based search algorithms that resemble the natural
selections survival of the fittest. Particular coded schemes (solu-
tions representations) corresponding to chromosomes represent
population members. At each iteration individual solutions are
evaluated and assigned a fitness value (related to the objective
function being optimized). According to their fitness values, solu-
tions are selected to construct the next generation by applying ge-
netic operators: selection, crossover and mutation. Current
members of the population are probabilistically selected based
on their fitness values, where a high fitness value yields a higher
chance of being selected for the next generation. After selection,
current solutions may be carried to the next generation without
altering (selection), or they may be crossed-over to generate the
next set of solutions. Crossover is an operator by which two solu-
tions mutually interchange their current genes. Mutation is an
operator that randomly alters the value of a gene of a selected solu-
tion. Following the work by Aytug and Saydam (2002), there are
five key issues in designing a GA algorithm: (1) Selecting an appro-
priate solution representation, (2) an effective mutation operator,
(3) an effective crossover operator, (4) a feasible initialization
and (5) appropriate crossover and mutation rates as well as popu-
lation size.

5.1. Solution representation

The present work uses the idea of a composite chromosome.
That is, a chromosome that is in fact composed of several chromo-
somes. This representation makes sense given the nature of the
problem in which there are two decisions to be made, a location
decision and a dispatching decision. Therefore, those two decisions
are coded in separate sub-chromosomes. Furthermore, since the
dispatching decision is in fact one decision per each demand zone,
that gives rise to the idea of having separate chromosomes to rep-
resent each demand zone. Fig. 2 shows the composite chromosome
for a case in which there are three servers to be located among five
candidate locations to attend five demand zones (every demand
node is a candidate to locate a server). Note that the chromosome
has been divided into sub-chromosomes. The first one deals with
the location decision, and therefore has size 5, with the three first
components storing the location of a server. The location sub-chro-
mosome stores more information than required, since only a sub-
set of locations will have a server. However, it is kept that way to
facilitate feasibility checking as well as the mutation operation, de-
scribed later. The remaining sub-chromosomes have size 3, repre-
senting the order in which every server is ranked to attend a
particular demand zone. Note that the sub-chromosome for the
location decision corresponds to a permutation of the candidate
locations and any sub-chromosome for the dispatching decision
corresponds to a permutation of rankings.

5.2. Mutation operator

The standard mutation operator randomly selects a chromo-
some from the pool, and then goes through every one of its genes
changing them randomly with a given probability. Since we are
using a composite chromosome, once a chromosome has been se-
lected for mutation the operation should analyze every one of its
sub-chromosomes. For we are working with sub-chromosomes
that are a permutation, the standard mutation operator is replaced
by a swapping operator. It randomly interchanges the positions of
two genes within the chromosome, as depicted in Fig. 1. Note that
for the location sub-chromosome the swap is done such that the
interchange occurs between an assigned location in the current



Fig. 2. Composite chromosome.
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solution, and a candidate location not yet selected. That is in order
to avoid swaps that do not affect the solution.

5.3. Cross-over operation

A single point cross-over operation is used on the implementa-
tion of the GA. The recombination of genes is done at sub-chromo-
somes level, which means that the candidate cross-over points
correspond to sub-chromosomes as well. To better understand
the way it operates an illustrative example is given in Fig. 3. A
and B are the two parents. O1 and O2 represent the two offsprings
that it is possible to generate. Parent A has been shadowed so that
it is possible to trace where the genes of it are going to be after the
cross-over operation. The possible crossover points are represented
by vertical dashed lines.

5.4. Population initialization

It is usually the case that the initialization is done randomly.
The existence of constraints might require us to develop initializa-
tion routines that produce feasible solutions. In this case the pop-
ulation of the GA can be randomly initialized, since any
permutation for any sub-chromosome will generate a feasible
solution. However, it is also possible to use an initialization proce-
dure to create ‘good’ initial solutions, using the available knowl-
edge about the problem. Initial tests of the GA implementation
were done with a random generated population. Based on the re-
sult from the enumeration procedure for the small case study pre-
sented in Section 4, a better initialization procedure is devised.
Since the use of the closest dispatching rule seems to effectively
helps in minimizing the response time also providing good cover-
age, it makes sense to use that information as part of the initializa-
tion process. In fact, when solving mid-size problems, the locations
are generated randomly during the initialization, but the dispatch-
ing is based on the use of the closest servers first.

5.5. Cross-over and mutation rates – population size

In order to test the performance of the GA values of mutation
(Pm) and cross-over (Pc) rates are required. Iannoni et al. (2008)
used Pc = 0.5, and Pm = 0.06, while the population size was set to
S = 100 individuals. In turn, Aytug and Saydam (2002) suggested
Pc = 0.6 and Pm = 0.03, while the population size was set according
to S = max (100;0.75n), where n is the number of nodes in the
problem being solved. The authors argued that for objective func-
tions with potential multiple local optima, there is a trade-off be-
tween mutation and cross-over, and that large population sizes
Fig. 3. Single point cross-over for
are generally favorable, at the cost of computation time. It is also
mentioned that the rule of thumb Pm = 1/L, where L refers to the
length of the chromosome could yield good results. Instead of
selecting arbitrarily values for these GA parameters, in the next
section we introduce an experimental design to tune-in the param-
eters of the GA before using it. The implementation of the GA has
been done using the Java GA framework developed by Meffert,
Meseguer, DMartf, Jerry, and Rotstan (2012).
6. Computational results

6.1. Tuning the GA

A tuning procedure was carried out to find adequate values for
several parameters of the GA. The purpose of any experiment is to
get the maximum amount of information with the minimum
expenditure of resources. A Central Composite Experimental De-
sign (CCD) was used, which according to Montgomery (2008) is
widely used because it is highly efficient and flexible. A CCD is nor-
mally used to fit a second order polynomial model of a variable of
interest. In our case we are not trying to fit a polynomial model.
However the combination of factors’ values suggested by the
CCD provide a good exploration of trade-offs between the different
parameters of the GA and its general performance.

There are three parameters that need to be set up: mutation
rate, cross-over rate and population size. In experimental design
the parameters are called factors, and for each one of these three
factors it is necessary to specify a minimum and a maximum value.
The minimum and maximum values to be tested for each parame-
ter have been selected according to general recommendations of
designing GAs from previous works (Aytug & Saydam, 2002; Ian-
noni et al., 2008). The CCD also uses the midpoint of the factor (gi-
ven the minimum and maximum values), as well as the so-called
axial points. Axial points correspond to values of the factors that
assure that the predicted values of the fitted response surface have
the same variance, if the predicted points are at the same distance
from the center of the design region (Montgomery, 2008). For the
case of three factors a standard CCD requires 20 runs. The first
14 runs correspond to different combinations of the factor’s levels,
while the last 6 runs correspond to experiments in which each fac-
tor is set to its midpoint. A standard CCD does not uses replication.
We do use it (30 runs for each combination of factors), as a way to
improve the statistical significance of the tests. Instead of the 6 last
runs each with one replication, we have a single run setting the
factors to their midpoints and we replicate it 30 times. We explore
15 combinations of factors, detailed in Table 3.
the composite chromosomes.



Table 3
Combination of factors for experimental design.

Combination Pm Pc Pop. size

1 0.02 0.4 30
2 0.05 0.4 30
3 0.02 0.6 30
4 0.05 0.6 30
5 0.02 0.4 100
6 0.05 0.4 100
7 0.02 0.6 100
8 0.05 0.6 100
9 0.01 0.5 65

10 0.059 0.5 65
11 0.036 0.332 65
12 0.036 0.668 65
13 0.036 0.5 6
14 0.036 0.5 123
15 0.036 0.5 65
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The minimum and maximum values for the mutation rate are
2% and 5% (the values used in the experiments are then those
two, plus the center point, 3.5% and the axial points 1% and 6%).
For the Cross-over the minimum and maximum values are 40%
and 60% and the population size varies between 30 and 100 indi-
viduals. In all the runs of the GA while tuning the parameters,
the number of evolutions is set up so that the total number of indi-
viduals being evaluated remains constant (approximately equal to
10.000). For example, if the population size is set to 30 then 334
evolutions are performed.

The results from the tuning procedure are given by the box plot
graph shown in Fig. 4. It corresponds to the tuning for MRT optimi-
zation. As it was mentioned before, for each combination of factors
given in Table 3, the GA was run 30 times, applied to different in-
stances and each time using a different random seed. In each case
100 evolutions of the GA were allowed. We have noticed that
allowing more evolutions did not further improve the objective va-
lue. In order to have a comparison point to tune the GA we enu-
merate only the location solutions for the case study

30
3

� �
¼ 4060

� �
possible location decisions. It is not possible to

also enumerate the dispatching decisions, which would be compu-
tationally prohibitive. For each possible location solution we use
the closest rule to set the priority dispatching list of each demand
zone. We then compare the performance of the GA (GASol) against
the best solution found (BestSol) following the enumeration proce-
dure just described. The Gap is calculated as (Gap = (Best-
Sol � GASol)/BestSol).

Negative values of the Gap indicate that the GA obtained a solu-
tion with a worse objective function value than the best solution
Fig. 4. Results of GA experimental design tuning for MRT minimization.
coming from the enumeration procedure. If Gap = 0 it basically
means that the GA was able to find a solution with the same objec-
tive function value. Positives values of the Gap would indicate that
the combination of dispatching and location decisions was useful
in getting a better value for the objective function. Recall that
the gap reported is the average over 30 runs. Out of the 15 combi-
nations of factor’s levels under consideration, combinations 7, 8
and 14 showed the best overall performance. All have a Gap close
to zero, and exhibited low variability. We ran normality tests on
the selected combinations and could not verify the normality of
the data. Therefore, we performed a non-parametric test, the Wil-
coxon Signed Rank Test, to obtain the Confidence Intervals (CIs) for
the three candidate combinations. Table 4 shows the results from
the non-parametric test. As it can be seen, the overlapping CIs indi-
cate that statistically there is no difference between the parame-
ters combinations. We decided to use combination 8 which has
the smaller CI.
6.2. Mid-size case study

We solved a bigger, mid-size problem, proposed as an instance
of MCLP (http://www.lac.inpe.br/lorena/correa/Q_MCLP_30.txt)
(Correa, Chaves, & Lorena, 2007). We analyze several scenarios,
varying the number of servers to be located, considering 3 and 4
ambulances. Because of the small number of ambulances we use
again an exact solution for the hypercube model. The server rates
are obtained by selecting particular values for the overall utiliza-
tion factor, q = k/(N � l). In fact, q is varied between 0.1 and 0.9,
with increases of 0.1. For the scenarios having three servers we
use full backup, which means that any zone can be attended by
any of the available servers. In the case of four servers we use par-
tial backup, therefore each demand zone is only allowed to be
served by 3 of the available servers. There are two reasons to pro-
ceed this way, that have also been suggested by Geroliminis et al.
(2009): (i) from a practical perspective, allowing servers that are
ranked as 4th and up for a particular demand zone is not desirable,
because the overall efficiency of the system would likely decrease;
(ii) the calculation of transition rates for the embedded hypercube
model becomes very tedious.

For each instance we ran the GA using the tuned parameters
and initially minimizing the MRT. In each case we also enumerate
the location solutions, and combine them with the use of the clos-
est dispatching policy to have a full solution. That gives us a com-
parison point. The GA was allowed to run for 100 evolutions. We
have noticed that allowing more evolutions does not improve the
results. The performance of the GA is compared to the best solution
coming from the enumeration procedure. Table 5 shows the results
of applying the GA, in each case running it 30 times starting with
different initial solutions. The experiments have been run on a
PC executing Windows 7-64 Bit, with an Intel� Core 2 Duo proces-
sor running at 2.13 GHz and 2 GB of RAM. All the programming
was done in Java. The average running time of the GA for the three
servers scenarios was 20 s, while the average for the case of four
servers was 55 s.

As expected given the low-medium traffic (Jarvis, 1981; Kateha-
kis & Levine, 1986), for the mid-size problem the results suggest
Table 4
Wilcoxon test for obtaining CIs.

Conf. interval

Combination Median gap (%) Lower Upper

Comb7 �0.191 �0.823 �0.058
Comb8 �0.208 �0.476 �0.049
Comb14 �0.271 �0.712 �0.109

http://www.lac.inpe.br/lorena/correa/Q_MCLP_30.txt


Table 5
Mid-size case study – MRT results.

3 Servers scenarios 4 Servers scenarios

q MRT Gap (%) CV MRT Gap (%) CV

0.1 0.587 �0.26 0.0039 0.485 �0.51 0.0054
0.2 0.649 �0.07 0.0015 0.518 �0.27 0.0043
0.3 0.679 �0.08 0.0022 0.536 �0.37 0.0050
0.4 0.703 �0.02 0.0009 0.542 �0.53 0.0041
0.5 0.722 �0.02 0.0001 0.544 �0.78 0.0068
0.6 0.737 �0.03 0.0012 0.551 �0.46 0.0071
0.7 0.750 �0.14 0.0054 0.591 �1.46 0.0160
0.8 0.759 �0.04 0.0014 0.602 �0.98 0.0117
0.9 0.767 0.00 0.0000 0.621 �1.00 0.0113

Table 6
Hanover case study – MRT and exp. coverage.

Min. Gap Exp. Max.
q MRT MRT (%) Cov. Ex. Cov.

0.2 4.53 �1.48 0.88 0.89
0.3 4.82 �1.08 0.83 0.85
0.4 4.97 �1.03 0.78 0.81

Table 7
Mid-size case study – workloads and individual MRT.

3 Servers – CV 4 Servers – CV

q Workload Ind. MRT Workload Ind. MRT

0.1 0.387 0.594 0.357 0.605
0.2 0.250 0.590 0.105 0.529
0.3 0.039 0.565 0.318 0.489
0.4 0.029 0.541 0.335 0.436
0.5 0.038 0.549 0.325 0.512
0.6 0.018 0.539 0.317 0.501
0.7 0.031 0.531 0.612 0.556
0.8 0.028 0.525 0.609 0.551
0.9 0.025 0.520 0.605 0.548
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that a policy that focuses on appropriately selecting locations in
combination with dispatching the closest server minimizes mean
system response time. These results serve as a validation of the
general structure of the mathematical model as well as for the cor-
rectness of the optimization procedure. Note that the MRT is smal-
ler when we have an additional server available. Also, for the same
number of servers, increasing the utilization of the system also in-
creases the MRT. For the mid-size case studies we have also ob-
served that the expected coverage associated with the solution
that minimizes the MRT is smaller (7.2% smaller, on average. 95%
CI: 6.14–8.31%) than the maximum observed after the enumera-
tion procedure.

Next we approached the optimization of the system maximiz-
ing the expected coverage. A procedure similar of that described
in Section 6.1 was followed to tune the GA to be used with the
new objective function, Expected Coverage. In this case the combi-
nation 7 (from Table 3) showed the best results and therefore was
selected as the values for the GA parameters. The enumeration pro-
cedure of the location decisions together with a myopic dispatch-
ing policy was used again to identify the solution with the
highest expected coverage. The performance of the GA was com-
pared against the solution from enumeration. The overall average
Gap of the GA compared to the enumeration procedure was
�0.87%. The overall mean coefficient of variation of the maximum
coverage was 0.0136. These performance measures of the GA show
that the algorithm was consistently able to get to the same or to a
very close solution from the best found by the enumeration proce-
dure. Compared to the solution that minimizes the response time,
the average improvement in coverage is 7.9% (95% CI: 6.64–9.09%).
However, this increase comes at a price, a sacrifice of MRT that on
average increased by 19.2% (95% CI: 16.35–21.97%). Recall that the
expected coverage of the solution minimizing MRT was on average
7.2% smaller than the maximum obtained with enumeration, while
the increase on MRT would be on average 19.2% as a result of max-
imizing coverage. The joint location/allocation approach was not
able to improve the solution found by combining the enumeration
of locations and the closest dispatching policy.
6.3. Hanover County case study

Here we introduce a case study using real data from the Hano-
ver County Fire/EMS department (Hanover, VA). The county has
been divided for planning purposes in 122 demand zones. There
are 16 candidate locations for five ambulances. The total demand
rate has been estimated in 1.2 calls/h. The average service time
per call has been estimated to be 74 min and it is assumed to be
independent of the demand zone being served. The system covers
474 square miles and a population nearing 100,000 individuals. For
this case study we use partial backup, allowing every demand zone
to be served only by three out of the five available servers. The uti-
lization factor for this real system is q = 0.2. However we consider
two variations, increasing the demand by a factor of 1.5 and 2
respectively (which increases the overall utilization, q). For this
case study we are also using the exact procedure to solve the
hypercube model (with five servers the number of states is 32).
The average running time of the GA for each scenario of this case
study was 280 s. Table 6 shows the results for the Hanover scenar-
ios. The gap reported in Table 6 (third column) is a comparison of
the MRT obtained by using the joint location/allocation approach
versus the best solution found by solving a location only problem
for which the dispatching rule is always sending the closest avail-
able vehicle available. As the gap values indicate, the joint ap-
proach is able to produce results for the MRT that are around 1%
of the same criterion obtained by the location only approach. The
fourth column shows the expected coverage associated with the
solution that minimizes the response time, while the last column
shows the maximum possible coverage (obtained by solving the
model with the objective of maximizing expected coverage).
6.4. Non-efficiency criteria

Thus far we have introduced an optimization framework for the
joint location/allocation problem, however we have noticed that
for the two most common objectives the joint approach is not add-
ing value, since the use of a myopic policy seems to suffice to get to
the optimal or near optimal solution. Hence we have turned our
attention to calculating other performance indicators for the sys-
tem. In particular, other works have mentioned the importance
of finding solutions in which the total workload is evenly distrib-
uted among the available servers, and some others have mentioned
that it would be desirable to have individual response times (the
mean response time for each demand zone) that do not vary too
much among the demand zones. Both performance indicators are
associated to the idea of fairness, either from an internal or exter-
nal point of view. In Table 7 we present the coefficient of variation
(CV) for both, mean individual workloads and mean individual re-
sponse times, resulting from the solutions that optimize mean re-
sponse time. In this table several instances of high CV values (for
example P0.5) are observed, which implies high variability among
server’s workloads or demand zones’ response time.

Among the several instances of the case study it is possible to
notice that variability on individual response times tends to be
higher (see Table 7), hence we attempted to improve that perfor-



Table 8
Mid-size case study – optimizing CV resp. times.

Min CV Ind. RT Delta Trade-offs (%)

q Enum. Loc./Disp. CV (%) MRT Ex. Cov.

0.1 0.489 0.364 �25.577 37.853 �11.980
0.2 0.504 0.355 �29.652 32.423 �10.461
0.3 0.496 0.367 �25.948 24.485 �4.603
0.4 0.478 0.375 �21.571 19.698 �3.981
0.5 0.465 0.380 �18.285 16.345 �3.911
0.6 0.458 0.384 �16.154 13.764 �3.497
0.7 0.454 0.389 �14.300 11.954 �3.472
0.8 0.481 0.392 �18.636 11.051 �3.098
0.9 0.476 0.397 �16.534 9.612 �3.022
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mance indicator by using the optimization approach already devel-
oped. Eq. (1) gives the total average response time for the system
and in doing so it includes the response time for each demand
zone. We use the coefficient of variation (CV) of the individual re-
sponse times as the new optimization criteria. Once again it was
necessary to tune the GA with the new objective function. The
GA parameters that perform the best were the same as for the case
of MRT minimization. We used the enumeration procedure of the
location decisions to get a reference point of the minimum CV
for the response times and the compare those solutions with the
ones obtained by the joint location/allocation approach. Table 8
shows the results for several instances of the problem, all of them
using three servers.

The second column in Table 8 shows the minimum CV for indi-
vidual response times that was attainted by using the enumeration
procedure for the location decisions in combination with the clos-
est dispatching rule. The third column shows the CV that was pos-
sible to achieve by using the proposed optimization approach
while the fourth column compares the two previous, showing
the relative improvement that was possible thanks to the joint ap-
proach. The last two columns show the sacrifices in MRT and Ex-
pected Coverage that come as a result of the reduction in
response times variability across demand zones. We see that there
are both an increase in response time and a reduction in coverage.
The size of the trade-offs depends upon the utilization (q) of the
system. The trade-offs were calculated using the solution that min-
imizes response time as a reference point. For instance, for q = 0.4
there is a reduction of 21.5% in response time variability, as mea-
sured by the coefficient of variation, as well as in increase of about
20% in response time and a reduction of 4% in coverage.
7. Results summary and discussion

We have done extensive computational experiments using 300
small case studies (enumerating more that 70,000 solutions for
each instance). We were looking for a better understanding of
the potential benefits when location and dispatching decisions
are made together for an EMS system. The instances have been
generated randomly therefore not favoring any particular result
in terms of the decisions being made. Although previous literature
had suggested that the existence of demand zones with very differ-
ent demand rates could lead to situations in which the dispatching
based on the closest rule was not optimal, our results were in
agreement with some other references showing that using a myo-
pic policy can lead to optimal solutions. We have allowed the de-
mand rates to vary between 1 and 20, therefore introducing
differences in the demand rates. What we have found is that if
the dispatching policies are designed as a fixed priority list associ-
ated to each demand zone, then focusing on finding good locations,
and combining them with the use of the closest dispatching rule,
yields the desired result of minimizing the mean response time.
In terms of coverage, which is also a common objective to opti-
mize in EMS system, we have used an expected version of cover-
age, since previous works have made it clear that the standard
coverage, which does not take into account the congestion phe-
nomena, overestimates the real coverage. For the small instances
we have found that the solutions that maximize the coverage did
not use the dispatching policy based on the closest rule. However,
we have also noticed that the improved coverage that comes as a
result of its maximization, causes a deterioration in the mean re-
sponse time. As pointed out in Section 4, optimizing the coverage
increases it less than 5% (compared to the coverage obtained by
the best solution with respect to MRT), while the sacrifice in
MRT would be greater than 60%. Those results basically suggest
that optimizing the MRT is a better strategy, and that in fact the re-
sults in coverage when optimizing MRT are robust, in the sense
that the coverage is only 1 or 2% below its optimal value. These re-
sults about coverage were also validated with a mid-size real case
study found and adapted from previous literature. For the mid-size
cases the best coverage was reached when using the closest policy.
The average improvement in coverage was again smaller than the
average increase in response time.

Results from alternative performance indicators such as those
depicted in Table 7, suggest some other observations. Given the
values for the CVs it is not surprising that in some cases there
are some demand zones with a MRT that doubles that of other
zones, or one ambulance having a much heavier workload than
the others. Solutions that are good from the point of view of system
wide mean response time, can have other performance indicators
affected negatively. Since the optimization has been done with a
single objective in mind, there is no guarantee of good performance
with respect to other criteria. Our results have shown that optimiz-
ing the MRT also yields good values for expected coverage. That is
convenient since those two are the most common performance
indicators used for planning purposes of EMS systems. We illus-
trated the potential benefits of the joint approach by considering
a fairness performance indicator from the user point of view,
namely coefficient of variation for individual response times. In
this case, the joint approach was able to find better solutions than
those that could be reached by using a myopic allocation policy. Of
course, the improvement of a fairness objective like the one we
have used has consequences, altering other performance indicators
such as MRT and coverage. It would be up to the decision maker to
balance those trade-offs.
8. Conclusions

Our main goal was to develop an optimization framework for
the joint location/allocation problem for EMS systems. We com-
bined the mathematical model and a heuristic solution procedure
based on Genetic Algorithms, to be able to solve bigger instances
in which enumeration is no longer an option. We were able to val-
idate our approach. The GA has been consistently able to find the
same or a pretty close solution to that obtained by full or partial
enumeration procedures. In terms of MRT minimization or Ex-
pected Coverage maximization we have noticed that the integrated
approach do not offer tangible benefits. A more simpler approach
considering only the location decision combined with a myopic
allocation of the servers based on closest distance would be
enough.

One general explanation of the observed behavior is that MRT
and Expected Coverage are in fact a function of the distance (time)
between servers and demand zones. Hence, locations that reduce
the overall distance between servers and costumers tend to dom-
inate the optimization procedure. Although in this case we could
just have proposed an optimization procedure in which the deci-
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sions are the optimal locations, combined with the use of the clos-
est dispatching rule, we have kept both sets of decisions as part of
the optimization framework. We believe that it is important be-
cause it gives us the opportunity to attempt the optimization of
other performance indicators, so that we can see the trade-offs that
are being made as a result focusing on minimizing the response
time or maximizing coverage. The fact that solutions that minimize
response time offer at the same time a good expected coverage is
convenient, since those two criteria are the most commonly used.
There is another important consideration: regulations are usually
imposed as coverage thresholds, which leads to coverage maximi-
zation as preferred optimization criteria. However our results show
that the coverage maximization approach can lead to sacrifices in
response time that do not compensate for the gains achieved in
coverage. On the contrary, minimizing response time offers a good
trade-off with respect to the maximum coverage.

We have illustrated two alternative criteria, in particular vari-
ability on individual response time, as well as variability on ambu-
lances workloads. Those criteria can be seen as fairness
performance indicators from the perspective of internal and exter-
nal customers. We used individual response time variability as a
optimization criteria. As in the case of maximizing the expected
coverage, when focused on reducing response time variability
among demand zones it is the case that the best solutions do not
follow the use of the closest dispatching rule. Furthermore, the
improvements that can be made on variability are important, and
not only marginal as in the case of maximizing coverage. The pro-
posed optimization framework, already proven to work correctly,
can be used to analyze the EMS system from other perspectives,
gaining insight into the design of better operation strategies.

As future research directions we will attempt to identify other
performance indicators of EMS systems for which the joint location
and dispatching problem can yield substantial gains. Another po-
tential area for future research deals with the issue of scalability.
We are aware of the limitations of our approach in terms of apply-
ing the joint model and its solution procedure to real-sized case
studies, basically because the exact solution of the hypercube mod-
el will likely require extensive computation time (recall that the
exact solution to the hypercube model requires solving a linear
system of equations that grows exponentially in size with respect
to the number of servers available in the system). However, avail-
able approximation procedures that have been suggested in the lit-
erature could be embedded in the meta-heuristic optimization
framework proposed, hence reducing the computational burden
and allowing the solution of bigger instances.
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