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Abstract 

Weak local exploitation capability of the gravitational search algorithm (GSA) and its slow 

convergence rate in final iterations have been demonstrated in the literature. This paper presents a 

modified GSA denoted here as the accelerated multi-gravitational search algorithm (AMGSA) that exhibits 

an improved convergence rate. In AMGSA, the simplex crossover (SPX) and the operator mutation of the 

breeder genetic algorithm (BGA) are incorporated with the multi-gravitational search algorithm (MGSA) 

to achieve an algorithm with a good exploration-exploitation balance. MGSA is adopted to prevent 

stagnation of the search into a local optimum (i.e. to improve the exploration capability), while the SPX 

and the BGA mutation operator are used to bias the search toward promising areas of the search space 

(i.e. to promote local exploitation). The performance of AMGSA is evaluated using several benchmark 

truss optimization examples. Results indicate that AMGSA not only exhibits an improved balance between 

the exploration and exploitation schemes but also shows competitive promise in effectively and efficiently 

solving large-scale optimization problems as it requires a significantly lower number of structural analyses 

compared to other algorithms that it is checked against. 

Keywords: size optimization; truss structures; gravitational search algorithm; simplex crossover; breeder 

genetic algorithm. 
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1 Introduction 

Over the course of billions of years of evolutionary history, nature has heuristically (i.e. 

experimentally, especially by trial and error) developed a diverse and remarkably-ingenious set of 

dynamic and robust strategies that have endowed creatures and organisms with optimum yet 

sustainably-resilient adaptability to their in-flux environments. The last few decades saw 

significant research efforts that were devoted to understanding these strategies and exploring 

their applicability to solve complex engineering problems (e.g. see [1]). These efforts coupled with 

those driven by other inspirations (e.g. musical improvisation [2]) led to the development of 

several optimization techniques knows as optimization metaheuristics that in turn made previously-

unimaginable advances in structural optimization possible. The prefix meta-, meaning more 

developed/higher level, indicates that, in contrast to heuristic techniques, metaheuristics are 

problem-independent and versatile, making them suitable for various kinds of problems. In 

addition, compared to now-traditional gradient-based optimization techniques, the stochastic 

mechanism of metaheuristics allows them to effectively explore and exploit a vast search space 

enclosed by highly-nonlinear and discontinuous constraints without requiring gradient 

information and explicit formulations for the objective function and constraints [3]. It is not 

within the scope of the present study to detail the history of metaheuristics. However, a brief 

review of the most prominent metaheuristic optimization techniques is given below, and the 

interested reader is referred to, e.g., Sorensen et al. [4] for a portrait of the evolution of 

optimization metaheuristics. 

The phenomenal growth in the field of optimization metaheuristics has been taking place in a 

series of stages with divisions usually spaced out over several years. While the first use of 

heuristics by humans can be traced back to prehistoric times when they employed the strategies 

learned from determining the trajectory of a stone to hit a bear toward hitting a mammoth with a 

spear, the modern application of heuristics took place in the late 1950s and early 1960s when the 

advent of computer enabled researchers to develop and use algorithms to study the phenomenon 



of natural evolution. One of the first methods to receive recognition was the so-called evolution 

strategy, where the better of a solution and its mutated version is used as the parent for the next 

round of mutation [5]. Another method was evolutionary programming, where solutions are 

represented as finite-state machines that change from one state to another in response to a 

mutation operator [6]. 

These early algorithms lacked the concepts of population and crossover until 1975 when the 

recognition of their importance by John Holland in his seminal work [7] followed by a book by 

his student David Goldberg [8] sparked tremendous research activities in the field of evolutionary 

algorithms. Inspired by the Darwinian “survival of the fittest” concept, Holland [7] proposed the 

genetic algorithm (GA) where a population of candidate solutions each represented by an array of 

bits is randomly generated and iteratively improves through the repetitive application of a series 

of stochastic operators (i.e. mutation, crossover, inversion, transposon, and selection). 

The 1980s saw the development of two of the most popular optimization algorithms. First, 

Kirkpatrick et al. [9] developed the simulated annealing (SA) optimization algorithm by 

analogizing the optimization process to annealing—the controlled heating and cooling process 

used in metallurgy and glass production to remove stresses from the material. In SA, solutions are 

stochastically changed in each step so as to iteratively lead the system toward states of lower 

energy. This process is repeated until the system achieves a sufficiently-low energy, or until a 

given computational budget is exhausted. Later, Glover [10] proposed tabu search, where a 

memory structure retaining rules and previously-visited solutions is used to refine the search 

space from poor solutions, thus gradually isolating the optimum. 

In the 1990s, swarm intelligence—collective behavior of a system capable of accomplishing 

difficult tasks in dynamic and varied environments without any central coordination, external 

guidance, or control—inspired the development of two other prominent metaheuristics; the ant 

colony (ACO) and particle swarm optimization (PSO) algorithms. ACO simulates the foraging 



behavior of ants and makes an analogy between finding the shortest path from nest to food and 

minimizing an objective function [11]. PSO, in contrast, adopts the synchronization mechanism 

of the migration of a flock [12]. It uses a swarm of candidate solutions (dubbed particles) and 

moves it toward optimum solutions by sharing improvements discovered by all particles. The 

1990s also saw the development of one of the most powerful evolutionary computing algorithms 

known as the differential evolution [13]. Many more metaheuristic algorithms have recently been 

proposed and used in structural optimization (e.g. harmony search [14]). Among them, the 

gravitational search algorithm (GSA) has received considerable attention due to its strength in the 

exploration of the search space [15]. GSA is a stochastic and population-based optimization 

algorithm that mimics Newton’s law of universal gravitation and laws of motion. In GSA, a 

population of bodies with masses proportional to their fitness value is randomly generated and 

iteratively moved throughout the search space in order to find the optimum region. The 

interactions among the bodies (potential solutions) are governed by Newton’s law of universal 

gravitation.  

The global search capability of GSA in its original, extended, or hybrid forms and its merit in 

solving nonlinear optimization problems have been demonstrated in numerous studies (e.g. see 

[16–19]). Some other studies, however, have shown the weak local exploitation capability of 

original GSA and its slow convergence rate in final iterations (e.g. see [20,21]). This recognition 

led to a wave of studies focused on improving the efficiency of GSA through hybridizing it with 

features of other metaheuristics (e.g. the crossover operator of GA). Further details are given in 

Section 3.1, and the interested reader is encouraged to consult Khatibinia et al. [22] and 

Khatibinia and Khosravi [23] for additional information. 

Pursuant to recent efforts devoted to improving GSA, an amended version of the multi-

gravitational search algorithm (MGSA [24]) is proposed in this study. In the proposed algorithm, 

referred here to as accelerated MGSA (AMGSA), an exploration-exploitation balance is achieved 

through incorporating MGSA with the simplex crossover (SPX [25]) and the mutation operator 



of the breeder genetic algorithm (BGA [26]). MGSA is adopted in order to prevent the stagnation 

of the search into a local optimum (i.e. to improve the exploration capability), while the SPX and 

the BGA mutation operator are used to bias the search toward promising areas of the search 

space (i.e. to promote local exploitation). In addition, the feasibility-based rule proposed by Deb 

[27] is used to direct solutions to feasible regions of the search space. Several benchmark truss 

optimization problems are solved to demonstrate the efficiency of AMGSA. These include 10-, 

18-, and 200-bar planar trusses in addition to a 72-bar space truss.  

Formulation of a truss optimization problem is given in Section 2 followed by a detailed 

description of the proposed technique and its constituents (Sections 36). Finally, the performance 

of the technique is demonstrated in Section 7. 

2 Formulation of the structural optimization problem 

Structural optimization in general and truss sizing optimization in particular fall within the 

context of nonlinear programming. In truss sizing optimization, the objective function is to 

minimize the weight of a truss subject to stress and displacement constraints while taking the 

cross-sectional area of members as design variables. These problems can be expressed in a 

canonical form as: 
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where A represents the vector of design variables; W is the weight of the structure; nmi is the 

number of members included in the ith group; ρj and Lj are the material density and the length of 

the jth member belonging to the group i, respectively; ng and ne are the total number of member 

groups (i.e. design variables) and the total number of elements in the structure, respectively; σmn 



and σall are the stress in the mth member due to the loading condition n and the allowable stress, 

respectively; Δkn and Δall are the nodal displacement of the kth translational degree of freedom due 

to the loading condition n and the allowable displacement, respectively; nl and nd are the number 

of loading conditions and the total number of translational degrees of freedom in the structure, 

respectively; and AL and AU are the lower and upper bounds for cross-sectional areas, 

respectively.  

Numerous constraint-handling techniques for metaheuristic algorithms have been proposed in 

the literature (e.g. dynamic penalties and adaptive penalties). The interested reader is referred to a 

comprehensive survey by Coello Coello [28]. In the present study, the objective function of the 

designs violating imposed constraints were penalized using the external penalty approach as [29–

31]: 
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where Wp(A) is the penalized objective function of a constraint-violating solution; Rp is an 

adjusting coefficient (see [32]); and Pf is the total penalty and represents the degree of constrain 

violation, which is the sum of all normalized constraint violations and defined as:  
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3 Multi-GSA method 

3.1 Gravitational search algorithm 

In the iteration t of GSA, the agent i as a potential solution for the optimization problem is 

associated with a position vector Xi and a velocity vector Vi denoted as: 
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where D is the dimension of the search space and is equal to the number of design variables. For 

a minimization problem, the mass of the agent i at the iteration t, Mi(t), is updated after 

computing the fitness value of all agents in the population as: 
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where N and )(
~
tf i represent the population size and the fitness value of the ith agent at the tth 

iteration, respectively; and worst(t) is defined as the worst fitness value among all agents at the 

iteration t. 

Using the laws of motion, the acceleration of the agent i in the direction d is given as: 
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where r is a uniform random number in the interval [0, 1]; G(t) is a proportionality factor 

analogous to the universal gravitational constant; α is a small positive constant that is used to 

avoid division by zero (2-52 in this study); Ri,j(t) is the Euclidean distance between agents i and j, 

ǁXi (t) – Xj (t)ǁ2; and kbest is the set of the first k agents with the best fitness values (i.e. largest 

masses) in each iteration. These are the only agents that have gravitational interaction with one 

another and other (N - k) agents. The contribution of the (N - k) unfit agents to the acceleration 

of the agents of the population is set to zero in each iteration. kbest is expressed in terms of a 

percentage of the population and changes with the iteration number. In this study, kbest started 

from N (i.e. 100% of the population) in the first iteration and decreased linearly to 2% of the 

population in the final iteration. This component of acceleration (Eq. 6) is then added to a 

fraction of the current velocity of the agent in the corresponding direction in order to determine 

its velocity and, subsequently, its position in the same direction for the next iteration as: 

( 1) ( ) ( )d d d

i i i iv t rv t a t+ = + (7) 
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where 
d

iv and 
d

ix  are the velocity and the position of the agent i in the direction d, respectively. 

Proportionality factor (gravitational constant), G(t), could have a significant influence on the 

performance of GSA. Some variations have been proposed for G(t) in the literature (e.g. see [33]). 

In this study, however, the original definition of G(t) given below was used [15]: 
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where G0 is the initial value of G; β is a constant; and tmax is the maximum number of iterations. 

The values used for these variables in this study are given in Section 7. 

Drawbacks of GSA, namely weak local exploitation and slow convergence rate in final iterations, 

were touched on in the Introduction section. This recognition motivated, for instance, Khatibinia 

et al. [22] to incorporate GSA with the particle swarm optimizer with passive congregation 

(PSOPC), which exhibits superior exploitation capability. PSOPC [34] takes its impetus from 

passive congregation, one of the four biological mechanisms underlying congregations of 

creatures that routinely swarm and cluster or crowd together (see [35]). In the PSOPC-improved 

GSA, the velocity of the agent i in the next iteration is influenced not only by its current velocity 

and the gravitational forces exerted by other agents (Eq. 7) but also by the best previous position 

of the very agent (also known as the memory of agent i), d

ipbest , the global best position found 

by the entire population up to the current iteration (same for all agents), gbestd, and the position of 

a randomly-selected agent, d

ip , in the dth direction as: 
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where ri,1 to  ri,4 are uniform random numbers in the interval [0, 1]. 



3.2 Multi-GSA 

Khatibinia and Naseralavi [24] proposed the multi-GSA (MGSA) algorithm to enhance the 

exploration capability of GSA. MGSA is comprised of two main stages. In the first stage, the 

population is broken into several subpopulations, and in the second stage, each subpopulation is 

independently evaluated by GSA while communicating its information with its counterparts. 

Doing so, MGSA divides the whole search space into subspaces and reduces the possibility for 

the entire population to fall into local optima, thereby improving the exploration of the search 

space. 

The MGSA algorithm (see [24]) begins with determining the feasibility of the randomly-generated 

initial population and assigning its agents into two categories of feasible and infeasible solutions. 

The feasible category is then sorted in an ascending order according to the fitness value of 

feasible solutions, while the infeasible category is arranged based on the degree of constrain 

violation, Pf, of its components. Subsequently, given each subpopulation is composed of Ns 

agents, the first subpopulation is created by the top agent of the feasible category together with 

its (Ns – 1) farthest neighbors, irrespective of the feasibility category they belong to. Creation of 

the first subpopulation is then followed by eliminating its constituting agents from the entire 

population and rearranging the feasibility categories. Following the same procedure, the second 

subpopulation is formed by the top agent of the updated feasible category and (Ns – 1) of the 

remaining agents having the greatest distances from it, followed by removing them from the 

population. This procedure continues until the population is divided into N/Ns subpopulations. 

Eventually, GSA is used to find the optimum within each subpopulation. 

4 Simplex crossover (SPX) 

The simplex crossover [25] is a stochastic operator in the real-coded GA that combines multiple 

parents to produce a new offspring without requiring their fitness values—real-coded GA is an 

extension to GA where, as opposed to the binary-coded GA, each chromosome is coded as a 



vector of floating-point numbers. Simplex is a geometric element in a Euclidean space that has 

the minimum number of boundary points (vertices), e.g. a line in one-dimensional space or a 

triangle in two-dimensional space. Therefore, in Rn (n-dimensional space), (n + 1) independent 

individuals (vertices) form a simplex. In such space, the SPX stochastically mates (n + 1) parents 

to produce one offspring.  

For simplicity, let us describe the SPX in two-dimensional space where three individuals X1, X2, 

and X3 form a simplex (i.e. a triangle – Figure 1). If the simplex is expanded by a rate of ε along 

each direction, vertices of the enlarged simplex (i.e. Y1, Y2, and Y3) can be expressed as: 
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where O represents the center of gravity. A new offspring Z is then produced by combining new 

vertices as: 

1 1 2 2 3 3k k k= + + +Z Y Y Y O

      

(12) 

where k1, k2, and k3 are uniform random numbers that sum to 1. 

Figure 1. 2D representation of simplex crossover 

The procedure above can readily be generalized to higher dimensions. An SPX operation is 

generally specified as SPX-μ-λ-ε, where μ is the number of parents mated to produce λ offspring. 



The advantages of the SPX are twofold: 1) it maintains an exploration-exploitation balance, and 

2) the computational complexity involved is only O(n) [25].

5 Breeder genetic algorithm (BGA) mutation 

The mutation operator of BGA [26] was used in this study to enhance the local search capability 

of MGSA. BGA is a stochastic search method that can be applied to both discrete and 

continuous functions. BGA adopts truncation selection to select potential candidate solutions for 

recombination (crossover) while using the crossover and mutation operators of GA, essentially 

making it an amalgam of the evolution strategy and GA characteristics. BGA mutates a parent 

string 
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i i i it x x x=X  by first selecting a variable xi with the probability pm. Typically, 
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where rangei defines the mutation range and is normally set to 0.1(ui - li), where ui and li are the 

upper and lower bounds of xi, respectively; the ± sign has the same probability of 0.5 for plus 

and minus; and δ is given by: 
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where αk are coefficients that are initially set to 0 and then mutated to 1 with the probability pδ = 

1/16. This mutation scheme is able to locate the optimum xi up to a precision of 2-15 × rangei. 

6 Accelerated MGSA (AMGSA) 

As previously stated, AMGSA is the result of synthesizing the SPX, the BGA mutation scheme, 

and the feasibility-based rule with MGSA in order to improve gbest in each iteration of the 

optimization process. 



The overall framework of AMGSA involves two main search stages, as summarized in the 

flowchart shown in Figure 2. The first stage includes carrying out a global search using MGSA. In 

the second stage, first, μ agents are randomly selected from 1 2{ }= , , ,pbest pbest pbest pbestN¼

and sorted in an ascending order according to their degree of constrain violation, Pf. These agents 

are then mated using the SPX so as to generate λ agents (i.e. 

1 2{ , }= , ,pbest pbest pbest pbest l¢ ¢ ¢ ¢¼ ). This operation is particularly effective when the set

pbest contains very similar agents. Subsequently, the generated set is perturbed using the BGA 

mutation operator. Eventually, gbest is updated by comparing ( )pW gbest  with ( )i
pW ¢pbest (

1,2,...,i l= ) based on the feasibility-based rule. 

Figure 2. Flowchart of AMGSA 



7 Numerical examples 

Seven benchmark truss optimization examples were selected to demonstrate the efficiency and 

efficacy of AMGSA and compare its performance with that of several other optimization 

metaheuristics. In all examples, tmax, G0, and β (Equation 9) and ε (Equation 11) were set to 300, 

100, 20, and 10 respectively. These values were selected based on the authors’ experience and the 

general recommendations given in Refs. [15,36]. Due to the stochastic nature of the optimization 

process, the lowest (best), highest (worst), and mean structural weights of 20 independent runs 

that were carried out for each example together with their corresponding standard deviation (SD) 

are reported. Both optimization and finite element analysis of the examples were carried out using 

MATLAB®. 

7.1 Ten-bar planar truss 

The 10-bar planar truss shown in Figure 3 was considered as the first design example. A Young’s 

modulus of 10,000 ksi and a density of 0.1 lb/in3 were assumed for the truss members. The 

allowable tensile and compressive stresses for all members were set to 25 ksi. The displacements 

of all free nodes in the X and Y directions were restricted within ±2.0 in. The cross-sectional 

areas of truss members with a minimum value of 0.1 in2 were considered as design variables. Two 

loading conditions were considered: Case 1, where P1 = 100 kips and P2 = 0; and Case 2, where P1 

= 150 kips and P2 = 50 kips. 



Figure 3. The 10-bar planar truss 

A sensitivity analysis was first carried out in order to find the best combination of AMGSA 

parameters that would maximize its performance. To this end, the population size N, the 

subpopulation size Ns, and the number of the offspring created λ denoted here by the triple (N, 

Ns, λ) were regulated to maximize the performance of AMGSA. An ensemble of 30 combinations 

was considered, and for each combination 20 independent optimization runs were performed. 

AMGSA results in terms of the best, worst, and mean of structural weights and the 

corresponding standard deviation (SD) as well as the number of structural analyses required in 

the optimization process are summarized in Tables 1 and 2. 



Table 1. Sensitivity analysis of AMGSA for the 10-bar planar truss under the loading Case 1 

N NS l
Weight (lb)

# of analyses
Best Worst Mean SD

20 4 10 5,060.9 5,061.4 5,061.1 0.2 9,000 

20 4 15 5,060.8 5,061.0 5,060.9 0.1 10,500 

20 5 10 5,060.9 5,061.6 5,060.9 0.2 9,000 

20 5 15 5,060.8 5,061.2 5,060.1 0.1 10,500 

20 10 10 5,060.9 5,061.3 5,061.1 0.1 9,000 

20 10 15 5,060.8 5,060.9 5,060.9 0.0 10,500 

30 5 5 5,060.9 5,061.7 5,061.1 0.2 10,500 

30 5 10 5,060.9 5,061.5 5,061.1 0.2 12,000 

30 5 15 5,060.9 5,061.1 5,061.3 0.2 13,500 

30 6 5 5,060.9 5,061.7 5,061.2 0.2 10,500 

30 6 10 5,060.9 5,061.6 5,061.2 0.2 12,000 

30 6 15 5,060.9 5,062.3 5,061.3 0.3 13,500 

30 10 5 5,060.9 5,062.2 5,061.2 0.2 10,500 

30 10 10 5,060.9 5,061.6 5,061.2 0.1 12,000 

30 10 15 5,060.8 5,060.9 5,060.9 0.0 13,500 

40 5 5 5,060.9 5,061.5 5,061.1 0.1 13,500 

40 5 10 5,060.9 5,061.4 5,061.1 0.1 15,000 

40 5 15 5,060.9 5,061.3 5,061.1 0.1 16,500 

40 8 5 5,060.9 5,061.9 5,061.2 0.2 13,500 

40 8 10 5,060.9 5,061.9 5,061.2 0.2 15,000 

40 8 15 5,060.9 5,061.6 5,061.1 0.2 16,500 

40 10 5 5,060.9 5,061.6 5,061.1 0.2 13,500 

40 10 10 5,060.8 5,061.6 5,061.1 0.2 15,000 

40 10 15 5,060.8 5,060.9 5,060.9 0.0 16,500 

50 5 5 5,060.9 5,061.6 5,061.1 0.1 16,500 

50 5 10 5,060.9 5,061.4 5,061.1 0.1 18,000 

50 5 15 5,060.9 5,061.3 5,061.0 0.1 19,500 

50 10 5 5,060.9 5,061.0 5,061.0 0.0 16,500 

50 10 10 5,060.8 5,060.9 5,060.8 0.0 18,000 

50 10 15 5,060.8 5,060.9 5,060.8 0.0 19,500 



Table 2. Sensitivity analysis of AMGSA for the 10-bar planar truss under the loading Case 2 

N NS l
Weight (lb)

# of analyses
Best Worst Mean SD

20 4 10 4,677.5 4,680.0 4,678.3 0.7 9,000 

20 4 15 4,677.1 4,678.0 4,677.5 0.3 10,500 

20 5 10 4,677.7 4,680.0 4,678.7 0.3 9,000 

20 5 15 4,677.0 4,678.2 4,677.4 0.2 10,500 

20 10 10 4,677.5 4,680.6 4,678.9 0.3 9,000 

20 10 15 4,677.0 4,679.9 4,678.6 0.3 10,500 

30 5 5 4,677.4 4,682.4 4,679.3 1.4 10,500 

30 5 10 4,677.3 4,682.2 4,679.2 1.4 12,000 

30 5 15 4,677.3 4,681.1 4,678.8 1.2 13,500 

30 6 5 4,677.4 4,686.6 4,679.9 2.2 10,500 

30 6 10 4,677.3 4,684.7 4,680.1 1.8 12,000 

30 6 15 4,677.3 4,681.1 4,679.0 1.0 13,500 

30 10 5 4,677.4 4,683.9 4,679.7 1.2 10,500 

30 10 10 4,677.4 4,683.9 4,679.7 1.2 12,000 

30 10 15 4,677.0 4,679.1 4,678.9 0.2 13,500 

40 5 5 4,677.5 4,682.6 4,678.8 1.3 13,500 

40 5 10 4,677.3 4,681.3 4,678.8 1.1 15,000 

40 5 15 4,677.2 4,680.9 4,678.8 1.0 16,500 

40 8 5 4,677.4 4,686.1 4,679.0 2.0 13,500 

40 8 10 4,677.3 4,682.1 4,678.8 1.2 15,000 

40 8 15 4,677.3 4,680.6 4,678.0 0.9 16,500 

40 10 5 4,677.7 4,683.3 4,679.2 1.3 13,500 

40 10 10 4,677.3 4,682.1 4,679.1 1.2 15,000 

40 10 15 4,677.0 4,679.1 4,678.7 0.2 16,500 

50 5 5 4,677.6 4,683.1 4,678.7 1.3 16,500 

50 5 10 4,677.3 4,681.6 4,678.5 1.0 18,000 

50 5 15 4,677.2 4,681.2 4,678.7 1.0 19,500 

50 10 5 4,677.5 4,680.5 4,678.6 0.9 16,500 

50 10 10 4,677.3 4,679.6 4,678.2 0.7 18,000 

50 10 15 4,677.0 4,678.8 4,677.3 0.1 19,500 

Results shown in the tables indicate that given population and subpopulation sizes, with a few 

exceptions due to the stochastic nature of the optimization algorithm, increasing the number of 

offspring λ decreases the mean structural weight and results in smaller standard deviations, which 

indicate improved consistency across several experiments. For example, the mean and standard 



deviation of the combination (40, 10, λ) in Case 1 reduce from 5,061.178 lb and 0.280 lb to 

5,060.901 lb and 0.041 lb, respectively, as λ increases from 5 to 15. Another observation from 

Tables 1 and 2 is that, given the population size and λ, results improve with increasing the 

subpopulation size particularly for population sizes greater than 30. This suggests that the agents 

of a sufficiently large population should be assigned to an ideal number of subpopulations such 

that the population and number of subpopulations are large enough for the effective exploration 

of the entire search space, while each subpopulation contains adequate agents for sharing 

information and exploiting potential zones in the search space. These allocations are essentially 

made based on the user’s experience and the computational power available. In this study, the 

results corresponding to the triple (20,10,15) are frequently used for comparison with those of 

other techniques. This is because this triple provides an adequately good solution with a relatively 

low number of structural analyses.  

The results corresponding to the triple (20,10,15) extracted from Tables 1 and 2 are compared in 

Table 3 with those obtained using MGSA [24] in order to show the influence of the SPX and the 

BGA mutation operator on the performance of MGSA. The comparison indicates that this 

incorporation results in consistently lighter designs and considerably smaller standard deviations. 

In addition, this incorporation accelerates the optimization procedure. As observed from the 

example convergence histories of MGSA and AMGSA shown in Figure 4, AMGSA was able to 

find the minimum weights after 232 and 245 iterations (8,120 and 8,575 structural analyses) for 

Cases 1 and 2, respectively. In contrast, MGSA required over 259 and 261 iterations (over 9,065 

and 9,135 structural analyses) to cluster candidates around those of the highest fitness. 



Table 3. Comparison of MGSA and AMGSA for the 10-bar planar truss. Note: the best, worst, mean 
and SD data are in lbs. 

Loading 
condition 

N 

MGSA [24] AMGSA (20,10,15) 

Best Worst Mean SD Best Worst Mean SD 

Case 1 20 5,060.9 5,062.4 5,061.3 0.4 5,060.9 5,061.0 5,060.9 0.0 

30 5,060.9 5,062.2 5,061.2 0.3 5,060.9 5,061.0 5,060.9 0.0 

40 5,060.9 5,061.7 5,061.2 0.2 5,060.9 5,061.0 5,060.9 0.0 

50 5,060.9 5,061.7 5,061.1 0.2 5,060.9 5,060.9 5,060.8 0.0 

Case 2 20 4,677.3 4,681.1 4,678.8 1.2 4,677.1 4,679.9 4,678.6 0.3 

30 4,677.2 4,681.1 4,678.9 1.1 4,677.1 4,679.1 4,678.9 0.2 

40 4,677.2 4,680.9 4,678.8 1.0 4,677.1 4,679.1 4,678.7 0.2 

50 4,677.2 4,679.6 4,678.2 1.0 4,677.0 4,678.8 4,677.3 0.1 



Figure 4. Convergence histories of MGSA and AMGSA for the 10-bar truss under a) Case 1 and b) 
Case 2 

A comparison between the performances of AMGSA and several other metaheuristics in 

optimizing the 10-bar truss is presented in Tables 4 and 5. The bases of comparison include 

cross-sectional areas of the members of the combination (20,10,15) and its total weight, the mean 

weight and its corresponding standard deviation across the runs carried out, the percentage of 

constraint violations, and the total number of analyses executed to converge to the optimum 

design. The comparison indicates that, except for the improved harmony search (IHS) algorithm 

[37], AMGSA achieves a lighter structure at a fewer number of analyses and with a lower 

standard deviation. The far fewer number of analyses required by IHS is due to a mechanism in it 

that directs the search toward the optimum using gradient descent. 
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7.2 Eighteen-bar planar truss 

AMGSA was further benchmarked against other optimization techniques using the 18-bar planar 

truss shown in Figure 5 which was originally studied by Imai and Schmit [43]. A Young’s 

modulus of 10,000 ksi and a density of 0.1 lb/in3 were considered for the truss members. In 

addition to an allowable stress of 20 ksi for both tensile and compressive members, stress in any 

compressive member i was not allowed to exceed the Euler’s critical buckling stress defined as:  

2

b i
i

i

KEA

L
s = (15) 

where K is the member effective length factor assumed here as 4; Ai and Li are the member’s 

cross-sectional area and unsupported length; and E is the Young’s modulus. The truss was 

subjected to a set of 20-kip point loads acting downward at the upper nodes. The members were 

ensured to have a cross-sectional area greater than 0.1 in2. The members were assigned to four 

groups as: Group 1: 1, 4, 8, 12, 16; Group 2: 2, 6, 10, 14, 18; Group 3: 3, 7, 11, 15; and Group 4: 

5, 9, 13, 17. 

Figure 5. The 18-bar planar truss 

The performances of AMGSA, MGSA, and HS in optimizing the 18-bar truss are compared in 

Table 6, where the results obtained using the multiplier method [43] are also listed for reference. 

Similar to the previous examples, AMGSA finds the minimum weight without violating any 

constraints. In addition, it can be seen that the structural analyses required to converge to the 



optimum drops from 15,000 for MGSA to 10,500 for AMGSA. This arises from incorporating 

the SPX and the BGA mutation operator with MGSA which in turn improves its convergence 

rate (i.e. 243 iterations or 7,290 structural analyses vs. 276 iterations or 13,800 structural analyses 

– Figure 6).

Table 6. Performance comparison of AMGSA (20,10,15) with a few other optimization 

techniques for the 18-bar planar truss 

Multiplier 
method [43] 

HS [14] MGSA [24] 
AMGSA 

(this 
study) 

A1,4,8,12,16 (in
2) 10.0 10.0 10.0 10.0 

A2,6,10,14,18 (in
2) 21.6 21.6 21.6 21.6 

A3,7,11,15 (in
2) 12.5 12.5 12.5 12.5 

A5,9,13,17 (in
2) 7.1 7.1 7.1 7.1 

Weight (lb) 6,430.0 6,421.9 6,430.5 6,430.5 

Mean weight 
(lb) 

NR NR 6,431.0 6,430.5 

SD (lb) NR NR 0.0 0.0 

Constraint 
violation (%) 

None 0.0014 None None 

# of structure 
analyses 

NR 2,000 15,000 10,500 

Figure 6. Convergence histories of MGSA and AMGSA for the 18-bar truss 



7.3 Seventy-two-bar space truss 

The 72-bar space truss shown in Figure 7 was used to further examine the performance of 

AMGSA. The Young’s modulus and density of the members were assumed equal to 10,000 ksi 

and 0.10 lb/in3, respectively. The members were divided into 16 groups. The allowable 

compressive and tensile stresses were set to 25 ksi for all members. Displacement limits of ±0.25 

in were imposed on all nodes in all directions. The truss was subjected to the two loading 

conditions listed in Table 7. Minimum cross-sectional areas of 0.1 in2 and 0.01 in2 were 

considered for loading cases 1 and 2, respectively.  

Figure 7. The 72-bar space truss 

Table 7. Load cases for the 72-bar space truss 

Node 
Case 1 (kips) Case 2 (kips) 

PX PY PZ PX PY PZ 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 
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A performance comparison based on the results summarized in Tables 8 and 9 indicates the 

relatively higher capability of AMGSA versus MGSA and several other optimization 

metaheuristics. In line with previous examples, AMGSA achieves the optimum design after a 

relatively reasonable number of structural analyses and without violating any constraints. In 

addition, the convergence histories shown in Figure 8 indicate the higher speed of AMGSA in 

finding the optimum solution. 

Figure 8. Convergence histories of MGSA and AMGSA for the 72-bar truss under a) Case 1 and b) 
Case 2 

7.4 Two-hundred-bar planar truss 

A 200-bar planar truss shown in Figure 9 was the largest structure used in this study to 

investigate the performance of AMGSA. The Young’s modulus and density of the members were 

assumed equal to 30,000 ksi and 0.283 lb/in3, respectively. The members were assigned to 29 



groups as listed in Table 10. A minimum cross-sectional area of 0.1 in2 and an allowable stress of 

10 ksi were assumed for both compressive and tensile members, while no nodal displacement 

limit was imposed. The truss was subjected to two simultaneously-applied sets of loads: 1) a set 

of 1-kip forces acting at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71 along the positive X-

direction, and 2) a set of 10-kip forces acting downward at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 

16, 17, 18, and 19. 

Figure 9. The 200-bar planar truss 



Table 10. Groups and their constituting members for the 200-bar planar truss 

The results of AMGSA, MGSA, and some other optimization techniques for the 200-bar truss 

are compared in Table 11. Consistent with the previous examples, AMGSA finds the minimum 

weight without violating any constraints. Results also indicate that incorporating the SPX and the 

BGA mutation operator with MGSA improves its convergence rate (i.e. 281 iterations or 9,835 

function evaluations vs. 294 iterations or 14,700 function evaluations – Figure 10). 

Group Member ID Group Member ID 

1 1, 2, 3, 4 16 

82, 83, 85, 86, 88, 89, 91, 
92, 103, 104, 106, 107, 109, 

110, 

112, 113 

2 5, 8, 11, 14, 17 17 115, 116, 117, 118 

3 19, 20, 21, 22, 23, 24 18 119, 122, 125, 128, 131 

4 
18, 25, 56, 63, 94, 101, 

132, 139, 170, 177 
19 

133, 134, 135, 136, 137, 
138 

5 26, 29, 32, 35, 38 20 140, 143, 146, 149, 152 

6 

6, 7, 9, 10, 12, 13, 15, 

16, 27, 28, 30, 31, 33, 34, 
36, 37 

21 

120, 121, 123, 124, 126, 
127, 129, 130, 141, 142, 
144, 145, 147, 148, 150, 

151 

7 39, 40, 41, 42 22 153, 154, 155, 156 

8 43, 46, 49, 52, 55 23 157, 160, 163, 166, 169 

9 57, 58, 59, 60, 61, 62 24 
171, 172, 173, 174, 175, 

176 

10 64, 67, 70, 73, 76 25 178, 181, 184, 187, 190 

11 

44, 45, 47, 48, 50, 51, 

53, 54, 65, 66, 68, 69, 

71, 72, 74, 75 

26 

158, 159, 161, 162, 164, 
165, 167, 168, 179, 180, 

182, 183, 

185, 186, 188, 189 

12 77, 78, 79, 80 27 191, 192, 193, 194 

13 81, 84, 87, 90, 93 28 195, 197, 198, 200 

14 95, 96, 97, 98, 99, 100 29 196, 199 

15 102, 105, 108, 111, 114 
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Figure 10. Convergence histories of MGSA and AMGSA for the 200-bar truss 

Comparison of the optimization results of the 72-bar space truss and the 200-bar planar 

truss (16 vs. 29 design variables) shows that the efficiency of AMGSA becomes more 

pronounced as the problem size increases.  

8 Conclusions 

The simplex crossover (SPX) and the operator mutation of the breeder genetic algorithm 

(BGA) were incorporated with the multi-gravitational search algorithm (MGSA) so as to 

improve its exploration and exploitation capabilities. Several benchmark truss optimization 

examples were used to demonstrate the efficiency of the resulting algorithm, denoted as the 

accelerated MGSA (AMGSA). A sensitivity analysis was carried out in order to find the 

best combination of the population size N, the subpopulation size Ns, and the number of 

the offspring created λ denoted here by the triple (N, Ns, λ) that would maximize the 

performance of AMGSA at a reasonable computational cost. The combination (20,10,15) 

was found to return an adequately good yet computationally inexpensive solution. Results 

of the example problems consistently showed a good exploration-exploitation balance for 

AMGSA and its competitive promise in effectively and efficiently solving large-scale 

optimization problems. This improvement was found to become more pronounced as the 

size of the problem increases. The BGA mutation scheme was shown to be particularly 



effective when the best previous positions of agents are very similar. In this case, this 

operator slightly changes the agents, thus improving the algorithm’s local search capability. 

Compared to MGSA, AMGSA offered lighter designs with considerably lower standard 

deviations while requiring fewer structural analyses and, therefore, less computational 

burden. AMGSA was further evaluated by comparing its performance with that of several 

other metaheuristics. Similarly, results indicated that AMGSA requires considerably fewer 

structural analyses to achieve the optimal solution, making the optimization process 

significantly faster, especially for large-scale structures.  

The technique proposed in this study is not limited to the size optimization of truss 

structures with discrete/continuous sizing variables. Similar to the original GSA that has 

successfully been used in a variety of optimization problems, this technique holds promise 

for application in any optimization problems, including plates, shells, and frame structures 

subjected to static and dynamic loads. Further research, however, is required to validate its 

robustness and efficacy in larger scales. Additional research is also required to accurately 

determine the time complexity of AMGSA. We presume that, if n is the length of the string 

representing the population, the division of the population would require O(n) time, and 

the interactions among the agents would accumulate O(2n) time, resulting in a time 

complexity of O(n2n). 
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