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a b s t r a c t 

Many individuals suffering from food insecurity obtain assistance from governmental programs and non- 

profit agencies such as food banks. Much of the food distributed by food banks come from donations

which are received from various sources in uncertain quantities at random points in time. This paper

presents a model that can assist food banks in distributing these uncertain supplies equitably and mea- 

sure the performance of their distribution efforts. We formulate this decision problem as a discrete-time,

discrete state Markov decision process that considers stochastic supply, deterministic demand and an

equity-based objective. We investigate three different allocation rules and describe the optimal policy as

a function of available inventory. We also provide county level estimates of unmet need and determine

the probability distribution associated with the number of underserved counties. A numerical study is

performed to show how the allocation policy and unmet need are impacted by uncertain supply and

deterministic, time-varying demand. We also compare different allocation rules in terms of equity and

effectiveness.

© 2017 Elsevier B.V. All rights reserved.
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. Introduction

Food insecurity is defined as the situation where people are

ot able to access enough food at all times for an active, healthy

ife ( USDAERS, 2006 ). The occurrence of food insecurity in the

nited States (U.S.) is significant, affecting approximately 48.1 mil-

ion Americans, 15.3 million children and 32.8 million adults. Fur-

hermore, a 2014 study on household food insecurity reported that

4% of U.S. households were unable to access enough food at all

imes ( Coleman-Jensen, Rabbitt, Gregory, & Singh, 2015 ). 

The U.S. Government has established several public assis-

ance programs to address this problem. These programs provide

nancial assistance, supplemental food, and nutrition support

o individuals and states to increase access to healthy food for

ow-income households. Some of the most well-known pro-

rams are the Supplemental Nutrition Assistance Program (SNAP),

he Women, Infants, and Children (WIC) program, and The

mergency Food Assistance Program (TEFAP) (see fns.usda.gov/

rograms- and- services for a comprehensive list). In addition to

overnment funded programs, non-profit organizations, such as

eeding America, also help to address the food insecurity problem.

Feeding America (FA), the nation’s leading domestic hunger-

elief organization, seeks to eliminate hunger by providing food
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o those in need through a nationwide network of about 200

ember food banks and distribution centers across the country

 FeedingAmerica, 2014 ). FA, as the parent food bank, provides

dministrative support, training of personnel, standards for food

afety and food distribution to its member food banks. The local

ood banks, although partnering with FA, remain largely indepen-

ent with their own management systems and budget. They solicit

unds, food and supplies from individuals, groups, farmers, local

anufacturers and retailers. These donations represent sources of

upply that enable them to meet the demand of the people at

isk of hunger. Hence, supplies to the food bank are based on the

oodwill of donors who are not obligated to give at any particular

ime or in any particular quantity. Consequently, donations may

e infrequent, almost expired which makes them inappropriate

or consumption after a few days, or may not be what is actually

eeded. Nevertheless, food banks need to be able to adequately

anage their inventory to ensure equitable distribution of supplies

ince meeting the demands by aid recipients is not possible with

imited supply. 

This paper presents a decision model that assists food banks

n equitable allocation of uncertain, donated supplies. We define

quity as a function of the pounds distributed per person in

overty (PPIP). FA proposed this indicator as a way to measure the

erformance of its members. The benchmark is to distribute at

east 75 pounds of food products for each person in poverty over

 12-month period. We use PPIP to measure equitable distribution

ractices within the food bank’s service area and also identify

http://dx.doi.org/10.1016/j.ejor.2017.07.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.07.017&domain=pdf
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deviations from the performance goal set by FA. The decision

making problem is formulated as a discrete-time, discrete state

(DTDS) Markov decision process (MDP). 

The MDP model is used to (i) identify an optimal allocation

policy that maximizes equity in the distribution of supplies as esti-

mated by the measured PPIP; (ii) provide estimates of unmet need

in each county as a function of the PPIP; and (iii) determine the

probability distribution associated with the number of underserved

counties. A numerical study is performed using data from the Food

Bank of Central & Eastern North Carolina (FBCENC) (2012) , a mem-

ber of Feeding America’s network. We investigate three different

allocation rules typically used in one warehouse, multiple retailer

systems. Our findings show that allocating supply to each county

in proportion to its poverty population (proportional allocation)

maximizes equity. We also show the relationship between unmet

need as a function of changes in supply and demand, characterize

the structure of the optimal policy and show how the policy

changes based on food donation behavior. While the underlying

structure of the optimal decision rule may be somewhat intuitive,

our approach to this problem presents some interesting results

not explored in the existing literature, particularly as it relates

to inventory modeling in humanitarian relief. We modeled the

stochastic behavior of the food bank’s inventory system using

an MDP which has the advantage of indicating the best way to

allocate supplies based on the inventory level of the food bank.

We present a novel transformation of the state space to account

for the large distribution quantities observed in practice and show

that the underlying stochastic behavior can be approximated by a

normal distribution. We also note that this transformation allows

us to easily identify situations where increases in donated supply

can allow food banks to further meet their distribution goals. Fur-

thermore, our model considers stochastic supply which is the ideal

case for food banks as well as indicates desirable inventory states

for the food bank to assist them in proactive planning. In addition,

we investigate the current allocation rule the food bank uses and

evaluate how far this allocation rule deviates from perfect equity. 

The remainder of the paper is outlined as follows. Section

2 summarizes the related literature. Section 3 describes the prob-

lem and solution approach. The data analyses and experimental

design are presented in Section 4 . The results and discussion are

summarized in Section 5 . Section 6 provides concluding remarks

and identifies areas for future research. 

2. Related literature 

A Humanitarian Supply Chain (HSC) is a network of organiza-

tions that ensure the solicitation, transportation, warehousing and

distribution of supplies to people affected by emergencies. These

emergencies do not only include large-scale catastrophes caused

by natural or man-made disasters but also food insecurity pri-

marily caused by economic hardships ( Mohan, Gopalakrishnan, &

Mizzi, 2013 ). Due to the increasing trends of natural disasters and

food insecurity, HSC management has attracted significant atten-

tion ( Altay & Green III, 2006; Balcik, Beamon, Krejci, Muramatsu,

& Ramirez, 2010; Blanco & Goentzel, 2006; Galindo & Batta, 2013 ).

However, given the importance of inventory management in hu-

manitarian relief operations, the amount of research available in

this area is limited compared to that on commercial inventory

management. 

2.1. Challenges of relief inventories 

Relief inventories are referred to as social inventories because

they serve broad social objectives as opposed to being used for

the benefit of an individual enterprise ( Whybark, 2007 ). Comparing

relief and commercial inventory, relief inventories are unique in
erms of their source of supplies, objectives, stakeholders, perfor-

ance measurement and the level of uncertainty and risk ( Balcik

 Beamon, 2008; Van Wassenhove, 2005 ). In contrast to commer-

ial inventories, supply in relief inventories is highly uncertain be-

ause it is dependent on donations that are constantly evolving.

or hunger-relief organizations, the defining sources of supply are

carce government funding and irregular charitable donations from

ndividuals and corporations. Issues with supply uncertainty range

rom the ability of a donor to give supplies, the varied quantities

f supplies donated and the receipt of unsolicited and sometimes

nwanted donations ( Chomilier, Samii, & Van Wassenhove, 2003 ). 

On the demand side difficulties arise in quantifying the needs

or the services of relief organizations. For hunger-relief, food in-

ecurity or poverty levels can serve as an estimate of the demand

 Mohan et al., 2013 ). However, as a result of the limited supplies

n hunger-relief operations, unsatisfied demand is very common. 

Decision making in inventory management in the presence of

andom supply and demand can be very challenging with obvious

mpacts on operating costs and customer service levels. To cope

ith random supply, commercial inventory managers have adopted

ourcing from multiple suppliers ( Ahiska, Appaji, King, & Warsing,

013; Mohebbi, 2003; Tomlin, 2006 ). Multiple sourcing is also used

n relief inventories through the presence of different donors, such

s government, corporations, and individuals. However, supply is

till frequently insufficient to satisfy the demand. Hence, the objec-

ives of decision making models for relief inventory control usually

nclude finding optimal ways to increase supplies and determin-

ng ways to effectively and equitably distribute supplies. Effective-

ess refers to the ability to distribute (or allocate) resources in a

ay that meets the needs of the end customer, whereas equity ad-

resses the ability to allocate resources to multiple customers in a

ay that is fair ( Orgut et al., 2016 ). 

Recent studies in relief inventory management address effec-

ive distribution of supplies under supply and demand uncertainty

 Rottkemper et al., 2012 ; Bozorgi-Amiri, Jabalameli, & Mirzapour

l-e-Hashem, 2013; Orgut, Ivy, Uzsoy, & Wilson, 2015 ). However,

tudies that emphasize equitable distribution of donated relief sup-

lies are limited. Equitable and effective distribution is paramount

n hunger-relief organizations since supply is almost always be-

ow demand. Equitable distribution of resources should ensure a

air shairing of the resources among recipients. Only Orgut et al.

2015) and Lien, Iravani, and Smilowitz (2014) consider donated re-

ief inventory distribution, that explicitly incorporates equity. How-

ver, neither study directly accounts for uncertainty in supply. 

Orgut et al. (2015) develop a linear programming model to de-

ermine equitable and effective distribution of donated food for a

ood bank. Their model maximizes the amount of food distributed

hile limiting the absolute deviation from a perfectly equitable

istribution for each county in the food bank’s service area. They

lso consider the receiving capacities of the counties and develop

olicies that minimize the amount of undistributed food. 

Lien et al. (2014) develop a non-profit sequential allocation

odel with the goals of equitable distribution of resources and ef-

ective service. They define service in terms of fill rate which is

alculated as the ratio of the allocated supply to customer demand.

he objective function maximizes the expected minimum fill rate

mong customers, which balances equity in fill rates with effec-

iveness in the use of resources (low waste). 

.2. Research contribution 

This paper also considers equitable distribution of donated

upplies. The work of Orgut et al. (2015) is closely related, in the

ense that they study equitable distribution of food donations

or a food bank. However, we focus on the impact of equity

temming from supply uncertainty rather than agency capacity.
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e explicitly incorporate the stochastic nature of donations while

odeling the behavior of the inventory system over time. Our

ramework permits an evaluation of equity and county level

redictions of unmet need. Furthermore, we evaluate the improve-

ent in equitable distribution resulting from changes in donation

ehavior. 

Most supply allocation problems in relief inventory are formu-

ated as a multi-objective linear programming problems with ob-

ectives such as cost minimization, minimization of travel time,

nd maximization of satisfied demand ( Davis, Samanlioglu, Qu,

 Root, 2013; Tzeng, Cheng, & Huang, 2007 ). Other quantitative

ecision making models for relief inventory management have

een centered on stochastic programming techniques that con-

idered demand uncertainty ( Beamon & Kotleba, 2006; Bozorgi-

miri et al., 2013; Ozbay & Ozguven, 2007 ). Markov decision pro-

esses (MDPs) have not been used to model relief inventories.

ost of their applications in inventory management have been

entered on commercial inventories to deal with the problem of

nreliable suppliers and uncertain demand ( Ahiska et al., 2013 ;

ohebbi, 2003 ; Tomlin, 2006 ; Silbermayr & Minner, 2014 ). This

aper uses a DTDS MDP model that considers equitable distribu-

ion of supplies as well as the distribution performance of the food

ank. 

Our work also contributes to the growing literature on sup-

ly uncertainty. Supply uncertainty can be classified along three

imensions: timing (i.e. lead time), quantity, and purchase price

 Tajbakhsh, Zolfaghari, & Lee, 2007 ). The research presented in

his paper is more closely aligned with uncertain supply quanti-

ies. Relevant studies in uncertain supply quantities present strate-

ies that address yield uncertainty or supply interruptions from

 production, procurement, or sourcing perspective ( Yano & Lee,

995 ). The uncertainty in the supply comes from the suppliers

eing unreliable ( Ahiska et al., 2013; Tomlin, 2006; Yang, Aydin,

abich, & Beil, 2012 ), partially available, unavailable ( Güllü, Önol,

 Erkip, 1999 ), or having variable capacity ( Tajbakhsh et al., 2007 ).

s a result, the quantity ordered and quantity received are dif-

erent. However, in the foodbank context, supplies are pushed to

he supply chain member based on charitable giving and perceived

eed rather than in response to a specific order quantity. As such,

he uncertainty stems from the behavior of sporadic or one time

onors which causes variation in the quantity and quality of the

onations. We discuss supply uncertainty within the context of

ood donations, and explore the effect of supply uncertainty on

ood distribution decisions. The model can be used for benchmark-

ng the performance of hunger-relief organizations in their effort s

o equitably allocate recourses to the people they serve. 

. Problem description and model formulation 

.1. Problem description 

The Food Bank of Central and Eastern North Carolina (FBCENC),

 member of Feeding Americas’ network, has been providing food

o people at risk of hunger in 34 counties in Central and East-

rn North Carolina for over 30 years. In the fiscal year 2014–15

FY1415), FBCENC distributed nearly 64 million pounds of food and

on-food essentials to aid recipients ( FBCENC, 2016 ). FBCENC oper-

tes six branch warehouses in Wilmington, Durham, Raleigh, Sand-

ills, Greenville, and New Bern. These warehouses collect and sort

ood donations, conduct quality assessments and then store the

upplies prior to distribution. Food donations are distributed to

haritable agencies who directly serve individuals in need of food

ssistance. More than 70% of the supplies to FBCENC are donations

rom individuals and organizations that are subject to significant

ncertainties. Furthermore, the demand that the FBCENC needs to

atisfy normally exceeds the supplies that come in. 
Each branch receives donations from local sources as well as

ransfers from other branches. The bulk of the transfers come from

he Raleigh branch which serves as the main warehouse and cen-

ral hub of the distribution network and receives a large amount

f donations particularly, those coming from government sources

e.g. TEFAP) and large corporate donors. These donations are sub-

equently transferred to other branches to ensure fair allocation of

igh quality donations throughout the network. This is supported

y the data from FBCENC which shows that 117,284,024 pounds

f donations were received at the Raleigh branch of which 71%

ere transferred to other branches. In contrast, the Durham branch

ransferred approximately 8% of food out of their warehouse since

hey are underserved. 

.2. Model assumptions and sequence of events 

Our modeling framework is based on the perspective of a sin-

le branch in the food distribution network. We assume that the

upply flow into the branch comes from two sources: local dona-

ions from the community and transfers from other branches in

he network. Rather than considering all types of products, we ag-

regate all donated product types into a single unit and develop

 formulation for a single item inventory system with periodic re-

iew. Supply flow out of the branch is based on food need in the

ervice area as determined by the charitable agencies served. In

ur model, demand from charitable agencies is aggregated to the

ounty level and considered a single demand point. The following

ssumptions are made about the proposed DTDS-MDP: 

1. The state of the system is described by the amount of inventory

(in pounds) available at the start of each month; 

2. The branch operates a single capacitated warehouse whose ca-

pacity determines the upper bound of the state space; 

3. Donations are stochastic and occur during the time period; 

4. Received donations are added to the current available inventory

and are available for distribution during the same time period.

This is a reasonable assumption since the time period is long

enough for donations to be sorted and reviewed for quality in

accordance with the standards for food safety and distribution

practices; 

5. Food donations are distributed to the counties according to the

county demand, available inventory and a predefined allocation

rule; 

6. Demand in each county is deterministic. This assumption is rea-

sonable since the food bank uses poverty population data from

the U.S. Census Bureau to estimate food need in their service

area; 

7. Demands are filled before the beginning of the next time pe-

riod; 

8. The amount distributed in each county cannot exceed its de-

mand; 

9. There is no reallocation of supplies after distribution; 

0. The amount transferred from other branches in the network is

stochastic and is added to the remaining inventory at the end of

the period. A delivery lag is associated with transfers due to the

fact that transfers might not reach the receiving branch before

the transferring branch has satisfied its demand. The delivery

lag can also be attributed to the time associated with process-

ing the transfers before they are available for distribution. 

.3. Model formulation 

.3.1. Decision epoch 

The model notation and definitions are summarized in Table 1 .

llocation decisions are made on a monthly basis before the be-

inning of the next month. This is a finite time horizon model and

he set of time periods is T = { 1 , 2 , . . . , τ} , τ < ∞ . 
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Table 1 

Model notation and definitions. 

Notation Definition 

Sets V Set of all possible system states V = { ̃  M LB . . . ˜ M UB } 
C Set of counties to be served C = { 1 , . . . , 6 } 
A Set of allocation rules A = { a 1 , a 2 , . . . , a N } 
T Time periods with t ∈ { 1 , . . . , τ} τ < ∞ 

State variables v t Available inventory at time t (measured in pounds) 

Random variables X t Food donations at time t with realization x t ∈ X t (measured in pounds) 

Y t Transfers of food from other locations at time t with realization y t ∈ Y t (measured in pounds) 

Decision variables k a ct Pounds of food distributed to county c at time t given allocation a 

Reward variables r c ( v t , a ) Pounds of food distributed per person in poverty to county c ∈ C in state v t under allocation rule a ∈ A 
Other variables ˜ v t Percentage deviation from mean available inventory at time t

˜ x t Percentage deviation from mean donation amount at time t

˜ y t Percentage deviation from mean branch transfer at time t

Parameters P ct Poverty population in county c ∈ C at time t

d c Demand for county c ∈ C
f c Fraction of available inventory allocated to county c ∈ C
H c History of total distribution over the previous 11-months to county c 

μI Average inventory in pounds 

μD Average donation in pounds 

μB Average branch transfer in pounds 
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3.3.2. State of the system 

The state of the system is the available inventory which rep-

resents the supplies (in pounds) in the warehouse. Based on the

data received from FBCENC the available inventory values range

from 10 0,0 0 0 to 80 0,0 0 0 pounds. Therefore, the state space is dis-

cretized. The discretization procedure is shown in the appendix.

The state space is denoted by V = { ˜ M LB . . . , ˜ m , . . . ˜ M UB } where ˜ m ∈
 are pseudo states that represent the discretized form of the

available inventory values and 

˜ M LB < 

˜ M UB . 

3.3.3. State transitions and transition probability 

The events that cause a transition from one state to the next

are: 

1. Donation, x t ∈ X t , which is stochastic with CDF �x (•) 
2. Transfers, y t ∈ Y t , which are stochastic with CDF �y (•) 
3. Distribution of available inventory to aid recipients in county

c, k a ct given allocation decision a ∈ A . 

Given the above transition parameters and assuming that dona-

tions and transfers are independent events, the available inventory

in the next time period v t+1 can be computed as a function of the

available inventory at time t , v t , as follows. 

v t+1 = 

[ 

v t + x t −
∑ 

c∈ C 
k a ct 

] + 

+ y t (1)

In (1) v t = ( 1 + 

˜ v t 
100 ) μI , x t = ( 1 + 

˜ x t 
100 ) μD , y t = ( 1 + 

˜ y t 
100 ) μB 

where v t , x t and y t are the actual values of the available inventory,

donation and transfers (in pounds), respectively. The amount dis-

tributed will never exceed the available inventory i.e., 
∑ 

c∈ C k a ct ≤
v t + x t . Therefore, the expression [ v t + x t −

∑ 

c∈ C k a ct ] 
+ will always

be non-negative. For ease of notation, let v UB and v LB represent

the upper and lower bounds (in pounds) for the available inven-

tory. These values can be easily determined from the pseudo-state

variables as v UB = ( 1 + 

˜ M UB ) μI and v LB = ( 1 + 

˜ M LB ) μI . 

The probability that the system moves from the current state v t ,
to the next state v t+1 , is influenced by the donation and transfer

probabilities and the specific allocation rule a as shown below in

equations (2a)-(2d) . 

p ( v t+1 | v t , a ) 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∑ 

x t 

∑ 

y t ≥v UB −( v t + x t −K t ( a ) ) 
p ( x t ) p ( y t ) v t+1 = v UB ∑ 

x t 

∑ 

y t ≤v LB −( v t + x t −K t ( a ) ) 
p ( x t ) p ( y t ) v t+1 = v LB ∑ 

x t 

∑ 

y t = v t+1 −( v t + x t −K t ( a ) ) 
p ( x t ) p ( y t ) v LB < v t+1 < v

0 otherwise 
(2a) 

(2b) 

(2c) 

(2d) 

It should be noted that 0 ≤ p( v t+1 | v t , a ) ≤ 1 , 
∑ 

v t+1 
p( v t+1 

 v t , a ) = 1 and K t (a ) = 

∑ 

c∈ C k a ct . Based on the discretization proce-

ure and given x t ∈ R m 

or y t ∈ R m 

, p( x t ) or p( y t ) = φ( R + m 

) − φ( R −m 

) ,

here R + m 

and R −m 

represent the upper and lower bounds, respec-

ively, of the bin range used in the discretization procedure. 

.3.4. Allocation rules 

Allocation rules correspond to the actions that the decision

aker (DM) chooses based on the state of the system and, have

een widely used in commercial inventory management. An exam-

le is the case of ‘one warehouse and multiple retailers’ (OWMR).

llocation rules identified under the OWMR system similar to what

s used in this research are fixed allocation and proportional allo-

ation ( Karaesmen, Scheller-Wolf, & Deniz, 2010 ). For fixed alloca-

ion, each retailer receives a predetermined fraction of goods and

or proportional allocation, each retailer receives a proportion of

oods based on their share of the total demand. For the model

onsidered in this research, the DM uses the allocation rules to dis-

ribute supplies to the counties as follows: 

Proportional allocation (PA) – Rule 1: Rule 1 uses the propor-

ional allocation approach by Karaesmen et al. (2010) and Orgut

t al. (2015) . Distribution to counties is such that each county re-

eives supplies based on the ratio of their poverty population to

he total poverty population as shown in (3) . 

ule a 1 : k a 1 ct = min 

(
P ct ∑ 

c∈ C P ct 
∗( v t + x t ) , d c 

)
(3)

In practice, FBCENC uses a proportional allocation rule which

hey refer to as ‘fair share’ designed to ensure that each county

eceives food in proportion to its percentage of the overall need.

e further consider PA in two unique perspectives: (1) Dynamic

roportional Allocation (DPA) and (2) Fixed Proportional Allocation

FPA). DPA requires updating of the poverty population as the de-

and changes over time. FPA is a static version of DPA that reflects

hat may be done in practice. That is, decisions about what to al-

ocate may be based on estimates of demand at a single point in
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ime (e.g. census estimates) even though demand changes over the

ime horizon. 

Serve largest demand first (SLDF) – Rule 2: With SLDF, the DM

erves the county with the largest demand first as shown in (4) .

ased on what is left after the previous distribution, the DM pro-

eeds to serve the next larger demand and eventually serves the

east demand last. However, under this approach inventory may

un out before serving the county with the smallest demand. 

ule a 2 : k a 2 ct = min 

( 

max 

( 

v t + x t −
∑ 

i ∈ F ∗t 
k it , 0 

) 

, d c 

) 

(4) 

here, F ∗t = { c ′ ∈ C| d c ′ > d c } . F ∗t is a set of all previous determinis-

ic demands d c ′ that have been served. 

Serve smallest demand first (SSDF) – Rule 3: For SSDF, the DM

erves the county with the smallest demand first as shown in (5) .

ased on what is left after the previous distribution, the DM pro-

eeds to serve the next smaller demand and eventually serves the

ighest demand last. 

ule a 3 : k a 3 ct = min 

( 

max 

( 

v t + x t −
∑ 

i ∈ F ∗t 
k it , 0 

) 

, d c 

) 

(5) 

In (5) , F ∗t = { c ′ ∈ C| d c ′ < d c } . F ∗t is a set of all previous determin-

stic demands d c ′ that have been served. 

.3.5. Reward determination 

The goal the food bank is to equitably distribute supplies to aid

ecipients through its warehouses and achieve a long-term goal of

eeting the PPIP target of 75 over a 12-month period. Equity in

istribution is defined to ensure that each person in poverty in the

ervice area receives an equal share of the food distributed. The

eward is therefore an objective function that maximizes equity in

istribution as measured by the PPIP. 

Pounds distributed per person in poverty (PPIP): The PPIP for a

ounty is the ratio of the current distribution plus the previous 11

onths distributions to the poverty population in that county as

hown in (6) . The previous 11 months distributions is an estimate

f distributions for previous 11 months that is initialized once at

he beginning of the process for each county and used throughout

he time-horizon. 

 c ( v t , a ) = 

k a ct + H c 

P ct 
(6) 

We define P P I P t as the target PPIP as set in accordance with the

eeding America performance indicator as the benchmark to mea-

ure the performance of the food bank branches. Thus, if r c ( v t , a ) <
 P I P t the county is considered to be underserved in period t . If

 c ( v t , a ) > P P I P t , the county is said to be over-served in period t .

therwise, the county is well served. 

Measure of equity : There are several metrics that are used to

easure equity, including the difference between the maximum

nd minimum values, variance, coefficient of variation, sum of ab-

olute deviations, maximum deviation, and mean absolute devia-

ion ( Marsh & Schilling, 1994 ). Equity is maximized by minimizing

hese measurements. We formulate a measure of equity based on

he mean absolute deviation of the PPIP ( �PPIP ) from the mean

PIP for all counties as shown in (7) and (8) . 

¯
 ( v t , a ) = 

1 

| C | 
∑ 

c∈ C 
r c ( v t , a ) (7) 

P P IP ( v t , a ) = 

∑ 

c∈ C 

| r c ( v t , a ) − r̄ ( v t , a ) | 
r̄ ( v t , a ) 

(8) 

The greater the value of �P P IP the less the equity; perfect eq-

ity is achieved when �P P IP = 0 . Thus, minimizing (8) , maximizes

quity. 
P
Expected immediate reward: The immediate reward, which is the

xpected reward for state v t under allocation rule a is shown in

9) , where the expectation is taken with respect to the donations

 t and the transfers Y t . 

 ( v t , a ) = E X t , Y t [ �P P IP ( v t , a ) ] (9) 

.3.6. Additional measures of distribution effectiveness 

In addition to measuring equity, we also compute the ex-

ected unsatisfied demand, and the probability of counties be-

ng underserved. Unsatisfied demand is the amount (in pounds)

f additional supplies needed by the counties to meet the tar-

et PPIP ( P P I P t ) and can be estimated for each inventory state as

 X t , Y t ( P P I P t − r c ( v t , a ) ) . The probability distribution of the number

f underserved counties is determined according to the law of to-

al probability illustrated in (10) , where p s denotes the steady state

robability, p( N c = n ) is determined with respect to the uncertain

upply and I(·) is an indicator function that takes the value of one

f P P I P t − r c ( v , a ) is positive and zero otherwise. The dependence

n x is implied through the allocation amount k a ct defined in (3) –

5) . 

p ( N under ser v ed = n ) = 

∑ 

v ∈ V 
p ( N c = n | v ) p s ( v ) (10) 

here p( N c = n ) = 

∑ 

x I( P P I P t − r c ( v , a ) ) p(x ) 

.4. Model evaluation 

We seek an optimal policy that maximizes equity. We are inter-

sted in both the short term and long term behavior of the system.

herefore, two solution approaches are used. We first use the back-

ard induction approach ( Puterman, 2009 ) to solve the finite hori-

on (12-month) problem. The policy-iteration approach ( Howard,

960 ) is used to determine the long term behavior of the model

ver an infinite time horizon. We are interested in the steady state

robabilities of the inventory states and average inventory level

hich are typical measures of performance for commercial inven-

ory management problems. 

. Data analysis and experimental design 

Data was obtained from FBCENC transactions records from

0 06/20 07 to 2013/2014 representing eight fiscal years. The data

s aggregated on a monthly basis resulting in 96 observations rep-

esenting the pounds of food received for each month. The Durham

ranch of the food bank is investigated with a focus on dry goods

all items classified under dry storage type). 

.1. Demand estimation 

The Durham branch serves Chatham, Durham, Granville, Or-

nge, Person and Vance Counties in North Carolina. The poverty

opulations of these counties are obtained from the FBCENC’s fair

hare program ( FBCENC, 2012 ). Durham County has the largest

overty population, which is approximately 44% of the entire

overty population being served by the Durham branch. 

FBCENC does not have records of the demand for each county.

owever, we assume that there exists a correlation between the

emand of a county and the poverty population of that county

 Wight, Kaushal, Waldfogel, & Garfinkel, 2014 ). Based on the

overty population and the PPIP criterion set by FA (PPIP should

e 75 over a 12-month period), the demand by county can be esti-

ated as shown in (11) . Table 2 shows the estimated poverty pop-

lation of each county served by the Durham branch and their pro-

ected monthly demands. 

 rojected monthly demand = 

( P c × 75) 
(11) 
12 
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Table 2 

Counties poverty populations and monthly projected demands. 

County Poverty Projected monthly 

population demand (pounds) 

Chatham 8028 50,175 

Durham 36,504 228,150 

Granville 5770 36,063 

Orange 16,475 102,969 

Person 5829 36,431 

Vance 10,859 67,869 

Total 83,465 521,657 

Table 3 

Summary of the percentage deviations of each dataset. 

Variable Minimum percentage Maximum percentage 

deviation (%) deviation (%) 

Available inventory -53 114 

Donations -77 159 

Transfer in -89 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Summary of input parameters. 

Parameter name Notation Value 

State space V ˜ M LB = −50% , ˜ M UB = 90% , 

Number of counties C 6 

Target PPIP P P I P t 75 

Set of allocation decisions A {1,2,3} 

Finite-time horizon (months) τ 12 

Average inventory (pounds) μI 418,0 0 0 

Average donation (pounds) μD 129,0 0 0 

Average transfer (pounds) μB 289,0 0 0 
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4.2. Supply data transformation 

The values of the available inventory, donations and branch

transfer data are continuous variables. Consequently, these values

are discretized using the procedure described in the appendix in

order to use them in the DTDS MDP model. The discretization

transforms each data point in the original series from pounds into

deviations from the mean. More specifically, given a data point s t ,

the transformed data point ˜ s t is equal to ( s t − s̄ ) / ̄s , where s̄ is the

mean for the series. Figs. A .1 –A .3 in the appendix show the trans-

formed series for available inventory, donations, and branch trans-

fers, respectively. The maximum and minimum values are shown

in Table 3 . 

4.3. Probability distributions 

The donations and branch transfers are two stochastic events

that cause the available inventory to transition from one state to

another state. The JMP statistical software was used to fit probabil-

ity distributions to the donation and transfer mean percentage de-

viations. The Gaussian probability distributions provided the best

fit for both datasets with their respective mean and standard de-

viations as follows; the transformed donation dataset is normally

distributed with mean −4.51 and standard deviation 35.30, and

transformed transfer dataset is normally distributed with mean

−2.56 and standard deviation 31.98. It should be noted that the

mean of the normal distributions for donation and the transfer

data sets ( −4.51 and −2.56, respectively) are percentage devia-

tions. A goodness of fit test was conducted using the Shapiro–Wilk

W Test at 5% significance level. Subsequently their p -values were

greater than the significance value. This confirmed that at the 5%

significance level, there was enough evidence to conclude that both

the donation and transfer datasets were from a normal distribu-

tion. 

Additional statistical tests were conducted to evaluate: the sta-

tionarity of the donation and transfer transformed data using the

Augmented Dickey–Fuller (ADF) test (Appendix A3) and stationar-

ity of the transition probabilities using the Anderson and Good-

man (1957) approach (Appendix A2). At a 0.05 significance level,

the donation and transfer transformed data were stationary since

their absolute test statistics were greater than the absolute critical

value of 2.93 ( Sjö, 2008 ). The hypothesis test (Appendix A2) veri-

fied our assumption that the transition probabilities are stationary

over the time horizon. 
.4. Previous 11-month distributions 

The prior 11-month distribution records are very important in

his research because they are used in the PPIP calculation in (7) .

n practice, these values would be updated on a rolling horizon and

herefore change as a function of monthly distribution policies. In

ur model, we assume that the 11-month distribution history is

tationary. Future work will explore the impact of history on met-

ics of distribution performance. 

.5. Experimental design 

A computational study is performed to analyze the optimal al-

ocation policy, the unsatisfied demand and the number of under-

erved counties for the Durham branch. The model is evaluated us-

ng different input parameters in order to answer the following re-

earch questions: (1) Should a fixed allocation policy be used at all

imes? (2) Can an allocation policy be defined generically for dif-

erent demand cases? (3) How does a large influx of supplies influ-

nce the allocation policy or how does very low supplies influence

he allocation policy? 

.5.1. Base scenario 

A base scenario is established to gain insight into the optimal

olicy structure using the projected monthly county demands. We

efine this as demands needed by the counties in order to meet

he objective of distributing 75 pounds of food per person over

 12-month period. The results from the base scenario form the

aseline from which all other scenarios are compared . 

.5.2. Sensitivity analysis 

Changing supply and demand: The demands and the supply val-

es are varied to generate different cases to test the behavior of

he model outputs. All results are presented as deviations from the

ase scenario. 

r ror ( de v iation ) = Measur ed r esult − Base r esult (12)

In order to understand the impact of using a static allocation

olicy at all times, two demand scenarios are investigated: (i) sta-

ionary county demands over the entire 12-month period, as de-

ned in Table 2 and (ii) non-stationary demand which represents

 case where county demands remain unchanged for the first six

onths and then fluctuate for the remaining six months. For each

f these two demand scenarios, different cases are generated by

djusting each poverty population and projected monthly demand

rom −50% to 100% in increments of 10%. 

To analyze the effect of changes in the supply, four parameters

re changed, one at a time, from −50% to 50% in increments of

0%. These parameters are donation mean, donation standard de-

iation, transfer-in mean and transfer-in standard deviation. This

ype of experiment may highlight the impact of increasing effort s

o solicit more donations due to unsatisfied demand. Table 4 sum-

arizes the input parameters used in the model. 
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Table 5 

Previous 11-month distributions to each county. 

County Previous 11-month Previous 11-month 

distributions (pounds) distributions (pounds) 

for scenario 1 for scenario 2 

Chatham 551,925 238,775 

Durham 2509,650 1334,602 

Granville 396,688 251,217 

Orange 1132,656 435,702 

Person 400,744 175,522 

Vance 746,556 366,906 
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Effect of distribution history (previous 11-month distribution): To

nalyze the impact of the distribution history on the model out-

ut, two scenarios are investigated: 1) county demands are satis-

ed during all the previous 11-month. In other words, the previ-

us 11-month distribution meets the demand for a given county;

) county demands are not satisfied all the time during the previ-

us 11-month. The first scenario in Table 5 represents the previous

1-month distribution, which was obtained by multiplying the pro-

ected monthly demand by eleven for each county. For the second

cenario, the previous 11-month distribution is obtained from the

istorical data provided by the food bank. 

. Results and discussion 

.1. Base scenario 

.1.1. Finite horizon analysis 

Table 6 describes the results for the finite-horizon problem. The

verage food distribution performance metrics and optimal alloca-

ion rule are defined according to the pseudo-state and actual state

alues (in pounds) The optimal policy that achieves perfect equity

s stationary and has the following form. 

∗(˜ v t 
)

= 

{
1 

˜ v t ≤ 8 ( 1 . 15 μi ) ∀ t 

{ 1 , 2 , 3 } ˜ v t > 8 ∀ t 
(13) 

This policy is a threshold policy that partitions the state space

nto supply constrained and supply abundant states. In supply con-

trained states, equity can only be achieved when supply is allo-

ated in proportion to the county demand (rule 1-PA) this result

s similar to the work of Orgut et al. (2015) . We show the opti-

ality of rule PA in Appendix A.4.2. Any state value that is 15%

r more above the historical sample mean inventory level ( μI ) is

n abundant state, and therefore any demand-based allocation rule
able 6 

esults for base scenario. 

Pseudo states Actual state Optimal allocation 

(pounds) rule(s) 

< -50% 1 209,0 0 0 1 

-45% 2 229,900 1 

-35% 3 271,700 1 

-25% 4 313,500 1 

-15% 5 355,300 1 

-5% 6 397,100 1 

5% 7 438,900 1 

15% 8 480,700 1 

25% 9 522,500 1,2,3 

35% 10 564,300 1,2,3 

45% 11 606,100 1,2,3 

55% 12 647,900 1,2,3 

65% 13 689,700 1,2,3 

75% 14 731,500 1,2,3 

85% 15 773,300 1,2,3 

> 90% 16 794,200 1,2,3 
PA, SLDF, SSDF) is optimal. Since the total demand for all six coun-

ies is 521,700 pounds, there is clearly enough supply in states 9

hrough 16 to satisfy all the county demands. 

Although it is intuitive that perfect equity can be achieved, an

quitable solution does not imply that all demand is satisfied. On

verage, all counties are underserved unless the inventory level ex-

eeds 15% above the mean. There are a few donation and trans-

er scenarios in the supply constrained states (states 5 through 7)

here some counties are being well served, thus leading to a pos-

tive expected number of underserved counties ( Table 6 ). However,

ll counties are consistently well served in supply abundant states.

A further examination of distribution performance at the

ounty level shows that the food bank can expect unsatisfied de-

and at the end of each time period to range from 13 to 21

ounds per person in poverty over a 12-month time frame ( Table

 ). This measure of distribution performance serves as an indi-

ator of the amount below the target PPIP that is realizable. We

ust note that our results reflect only one product type and are

ot indicative of the entire capability of the food bank network.

owever, we illustrate that our modeling framework can identify

hether the food bank is meeting or exceeding the FA target. 

We also note that it is possible to have fewer counties under-

erved or a smaller total unmet need per person in poverty when

sing the other allocation rules (SSDF, SLDF). It is intuitive that

LDF approach prioritizes distribution to larger counties, whereas

SDF prioritizes distribution to smaller counties. Thus, some coun-

ies will have all demand met at the expense of the other counties.

n addition, SSDF can lead to smaller overall unmet need (see Ap-

endix A.4.3 for a proof regarding this result). However, this behav-

or is not appealing in the context of food aid relief since neither

SDF nor SLDF ensure a fair allocation of available donations. The

roportional allocation approach ensures unmet need is the same

cross all counties. 

.1.2. Infinite horizon analysis 

Since the optimal policy for the finite horizon is stationary,

olving the average reward infinite horizon case is not necessary.

e can simply compute steady state performance metrics from the

arkov chain induced by the optimal allocation policy. Neverthe-

ess, we apply the policy iteration method with our transformed

eward structure to confirm results of the finite horizon model.

s before, the optimal policy that achieves equity is the propor-

ional allocation rule. A number of interesting results emerge from

he steady state probabilities listed in Table 7 . Our model suggests

hat the food bank branch is operating in a supply constrained en-
Average food distribution performance metrics 

over 12-month time horizon 

Equity ∗ Expected unmet need Number of 

(PPIP) per county counties underserved 

0 21.81 6 

0 21.81 6 

0 21.05 6 

0 20.60 6 

0 20.00 5 

0 19.43 3 

0 18.68 1 

0 18.07 0 

0 17.46 0 

0 16.87 0 

0 16.25 0 

0 15.64 0 

0 15.03 0 

0 14.44 0 

0 13.88 0 

0 13.59 0 
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Table 7 

Summary of base scenario results for the infinite horizon. 

States Steady state 

probabilities 

1 0.1796 

2 0.193 

3 0.1251 

4 0.2159 

5 0.0978 

6 0.0738 

7 0.0721 

8 0.0216 

9 0.0141 

10 0.0047 

11 0.0014 

12 0.0 0 06 

13 0.0 0 02 

14 0.0 0 01 

15 0 

16 0 
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vironment 97% of the time with an average monthly inventory of

301175.2 pounds (corresponding to an expected pseudo state value

of approximately 28% below the mean). The expected number of

underserved counties is 5 with probability distribution shown in

(14) . Due to the fact that the optimal policy results in perfect eq-

uity, there are only two possible realizations for underserved coun-

ties, 0 and 6. Our results help to confirm what is true in practice:

supply is significantly less than demand and thus it is important

to allocate donated food in an equitable manner. 

P ( N under ser v ed = n ) = 

{ 

0 . 16 n = 0 

0 . 84 n = 6 

0 otherwise 
(14)

5.2. Sensitivity analyses 

As with any inventory model, the behavior with respect to sup-

ply and demand is quite intuitive. Increasing available supply re-

sults in lower unsatisfied demand. However, it is interesting to ex-

plore the change in performance relative to percentage increases

and decreases in supply and demand. This provides a way to com-

municate effectively with decision makers about the impact of dis-

tribution decisions. The following sections summarize the changes

in the optimal policy, unsatisfied demand and the number of coun-

ties underserved as a function of changes in the donation behav-

ior (supply) and food need (demand). Results associated with the

finite-horizon and infinite-horizon are presented. 
Fig. 1. Optimal policy structu
.2.1. Effects of supply uncertainty 

Structure of optimal policy: Because of the nature of our prob-

em (stochastic donations and deterministic demand), we are able

o develop a closed form expression for the relationship between

he policy structure and donation behavior. Eq. (15) represents the

ercentage adjustment ( αv ) in the average sample mean donation

hat is required in order to satisfy the total demand in state v , thus

hanging the state from constrained to abundant. In (15) , the nu-

erator (when positive) represents the unmet need, and the de-

ominator the smallest realizable case in terms of incoming do-

ation quantities. (The derivation of this quantity can be found in

ppendix 4.1). 

v = 

( 
∑ 

c∈ C d c − v ) 
μD ∗( 1 + 

˜ x LB ) 
− 1 (15)

Fig. 1 shows the relationship between the unmet need per-

entage and the number of constrained states. For example, if the

onation sample mean increased by 5.83%, the number of sup-

ly constrained states would decrease by one. Extreme changes in

he donation quantity are needed to change the structure of the

ptimal policy (i.e. shifting constrained states to supply abundant

tates within the current bounds of the state space). Eq. (16) also

hows that the structure of the optimal policy is insensitive to

hanges in the donation standard deviation as well as the transfer-

n standard deviation. However, this is not the case when we ex-

mine the effect of supply uncertainty on the distribution perfor-

ance measures. This behavior is discussed in the following sec-

ions. 

Unsatisfied demand: While changing the supply has a small ef-

ect on the structure of the optimal policy, it does affect the level

f unsatisfied demand (or unmet need) more significantly. These

esults are more evident when unsatisfied demand is examined

elative to the sample coefficient of variation as shown on Fig. 2 .

he results are generated by varying the parameters (mean and

tandard deviation) associated with the normal distribution for

he transformed donation and transfer-in data sets as described in

ection 4 . The values for the coefficient of variation are negative

ecause the mean for both the transformed donation and transfer-

n data sets is negative (refer to Section 4.3 ). The results are shown

or states 1, 8 and 16 which represent the lowest, average, and

ighest inventory level of the food bank, respectively. The results

t the initial time period are presented as this encompasses the

xpected reward over the 12-month time horizon given the start-

ng inventory state. The deviation in the unsatisfied demand for

ach state increases monotonically as the coefficient of variation

ncreases. Positive deviations indicate higher unmet need whereas
re as a function of αv . 
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Fig. 2. Deviation of unsatisfied demand relative to coefficient of variation (finite horizon results). 

Fig. 3. Long-run (a) probability that all counties are underserved and (b) percentage change in average inventory level from base case. 
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egative deviations indicate the opposite. More specifically, as sup-

ly uncertainty increases, unsatisfied demand increases which in-

reases the probability that all counties are underserved ( Fig. 3 (a)).

his behavior is a result of the overall decrease in the long-run

verage inventory level ( Fig. 3 (b)). Furthermore, changing the stan-

ard deviation associated with transfers has the most pronounced

ffect on the ability of the food bank to satisfy unmet need. 

We also explored the effect on the ability to satisfy demand by

hanging the donation and transfer-in sample mean (while keep-

ng the distribution parameters fixed) as shown in Fig. 4 . The re-

ults show that changing the donation sample mean can increase

decrease) the unmet demand by as much as 9 pounds per per-

on in poverty if the supply is decreased (increased) by 50%. The

ffect on unmet demand is even higher for changes to the mean

mount transferred to the warehouse from other branches. This

s because the mean transfer-in is approximately 289,0 0 0 pounds,

early twice as much as the donations. 

For this particular data set, the results of our analysis indicate

hat all six counties can still be well-served under two conditions:

i) if the average donation amount decreases by no more than 20%;

nd (ii) uncertainty about the true donation behavior, given the

urrent average mean donation amount is unchanged, increases by
 m  
o more than 30%. Percentage adjustments outside of these two

ounds increase the number of underserved counties. 

We conclude our analysis of supply uncertainty by stating some

bservations with respect to traditional inventory models. In tra-

itional inventory models with supply disruption, increasing sup-

ly uncertainty results in higher order/production quantities ( Güllü

t al., 1999; Tomlin, 2006 ). Another impact of increasing variabil-

ty in the supply is sourcing from multiple suppliers where less

uantities are ordered from the unreliable supplier with a lower

rice ( Ahiska et al., 2013 ). This results in an increase in the over-

ll inventory cost ( Begen, Pun, & Yan, 2016; Mohebbi, 2004 ; Yeo &

uan, 2011 ). However, in our paper, higher uncertainty in supply

esults in a decrease in average inventory since most of the supply

s donated. This results in higher unsatisfied demand as well as the

umber of underserved counties. 

.2.2. Effects of demand uncertainty 

Stationary demand: One of the key assumptions of this paper

s that of deterministic demand. While this assumption is valid

iven the context of our study, it is possible for estimates of de-

and to be imprecise and inaccurate. As shown in Fig. 5 , if de-

and increases by more than 50%, all inventory states are supply
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Fig. 4. Deviation of unsatisfied demand for donation and transfer-in sample mean. 

Fig. 5. Optimal policy for stationary demand cases. 

Fig. 6. The number of constrained states as a function of the supply-demand ratio. 
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constrained, indicating the need for distributing the uncertain do-

nation supplies equitably. It is also interesting to note that even

a 10% deviation in the demand estimate can impact the num-

ber of supply constrained states, both favorably and unfavorably.

Fig. 6 sheds more light on this behavior within the context of the

ratio of supply to demand ( R sd ) , measured in pounds. Supply is

determined as the sum of the sample mean donation and transfer

in amount. Demand in pounds is determined relative to the base

amount and percentage adjustment ( αD ). Essentially, when this ra-

tio reaches the value of 2, there are no constrained states. 

R sd = 

μD + μB ∑ 

d c ( 1 + αD ) 
(16)
c∈ C 
Fig. 7 provides a perspective of unmet need in each county. As

xpected, as demand increases the supply becomes insufficient to

atisfy most of food need in each county, resulting in higher devi-

tions from the base case. However, unsatisfied demand does not

ncrease linearly with percentage adjustments in food need. Small

eviations in the demand estimate ( ±10%) , results in unsatisfied

emand below 7 pounds per person in poverty. In addition, small

eviations yield the same results as the base case in terms of the

umber of underserved counties. However, percentage increases in

emand above 10%, increase the number of underserved counties

or the average inventory case (state 8). In particular, all the coun-

ies are underserved if the demand increases above 30%. 

Non-stationary demand: In addition to exploring changes in the

otal demand, the assumption of stationary demand is relaxed. The

ntent is to explore the impact of using a fixed proportional allo-

ation rule, given demand changes over time. It is possible for ex-

mple, for food banks to use the DPA rule assuming demand is not

hanging over time. When the demand changes, and the allocation

uantities are not changed accordingly, the food bank is in effect

sing a fixed proportional allocation (FPA) rule. Fig. 8 shows the

eviation in unmet need between the DPA and FPA rule for state 1

supply constrained). Even a 10% adjustment in demand can cause

n expected deviation of almost 500 pounds per person in poverty

onsidering all counties under the FPA. 

.4. Sensitivity analysis for the distribution history 

All the results above assume that county demands are satisfied

uring the previous 11-months. In this scenario, the optimal pol-

cy is rule 1 for the supply constrained states and policies 1, 2,

r 3 are optimal for the supply abundant states. However, for the

ase where all county demands are not satisfied during the previ-

us 11-months the results show higher unsatisfied demand and all

ounties are underserved irrespective of the state. 

. Conclusion 

In this paper, we develop a discrete-time, discrete space Markov

ecision process model to assist food banks in distributing sup-

lies equitably as well as measure their performance using the

PIP indicator proposed by FA. The modeling approach presented
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Fig. 7. Deviation of unsatisfied demand and the number of counties underserved. 

Fig. 8. Deviation of unsatisfied demand between DPA and FPA. 
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n this paper has some interesting results not explored in the exist-

ng literature, specifically as it relates to incorporating supply un-

ertainty in relief inventory models. We modeled the food bank’s

nventory system using MDPs which has the advantage of indicat-

ng the best way to allocate supplies based on the inventory levels

states) of the food bank. We found a unique approach to repre-

ent the large, continuous inventory levels of the food bank that

an help identify desirable inventory states to assist them in proac-

ive planning. Our model investigates the impact of donations and

ransfers on the constrained states and identifies the amount of ad-

itional donations needed to move to a completely unconstrained

nventory state. Our model also provides some bounds on the de-

iations from equity that can occur when the optimal allocation

ule is not selected. We further describe bounds on unmet need

s a function of changes in the average supply and the variation

ssociated with the supply estimates. 

From this research, we found that the optimal supply alloca-

ion policy that maximizes equity in the distribution of supplies to

ounties using the PPIP criterion in general is as follows: 

1. The proportional allocation rule should be used if the available

inventory falls by at most 15% below the average available in-

ventory irrespective of the time period; 

2. Any allocation rule can be used if the available inventory is at

least 25% above the sample mean irrespective of the time pe-

riod; 

3. Exception: allocation rule 1 should be used throughout the time

period if the total county demand exceeds the available inven-

tory to ensure equity. 

.1. Implication for food bank operations 

Based on the proposed model and the experimental analysis,

ur model provides guidance on how to set inventory targets (and

ndirectly donation targets) in order to ensure counties are well

erved. In the absence of being able to meet those target inventory

evels, the policy obtained from the MDP model indicates how food
istribution effort s should be done in order to ensure each county

ets their fair share. We show that it is also helpful to update the

air share estimates as demand information changes. While obtain-

ng the information on true demand may be challenging, our re-

ults indicate that there could be some significant deviations in un-

et need if a fixed proportional allocation rule is used rather than

 rule that adapts to changing demand (e.g. DPA). When adopted,

he model’s input parameters; supply sample means and standard

eviations as well as the demand should be updated from time to

ime so that optimal distribution policies can be updated as infor-

ation changes. 

Our results also describe the relationship between uncertain

upply and average inventory levels. More specifically, as supply

ncertainty increases, average inventory levels decrease. In tradi-

ional inventory models, this behavior can be mitigated with diver-

ification of supply sources or increasing production/procurement

uantities. However, these strategies are not applicable for food

anks since the supply is mostly donated. This suggests that other

pproaches to influence donations or supplement potential inven-

ory shortages must be investigated. 

.2. Future work 

Irrespective of the work that has been done in this paper, there

s still room for improvement. The model could be extended to all

ther branches in the FBCENC network to study branch to branch

ariability. One may model the donation and transfer-in with other

robability distributions and analyze the associated prediction er-

ors. Likewise, another parameter such as transfer-out can also be

dded and modeled, perishable items can be considered since this

esearch only investigated the case of dry goods. Warehouse ca-

acity constraints can also be investigated to see how that may

ffect the optimal policy. Furthermore, a continuous state Markov

ecision process can be investigated to avoid discretization and the

rrors that may be associated with it. 

We also know that in practice, while the proportional alloca-

ion rule may be optimal to achieve perfect equity, there are other

onstraints not incorporated in the model that may make this dif-

cult to achieve. For example, as mentioned in Orgut et al. (2015) ,

apacity constraints at the agency level may cause deviations from

quity which cannot be avoided. In our work, we have not con-

idered capacity constraints at the agencies. The incorporation of

apacity and supply constraints is an interesting area of future re-

earch. 
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Fig. A.3. Percentage deviations from the transfer mean over the 8 fiscal years. 

Table A.1 

Summary of the discretized percentage deviations of each dataset. 

Variable Lower bound Upper bound # of bins 

Available inventory -50 90 16 

Donations -70 90 18 

Transfer in -80 90 19 

t  

f  

a  

n  

b  

s  

A

(

 

b  

s

 

b  

c

 

Appendix 

A.1. Discretization procedure 

1. Mean percentage deviation 

A heuristic approach called the mean percentage deviation

(MPD) shown in ( A.1.1 ) below is used to calculate the percentage

deviation of the actual value α from the mean value, μ. 

MP D = 

α − μ

μ
× 100% (A.1.1)

Thus, the donation, branch transfer and available inventory

continuous data can be represented with their actual means

μD , μB , μI respectively and their mean percentage deviations. 

2. Binning 

The binning technique is used to group the MPD values into

bins with equal-width. Let αmin and αmax be the minimum and the

maximum percentage deviation of the actual values. Thus the set

of percentage deviation of the actual values α is bounded by the

range αmin ≤ α ≤ αmax where αmin > −∞ and αmax < ∞ . The per-

centage deviation of the actual values α are grouped into bins tak-

ing into consideration αmin and αmax . Let M be the number of bins,

which are numbered, 1 through M, m ∈ M. Also let �α be the bin

width given by �α = 

( αmax −αmin ) 
M 

. Then, the range, R m 

, of the m th

bin is as shown in ( A.1.2 ). 

R m 

= ( αmin ( m − 1 ) �α αmin + m �α] (A.1.2)

It should be noted that, the choice of the number of bins

M is discretional. The lower and the upper ranges for R m 

are

given by R 1 = ( −∞ αmin + �α] and R M 

= [ αmin + ( M − 1 ) �α ∞ ) ,

respectively. This boundary ranges are essential to cater for un-

known data points that might fall outside the predefined domain,

[ αmin αmax ] during the lifetime of the model. In our approach, the

values to bin are the percentage deviations from the mean and the

bin width is 10% for each dataset. Consequently, each percentage

deviation value belongs to one of the bins. 

The percentage deviations of the available inventory, donation

and branch transfer are grouped into bins of equal width. The

bins are associated with distinct discrete values using a one-to-one

mapping. The median value of each bin range is used to calculate
Fig. A.1. Percentage deviations from the available inventory mean for all eight fiscal 

years. 

Fig. A.2. Percentage deviations from the donation mean over the eight fiscal years. 

 

 

f  

n  

n

H

H

 

0

 

t  

a

A

 

a  

t  

i

he actual values of the available inventory, donation and trans-

er with exception of the extreme values. Table 4 shows the upper

nd lower bounds of the discretized percentage deviations and the

umber of bins of each dataset. The form of the lower and upper

ound is < −50 or 90 > , respectively. The dimensions of the state

pace are defined based on the bounds for the available inventory.

.2. Hypothesis testing of stationary transition probabilities 

 Anderson & Goodman, 1957 ) 

This hypothesis test will verify our assumption that the proba-

ility of the system moving from the current state v , to the next

tate v ′ , p( v ′ | v ) is stationary over the time horizon. 

The alternative to this assumption is that the transition proba-

ilities are dependent on time. The transition probabilities are cal-

ulated as follows: 

p 
(
v ′ | v ) = 

n 

(
v ′ | v )∑ 

v ′ n ( v ′ | v ) (A.2.1)

p 
(
v ′ | v , t 

)
= 

n 

(
v ′ | v , t 

)∑ 

v ′ n ( v ′ | v , t ) 
(A.2.2)

Where, n ( v ′ | v ) denote the number of times the system moves

rom current state v , to the next state v ′ and n ( v ′ | v , t ) denote the

umber of times the system moves from current state v , to the

ext state v ′ at time t . 

 0 : p 
(
v ′ | v , t 

)
= p 

(
v ′ | v ) ∀ t = 1 , 2 , 3 , . . . , 12 

 1 : p 
(
v ′ | v , t 

)
	 = p 

(
v ′ | v ) ∀ t = 1 , 2 , 3 , . . . , 12 

Significance level = 0.05 

Decision: H 0 is rejected when the p values are smaller than

.05. 

Conclusion 

At the 0.05 significance level the results in Table A.2 indicates

hat the transition probabilities are stationary since the p values

re greater than 0.05. 

.3. Augmented Dickey–Fuller (ADF) test for stationarity 

The series are stationary if their absolute test statistics ( −7.36

nd −5.75 for donation and transfer, respectively) are greater than

he absolute critical value (2.93) ( Sjö, 2008 ). The results are shown

n Table A.3 . 
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Table A.2 

Summary of results for hypothesis testing. 

State ( v ) Chi sq ( x v 
2 ) P ( X > x v 

2 ) DF Decision 

1 0 1 66 Do not reject Ho 

2 0 1 66 Do not reject Ho 

3 5.142857143 1 66 Do not reject Ho 

4 6.518518519 1 66 Do not reject Ho 

5 24.39861111 0.999 66 Do not reject Ho 

6 24.21607906 0.999 66 Do not reject Ho 

7 33.71828704 0.999 66 Do not reject Ho 

8 0 1 66 Do not reject Ho 

9 26.76653439 0.999 66 Do not reject Ho 

10 0 1 66 Do not reject Ho 

11 0 1 66 Do not reject Ho 

12 0 1 66 Do not reject Ho 

13 0 1 66 Do not reject Ho 

14 0 1 66 Do not reject Ho 

15 0 1 66 Do not reject Ho 

16 0 1 66 Do not reject Ho 

Total 120.7608873 1 1056 Do not reject Ho 

Table A.3 

Summary of results for stationarity test for transformed data (donations and trans- 

fers). 

Summary of results for Donation % Transfer % 

stationarity test deviation deviation 

Mean 2.96e −16 2.08e −4 

Standard deviation 42.95 36.05 

N 96 96 

Zero mean ADF -7.40 -5.78 

Single mean ADF -7.36 -5.75 

Trend ADF -7.96 -7.01 

A

A

 

p  

i  

i  

t  

a

 

X  

s  

i  

m  

r

α

A

P  

p

P

P

P
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.4. Analytical results 

.4.1. Derivation of minimum percentage adjustment in sample mean 

Let v be the available inventory (in pounds) associated with

seudo-state ˜ v . The allocation decisions are made from available

nventory and incoming donations. Given the available inventory

s allocated first, the unmet need in state v that must be met

hrough donations is [ 
∑ 

c∈ C d c − v ] + . This implies the donation

mount must satisfy the following condition. 

Condition 1: X ≥ [ 
∑ 

c∈ C d c − v ] + . 
Denote the lowest possible realization for the random variable

as μd ( 1 + ̃  x LB ) , where ˜ x LB is the lower bound for the pseudo

tate values. Then to determine the percentage adjustment needed

n the donation sample mean that satisfies the condition 1 we

ust have ( 1 + αv ) μd ( 1 + ̃  x LB ) ≥ [ 
∑ 

c∈ C d c − v ] + where αv is the

elative increase/decrease in the mean. 

Solving for αv gives the desired expression 

v = 

( 
∑ 

c∈ C d c − v ) 
μD ∗( 1 + 

˜ x LB ) 
− 1 . 

.4.2. Proof that the Proportional Allocation (PA) rule is equitable 

roposition. If history is zero or all demand is satisfied, rule PA is

erfectly equitable. 

roof. Let x 1 = P re v ious 11 months f or county 1 

Let x 2 = P re v ious 11 months f or county 2 

Let s = a v ail abl e supply 

 P I P 1 = 

(
x 1 + s ∗ P 1 

P 1 + P 2 

)
∗ 1 

P 1 

 P I P 1 = 

(
x 1 
P 1 

)
+ 

s 

P 1 + P 2 

 P I P 2 = 

(
x 2 + s ∗ P 2 

P + P 

)
∗ 1 

P 
1 2 2 
 P I P 2 = 

(
x 2 
P 2 

)
+ 

s 

P 1 + P 2 

f 

(
x 1 
P 1 

)
or 

(
x 2 
P 2 

)
= 0 , then P P I P 1 = P P I P 2 

�

When the previous 11-month history is based on fully satisfying

he county demand, then 

x i = 

( P i ∗75 ) ∗11 

12 

, Therefore 
x 1 
P 1 

= 

x 2 
P 2 

= 75 ∗ 11 

12 

and therefore 

 P I P 1 = P P I P 2 

.4.3. Proof that the unmet need (PPIP) for rule SSDF is smaller than 

nmet need for PA and SLDF rule 

roposition. If the total demand exceeds the total supply, the total

nmet need across all counties is larger under allocation rule PA

han SSDF. 

roof. 

Let U = total unmet need f or all counties 

et u i = unmet need f or county i 

Let P i = pov erty populat ion f or count y i 

et d i = demand f or county i 

Let q i = quant it y recei v ed by county i 

Let T = T arget P P IP 

Let S = T otal a v ail abl e suppl y 

Let n = number of counties 

u i = T − q i 
P i 

�

Assuming n = 2 , d 1 < d 2 and d 1 ≥ S → d 1 + d 2 ≥ S

For SSDF 

q 1 = min ( S, d 1 ) = S 

q 2 = min ( S − q 1 , d 2 ) = min ( S − S, d 2 ) = 0 

 SSDF = T − S 

P 1 
+ T − 0 

P 2 
= 2 T − S 

P 1 

For SLDF 

q 2 = min ( S, d 2 ) = S 

q 1 = min ( S − q 2 , d 1 ) = min ( S − S, d 2 ) = 0 

 SLDF = T − 0 

P 1 
+ T − S 

P 2 
= 2 T − S 

P 2 

For PA 

q i = min 

(
S ∗ P i ∑ 

i P i 
, d i 

)
u i = T − S ∗ P i 

P i 
∑ 

i P i 

u i = T − S ∑ 

i P i 

U = 

∑ 

i 

T − S ∑ 

i P i 

 PA = 2 T − 2 S 

P 1 + P 2 

d ∝ P , since d 1 < d 2 → P 1 < P 2 
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Table A.4 

Expected unmet need (PPIP) for all counties. 

Expected unmet need 

Pseudo (PPIP) for all counties 

state (%) State SSDF SLDF PA 

< -50 1 44 214 131 

-45 2 43 213 130 

-35 3 42 208 126 

-25 4 41 202 124 

−15 5 39 195 120 

-5 6 38 189 117 

5 7 37 182 112 

15 8 36 176 108 

25 9 34 171 105 

35 10 33 165 101 

45 11 32 159 98 

55 12 31 153 94 

65 13 30 147 90 

75 14 28 141 87 

85 15 27 135 83 

> 90 16 27 132 82 

U

U

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

 

 

 

B  

B  

 

 

C  

 

 

C  

 

D  

 

F  

F  

F  

 

G  

 

G  

 

 

K  

 

 

L  

 

 

 

 

 

 

 

M  

 

O  

 

O  

 

 

 

O  

 

 

R  

 

 

 

 

 

S  

 

T  

 

 

 

Comparing PPIP; 

S 

P 2 
< 

S 

P 1 
S 

2 P 2 
< 

S 

P 1 + P 2 
→ 

S 

P 2 
< 

2 S 

P 1 + P 2 

Comparing Unmet need; 

 SSDF = 2 T − S 

P 1 

 SLDF = 2 T − S 

P 2 

U PA = 2 T − 2 S 

P 1 + P 2 
 SSDF < U PA < U SLDF 

Discussion. We provide a brief discussion of the results for the fi-

nite horizon model under the base scenario. The results from Table

A.4 show that unsatisfied demand per person in poverty (deter-

mined as the sum of the unsatisfied demand from all counties)

is smaller for allocation rule SSDF compared to SLDF and PA. For

allocation rule SLDF, most of the counties are underserved ex-

cept the county with the largest demand (Durham County which

contributes to about 44% of the entire poverty population being

served) resulting in most counties being under served. More coun-

ties being under served constitutes to higher unsatisfied demand.

On the other hand, in the SSDF allocation rule, most of the coun-

ties are well served except the county with the largest demand

hence reducing the unsatisfied demand per person in poverty. 
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