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a b s t r a c t

Nowadays, more and more applications require fast transfer of massive data over networks, and the

emergence of high-speed networks provides an ideal solution to this challenge. Due to the limitations

of the conservative congestion control algorithm, the standard TCP is no longer appropriate for high-

speed networks to efficiently utilize the bandwidth resources. Therefore, several high-speed TCP

variants have been suggested to conquer the problem. However, although these protocols perform

successfully to improve the bandwidth utilization, they still have the weakness on the performance

such as RTT-fairness, TCP-friendliness, etc. In this paper, we propose HCC TCP, a hybrid congestion

control algorithm using the synergy of delay-based and loss-based approach for the adaptation to high

speed and long distance network environment. The algorithm uses queuing delay as the primary

congestion indicator, and adjusts the window to stabilize around the size which can achieve the full

utilization of available bandwidth. On the other hand, it uses packet loss as the second congestion

indicator, and a loss-based congestion control strategy is utilized to maintain high bandwidth

utilization in the cases that the delay-based strategy performs inefficiently in the networks. The two

approaches in the algorithm are dynamically transferred into each other according to the network

status. We finally perform simulations to verify the properties of the proposed HCC TCP. The simulation

results demonstrate HCC TCP satisfies the requirements for an ideal TCP variant in high-speed

networks, and achieves efficient performance on throughput, fairness, TCP-friendliness, robustness, etc.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid evolution of high-speed networks is significantly
supporting the international collaborations with massive data
transfer and computing resource sharing, and the networks, e.g.
StarLight (2010), UKLight (2010), NetherLight (2010), CERN
(2010), etc. integrated with 1–10 Gbps bandwidths have been
developed and deployed over numbers of research institutions. In
order to efficiently utilize the large bandwidths at the physical
layer, researchers have focused on the developments of protocols
at transport and network layers.

The standard TCP has been remarkably successful in perform-
ing congestion avoidance and control to prevent severe conges-
tion in the current low-speed networks. However, it is well-
known that the standard TCP is not appropriate for high-speed
networks in terms of the additive increment multiplicative
decrement (AIMD) algorithm is too conservative to rapidly
achieve full bandwidth utilization while is too drastic to recover
from per packet loss event. In order to conquer the poor
ll rights reserved.
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performance problem, the standard TCP together with the AIMD
algorithm should be modified in high-speed networks. So far, a
number of high-speed TCP variants have been proposed, including
the end-to-end approaches, e.g. HighSpeed TCP (HSTCP) (Floyd,
2003), Scalable TCP (STCP) (Kelly, 2003), HTCP (Leith and Shorten,
2004), BIC TCP (Xu et al., 2004), CUBIC TCP (Ha et al., 2008), FAST
TCP (Wei et al., 2006), Compound TCP (CTCP) (Tan et al., 2006),
TCP-Illinois (Liu et al., 2008) and the router-based approaches, e.g.
XCP (Katabi et al., 2002), VCP (Xia et al., 2005). In addition, some
researches focus on the application-level schemes on top of UDP
to realize the congestion control functions for high-speed net-
works, such as UDT (Gu and Grossman, 2007). Although these
approaches achieve higher throughput over the standard TCP in
high-speed networks, most of them also have shortcomings in
various aspects such as fairness, TCP-friendly, responsiveness,
robustness, etc. Since none of the existing approaches is over-
whelmingly better than the other protocols and has the convin-
cing evidence that could be generally deployed, the development
of new high-speed TCP variants is still needed.

In this paper, we introduce a new congestion control protocol,
named hybrid congestion control TCP (HCC TCP), for high-speed
networks. The protocol utilizes the delay information as the
primary congestion indicator and utilizes the loss information
as the second congestion indicator to jointly adjust the window
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size so as to satisfy the design requirements on efficiency,
fairness, TCP-friendliness and robust, and outperforms the stan-
dard TCP and other TCP variants in high-speed networks. Due to
the synergy of the delay-based strategy and loss-based strategy,
HCC TCP is a hybrid scheme of congestion control.

The paper is organized as follows. In Section 2, a brief overview
of related work is presented. Section 3 describes the main
mechanisms and development of the proposed protocol. Then
the experiment results are presented and discussed in Section 4.
Finally Section 5 concludes this paper.
2. Related work

As the aforementioned content, numbers of new protocols
have been developed to replace the standard TCP and achieve
efficient bandwidth utilization in high-speed networks. The
router-based protocols, such as XCP and VCP, require the explicit
feedback information from routers to guide their control strate-
gies. However, it is impractical to modify all the existing routers
in a real world. Therefore, a majority of the existing protocols
focus on the end-to-end method rather than the router-based
method for the performance improvement of high-speed
networks.

The end-to-end protocols can be mainly classified into two
categories: loss-based congestion control algorithms, e.g. HSTCP,
STCP, HTCP, BIC TCP, CUBIC TCP, etc. and delay-based congestion
control algorithms such as FAST TCP. The loss-based congestion
control algorithms utilize packet loss as the congestion measure,
the window size increases for each ACK and decreases per packet
loss. HSTCP and STCP are the early works along the loss-based
methods. To quickly catch up the available bandwidth, HSTCP
uses step-wise functions for the increase and decrease of window
size while STCP sets the increasing and decreasing values propor-
tional to the current window size. However, both the two
protocols have a serious problem on RTT-fairness performance.
Using these protocols, as the multiple flows competing for the
bottleneck bandwidth have different RTT delays, the fair utiliza-
tion of the bandwidth cannot be achieved. HTCP sets a function of
the elapsed time since last packet loss for increase parameter and
uses an adaptive backoff strategy at congestion events so as to
achieve a perfect performance on responsiveness and efficiency in
high-speed networks. For the above three protocols, the incre-
ment of window size is still fast even the network is close to the
congestion event, thus the congestion in network will be caused
more easily among the competing flows and result in the
degradation of throughput. BIC TCP is an effective protocol that
has drawn much attention in research area. The protocol adjusts
the window size using a binary search method to reach a
reference value. When updating the window size, it sets the
reference value as the midpoint between the maximum reference
value Wmax and the minimum reference value Wmin. If the length
between Wmin and the midpoint is larger than a maximum value
Smax, the window size increases linearly by the value Smax. Hence,
the increment of the window size is linear at the initial stage and
then becomes logarithmic when approaching to the reference
point. BIC TCP performs better than the earlier approaches.
However, it also suffers the RTT unfairness problem. Subse-
quently, an enhanced version, CUBIC TCP, is developed to improve
the RTT-fairness performance of BIC TCP.

On the other hand, fundamentally different from loss-based
congestion control algorithms, delay-based congestion control
algorithms use queuing delay as the congestion measure. FAST
TCP is a typical delay-based high-speed TCP variant derived from
TCP Vegas (Brakmo and Peterson, 1995). The protocol maintains
queue occupancy at routers for a small but not zero value so as to
lead the network around full bandwidth utilization and achieve a
higher average throughput. On the contrary, the throughput of
loss-based algorithms oscillates between full utilization and
under utilization in terms of the probing action purposely gen-
erates packet losses. In addition, FAST TCP is able to rapidly
converge to the equilibrium state and does not suffer the RTT
unfairness problem. However, despite the unique advantages
mentioned above, it also has some inherent limitations. Since
FAST TCP is a delay-based approach and uses the RTTs for
congestion measure, its throughput performance is significantly
affected by the reverse traffic, and the throughput of the source
traffic decreases as the queuing delay increases on the reverse
path. Some works have focused on the reverse traffic problem in
delay-based congestion control algorithms and uses a variety of
schemes that relies on the measurement of one-way delay to
conquer this problem, e.g. in Parsa and Garcia-Luna-Aceves
(1999), Fu and Liewm (2003), Kuzmanovic and Knightly (2003)
and Chan et al. (2004). However, these schemes are not designed
for high-speed networks. In addition to the reverse traffic pro-
blem, FAST TCP requires the buffer size to be larger than the
specified value which indicates the total packet amount main-
tained in routers along the flow’s path.

Although any of the loss-based and delay-based approaches
can achieve higher throughput than the standard TCP, both of
them have their pros and cons. In order to perform more
efficiently and effectively in high-speed networks, some
approaches, like CTCP and TCP-Illinois, focus on the synergy of
loss-based and delay-based approach. CTCP utilizes loss and delay
information as the primary congestion indicators in different
stages to determine direction of window size change, and keeps
the traditional Slow-Start at the start-up period while uses a
delay-based component derived from TCP Vegas in congestion
avoidance phase. TCP-Illinois uses loss information as the primary
congestion indicator and uses delay information to be the second
congestion indicator. During the operation, it utilizes the loss
information to determine the direction of window change and the
delay information is used for adjusting the pace of window size
change. In order to achieve a concave window size curve and a
high throughput, TCP-Illinois set two parameters, a and b, in the
protocol operation. When network is far from congestion, it set a
to be large and b to be small. Otherwise, a is small and b is large
when network is close to congestion. These approaches inherit
the advantages from both the loss-based and delay-based
approaches. However, due to the delay-based components still
uses RTTs to measure the congestion, their throughput perfor-
mance is also affected by the reverse traffic. In Xu et al. (2010), we
presented an end-to-end Enhanced FAST (EEFAST) congestion
control algorithm, which dynamically adjusting the window size
according to the measurements of one-way delay, to remove the
effect of reverse traffic for delay-based congestion measurement
in high-speed networks. However, EEFAST is a delay-based con-
gestion control algorithm and suffers the same problem as FAST
in which the packet amount maintained in routers should be
smaller than the router buffer size.
3. HCC TCP protocol: mechanisms and development

The synergic methods, as CTCP and TCP-Illinois, inherit the
advantages from both the loss-based and delay-based
approaches. Although these approaches still suffer some limita-
tions, they are able to effectively overcome the weakness which
is difficult to be remedied by either loss-based methods or delay-
based methods themselves. Therefore, HCC TCP also adopts the
method that uses the synergy of the loss-based and delay-based
approach to realize the congestion control for high-speed
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networks. Since a measurement of delay provides multi-infor-
mation related to congestion but a measurement of packet loss
only provide one bit information, we uses the delay information
as the primary congestion indicator and uses the loss informa-
tion as the second congestion indicator. This mechanism funda-
mentally differentiates HCC TCP from CTCP and TCP-Illinois.

3.1. Architecture

As illustrated in Fig. 1, the congestion control mechanism of
HCC TCP can be separated into three components: delay-based

estimation, loss-based estimation and joint control. The delay-based

estimation component determines the congestion measure using
queuing delay and the loss-based estimation component deter-
mines the congestion measure using packet loss. The window
control strategy relying on the measurements of the delay and
loss information is realized by the joint control component.

3.2. Delay-based congestion control

From the perspective of a delay-based congestion control
approach, such as FAST TCP, if the queuing delay on the reverse
path is heavy, the full utilization of available bandwidth will
never be achieved and thus lead to potentially serious degrada-
tion of throughput on the forward path. In Xu et al. (2010), we
presented EEFAST congestion control algorithm to remove the
effect of the reverse traffic in high-speed networks. For the design
of the delay-based estimation component, the mechanisms of the
EEFAST algorithm are used to estimate the congestion in a
network. In addition, based on this algorithm, we also adopt a
set of new control strategies for adjusting the window size in
order to achieve a further performance improvement.

At equilibrium state, a number of packets ai should be queued
in routers by a delay-based congestion control approach. Without
the effect from the queuing delay on the reverse path, the source i

can achieve full utilization of available bandwidth on the forward
path and the window size can be written as

wi ¼
ai

Q f
i

Di ¼
ai

Q f
i

ðQf
i þQr

i þdiÞ ð1Þ

From Eq. (1), if the source i attempt to maintain ai packets in
the queue along the path at time t, the anticipated window size
wa

i ðtÞ should be

wa
i ðtÞ ¼

ai

Q f
i ðtÞ

DiðtÞ ¼ ai 1þ
Qr

i ðtÞþdi

Qf
i ðtÞ

 !
ð2Þ

Consider an ideal network model that a source sends data
through a path. During the initial phase of protocol operation,
since the forward queuing is usually a small value, the anticipated
window size wa

i ðtÞ is extremely larger than the current window
size wa

i ðtÞ. With the rise of the current window size, the forward
queuing delay increases thus lead to the decrease of the antici-
pated window size. The changes of the two kinds of window size
are shown in Fig. 2. If the distance between the anticipated
window size and current window size locates within a threshold
range, it can be considered that the current window size almost
reaches the anticipated value and the full utilization of the
available bandwidth is achieved. Hence, the window size should
stabilize around the anticipated value.

According to the aforementioned analysis, we design a delay-
based control strategy in HCC TCP so as to let the window size
efficiently converge to the anticipated value and achieve a high
utilization of network bandwidth. The details of the delay-based
control algorithm are described as below.

3.2.1. Calculating the values of window size change

HCC TCP utilizes delay information as the primary congestion
indicator. From the startup, the timestamp option described in
Kuzmanovic and Knightly (2003) and Alonso et al. (2007) is used
to measure the forward one-way delay Df

i . Let baseDf
i be the

minimum Df
i observed so far, the forward queuing delay of source

i is Qf
i ¼Df

i�baseDf
i .

Each source computes its anticipated window wa
i ðtÞ periodi-

cally according to

wa
i ðtÞ ¼

ai

avgQf
i ðtÞ

avgDiðtÞ ð3Þ

where avgQf
i ðtÞ and avgDi(t) denote the average values of the

forward queuing delay and the round-trip time, respectively.
Then the distance Dwi between the anticipated window and the
current window can be calculated as DwiðtÞ ¼wa

i ðtÞ�wc
i ðtÞ. If Dwi

is above zero, the current window should increases. Otherwise, it
should decreases to approach the anticipated window size.

3.2.2. Adjusting the window size

We take the size of the anticipated window as a delay-

reference in HCC TCP. As the delay-reference is determined, we
adjust the window according to the value Dwi so that enable the
current window size approach the delay-reference. However, if
the distance between the anticipated window and the current
window is too large, directly changing the window size to the
delay-reference will cause so much stress to a network. Hence, as
suggested in Xu et al. (2004), a maximum value Imax is set for the
window size change when 9Dwi9 is larger than Imax, and the
window size increases/decreases by Imax until the distance 9Dwi9
is less than Imax.

In order to rapidly converge to the full bandwidth utilization
and also to avoid the burst change of window size, proper
parameter Imax should be set in the delay-based control strategy.
As the analysis in Xu et al. (2010), the ideal maximum increment
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of window size in FAST TCP is gai, and therefore the maximum
value Imax is also set as gai for window size change in HCC TCP.
The protocol periodically updates the window size per RTT. When
the value for window size change is obtained, we do not directly
adjust the change value in the RTT. In order to enable the
congestion window gradually approach the anticipated window
size, only a half of the change value determined by Dwi and Imax is
used for adjusting the window in the update phase. Note that BIC
TCP set the midpoint of the current window size and the
maximum window size to be the target window size. Due to
the anticipated window size that can cause the packet loss must
locates in the distance between the two values, BIC TCP uses the
binary increase method to search the anticipated value within a
determined area. On the other hand, HCC TCP relies on Eq. (3) to
calculate the anticipated window size, and a half of the value
determined by Dwi and Imax is used to enable the current window
approach to the finally anticipated window size, which locating in
the stable range shown in Fig. 2. This makes HCC TCP fundamen-
tally different from the mechanisms in BIC TCP, which use the half
of a determined value to increase the window size.

3.3. Loss-based congestion control

Delay-based congestion control algorithms require a specified
number of packets queued in routers so as to keep the average
throughput around the full utilization. Therefore the buffer size of
routers should be larger than the specified value in the delay-
based algorithms, and the specified value for a network increases
as the increment of source numbers. However, if the buffer size of
the routers is not large enough for the specified value, packet loss
might happen in the networks. To tackle this, we use packet loss
as the second congestion indicator and design a loss-based
congestion control strategy for the operation of HCC TCP.

For the loss-based congestion control, when the network is
close to the congestion status, the fast increment of window size
could lead to the congestion event more easily and cause a heavy
oscillation of window size so that degrade the throughput
performance for each traffic source. The linear to logarithmic
increase function, as described in Xu et al. (2004) and Liu et al.
(2008), is an efficient way to avoid the heavy congestion induced
by fast increment of window size. The approaches increase the
window linearly at the initial stage and then increase logarith-
mically to get close to the reference point that a congestion event
may happen. Fundamentally, the change of the window size is
from fast to slow. Therefore, using such mechanisms, the traffic
source can rapidly catch up the available bandwidth and also
prolong the time interval between two successive congestion
events so as to achieve better performance on average throughput.

To rapidly increase the window size while keep it around the
congestion reference point for a longer time, similar to the linear
to logarithmic increase functions in Xu et al. (2004), we use the
binary increase scheme associated with the delay-based strategy
described above to adjust the window size. As shown in Fig. 3,
once a packet is detected to be lost, the source immediately
halves the window and records the window size that the conges-
tion event happens as a loss-reference. When the source starts to
recover its window size to obtain the bandwidth utilization, it
sets the loss-reference as the maximum size wmax

i and the current
window is treated as the minimum size wmin

i , then the target
increment of window size is

wtar
i ¼ ðw

max
i �wmin

i Þ=2 ð4Þ

The source increases the window size by the target value. After
the target increment of window size is achieved and if there is no
packet lost, the current window size is set to be the new
minimum size and a new target increment of window size is
computed according to Eq. (4). Using the binary increase scheme,
the window grows rapidly if the current size is far from the loss-

reference and grows slowly if the current size is close to the loss-

reference. On the other hand, if a packet loss is detected during the
growth of the window, the source updates the loss-reference as
well as the maximum size to be the current window size. As the
mechanisms in the delay-based strategy, the maximum value Imax

is also set for the window size change if the increment value is
larger than Imax. Meanwhile, a minimum increment value Imin is
used for increasing the window if the increment value falls below
Imin. A half of the increment value calculated by the above
mechanisms is utilized to adjust the window size in the loss-
based control strategy.

3.4. Implementation of window control algorithm

In this subsection, we show how the delay-based strategy and
the loss-based strategy cooperate in the operation phase of HCC
TCP, and the detailed implementation of window control algo-
rithm is presented as follows.

At startup, HCC TCP relies on the delay-based algorithm to
increase the window size. Firstly, like FAST TCP, we set a thresh-
old value, mi_threshold, to estimate the congestion on the forward
path. If avgQf

i ðtÞomi_threshold, it indicates that the forward
queuing is light, the multiplicative increase (MI) scheme can be
used to rapidly increase the window size. Otherwise, the protocol
should periodically update the congestion window using the
delay-based algorithm in terms of the queuing along the forward
path becomes heavy. Secondly, we set the loss-reference to be a
default maximum value until it is updated by a congestion event.
During the startup period, the congestion window is adjusted by
the delay-based congestion control algorithm and can lead to a
rapid growth in congestion window size.

Figure 4 depicts the window growth function of HCC TCP. If
there is no detection of packet loss when the source reaches the
equilibrium state, it indicates that the loss-reference is above the
delay-reference that the source can achieve the full utilization of
bandwidth, as shown in Fig. 4(a). Therefore the congestion
window finally stabilizes around the delay-reference, and the
window size changes according to the dynamics of the delay-

reference. On the other hand, before reaching the delay-reference,
if a packet loss is detected, it indicates that the loss-reference is
less than the delay-reference, as shown in Fig. 4(b). At that time,
the source updates its loss-reference, halves the size of congestion
window and then uses the loss-based congestion control



Table 1
Pseudo-code of window control algorithm in HCC TCP.

Variables:
W Current window size;

Wold Previous window size;

wi(t) Window size of source i, at time t;

ai Packet numbers that should be maintained at routers for source i;

mi_threshold Threshold value for forward congestion estimation.

Startup ( ):
Set loss-reference to be a default maximum value;

Start to calculate average queuing delay: avgQf
i ðtÞ;

Start to calculate average RTT: avgDi(t);

If avgQf
i ðtÞomi_threshold, then W¼2UWold per RTT;

If avgQf
i ðtÞZmi_threshold, then turn to delay-based congestion control

function ( );

Delay-based congestion control function ( ):
Estimate anticipated window size (delay-reference):

wa
i ðtÞ ¼ aiUavgDiðtÞ=avgQf

i ðtÞ;

Calculate the change for current window size: DwiðtÞ ¼wa
i ðtÞ�wc

i ðtÞ;

If DwiðtÞ4 Imax , then DwiðtÞ ¼ Imax;

If DwiðtÞo�Imax , then DwiðtÞ ¼ �Imax;

Update congestion window: W¼Woldþ(Dwi/2) per RTT;

Upon detected loss packet:

update loss-reference;

back off to W¼W/2;

turn to loss-based congestion control function ( );

Loss-based congestion control function ( ):
Calculate increment for current window size:

wtar
i ¼ wmax

i �wmin
i

� �
=2;

If wtar
i 4 Imax , then wtar

i ¼ Imax;

If wtar
i o Imin , then wtar

i ¼ Imin;

Update congestion window: W ¼Woldþðw
tar
i =2Þ per RTT;

If W4 loss-reference & no packet loss is detected,

reset loss-reference;

turn to delay-based congestion control function ( );

Upon detected loss packet:

update loss-reference;

back off to W¼W/2;
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Fig. 5. The dumb-bell network topology.
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algorithm to adjust the window. After the congestion window
grows past the loss-reference, if no packet loss is given, it indicates
that the congestion in the network is mitigated and there is more
available bandwidth for the source. To rapidly catch up the
available bandwidth, after passing the loss-reference, the source
resets the loss-reference as the default maximum value and turns
to the delay-based congestion control algorithm so that enable
the window size converge to the delay-reference. Note that if a
packet loss is detected before reaching the delay-reference, the
source will update its loss-reference and turn to the loss-based
algorithm again for adjusting the window size. The corresponding
pseudo-code of window control algorithm in HCC TCP is illu-
strated as Table 1.
4. Performance evaluation

Using ns-2 (Cui and Andrew, 2007; NEC-Labs, 2007; Wei and
Cao, 2007; USC/ISI, 2010), we conducted extensive simulation
experiments to evaluate the HCC TCP protocol and compare its
performance with TCP Reno, TCP Vegas, HSTCP, STCP, HTCP, BIC-
TCP, TCP-Illinois and FAST TCP. As shown in Fig. 5, a dumb-bell
network topology in which one or multiple of source and
destination nodes share a single bottleneck link is used in
simulation. The forward and reverse links each with 200 Mbps
bandwidth and 20 ms propagation delay, and the routers are
equipped with the first-in-first-out (FIFO) service discipline for
queuing. The size of data packets is 1000 bytes in all experiments.

For TCP Reno, TCP Vegas, HSTCP, STCP, HTCP, BIC-TCP and TCP-
Illinois, their default parameter settings are used in the simula-
tions. For FAST TCP and HCC TCP, we set a¼400 and g¼0.5. In
addition, the propagation delay of packets is used in the window
control algorithm of FAST TCP and HCC TCP and the estimation
error induced by queuing delay can result in certain unfairness
among the flows. So far, some effective solutions have been
provided in Low et al. (2002), Tan et al. (2005) and Cui et al.
(2006) to eliminate this error. Due to the unfairness caused by
propagation delay measurements is not the problem we focused
on in this paper, it is assumed that each flow of FATS TCP and HCC
TCP knows its true propagation delay in the simulations.

4.1. Efficiency of a single traffic flow

We perform simulations to evaluate the efficiency of a single
traffic flow with different values of buffer size. The simulation
period for one simulation run is 300 s. Figure 6 shows the average
throughput for the buffer sizes varied from 100 to 4000 pkts.
From the graph, it can be seen that the average throughput of
all the protocols increases as the buffer size grows, and the
high-speed TCP variants uniformly achieve a better throughput
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performance than TCP Reno and TCP Vegas which are not
designed for high-speed networks. However, the average
throughput of FAST TCP falls rapidly when the buffer size is less
than 400 pkts. HCC TCP throughput does not change significantly
for the varied buffer size. For the higher buffer sizes, its through-
put slightly increases, and then approximately achieves the full
utilization when the buffer size becomes higher than 400 pkts.
Moreover, HCC TCP performs better on throughput performance
than other high-speed TCP variants almost in all cases of buffer
size. The average queuing size of the protocols for the varied
buffer sizes is shown in Fig. 7. It can be observed that the average
queuing size of the loss-based congestion control protocols, e.g.
TCP Reno, HSTCP, STCP, HTCP and BIC TCP as well as TCP-Illinois
which uses the packet loss as the primary congestion indicator,
increases rapidly with the growth of buffer size and then becomes
extremely higher than that of TCP Vegas, FAST TCP and HCC TCP.
Therefore, the protocols, which using the queuing delay as the
primary congestion indicator, bring fewer overloads to routers
than the loss-based protocols, especially when the buffer size
is large.

Then the average throughput of the protocols is evaluated
under a network with different packet loss probabilities, e.g.
1�10�5, 0.7�10�5, 0.5�10�5, 0.3�10�5, 1�10�6, which are
according to a Bernoulli process. The results obtained are pre-
sented in Fig. 8. It can be seen that when the router buffer size is
200 pkts, as shown in Fig. 8(a), the average throughput of all the
protocols decreases as the value of packet loss probability
increases. Most of the high-speed TCP variants achieve higher
average throughput than TCP Reno and TCP Vegas in all cases.
HCC TCP is able to maintain a high average throughput amongst
the protocols. However, the average throughput of FAST TCP is
much lower than other high-speed TCP variants. As shown in
Fig. 8(b), when the router buffer size is 2000 pkts, the average
throughput of all the high-speed TCP variants is higher than TCP
Reno and TCP Vegas in all packet loss probability cases, and HCC
TCP can also achieve higher average throughput than most of
other protocols.

From the simulation results, we demonstrate that HCC TCP
outperforms the current high-speed TCP variants in the perfor-
mance of average throughput and queuing size. This is mainly
because of the hybrid nature of HCC TCP. Since HCC TCP should
maintains a packets at routers when reaches the equilibrium
state. If the buffer size is higher than 400 pkts and it gives no
packet loss, the delay-based strategy is used for congestion
control, as shown in Fig. 9(b), HCC TCP rapidly converges to the
equilibrium state and achieves full bandwidth utilization. More-
over, a number of packets a are maintained at the routers along
the path so that results in a fix average queuing size for the traffic
flow. When the buffer size is less than 400 pkts and it gives packet
loss events for the delay-based strategy, then HCC TCP turns to



Fig. 8. Average throughput versus packet loss probability. (a) Buffer size is 200 pkts and (b) buffer size is 2000 pkts.

Fig. 9. Rate dynamics of HCC TCP. (a) Buffer size is 200 pkts and (b) buffer size is 600 pkts
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the loss-based strategy for congestion control. The linear to
logarithmic increase of window size realized by the loss-based
strategy keeps the window close to the congestion point for a
longer time and decreases the probability of packet loss event,
thus it still achieves high bandwidth utilization in the high-speed
networks, as shown in Fig. 9(a).
4.2. Fairness

In order to evaluate the fairness performance of HCC TCP, we
consider two different scenarios, e.g. homogeneous RTT and
heterogeneous RTT, respectively. Furthermore, the Jain’s fairness
index (FI) is used to quantitatively evaluate the fairness perfor-
mance of the protocols (Jain et al., 1984; Gu and Grossman, 2007)

FI¼
ð
Pn

i ¼ 1 xiÞ
2

nU
Pn

i ¼ 1 x2
i

ð5Þ

where n is the number of the concurrent flows and xi is the
average throughput of the flow i. The value of IF is always no more
than 1. The larger IF value means the better fairness performance,
and as the value equal to 1, the competing flows in a network
achieve definitely equivalent throughput. The efficiency index
(EI), which is the amount of the concurrent flows’ throughput, is
also used to evaluate the throughput performance of the
protocols.

For homogeneous RTT scenarios, three connections pass
through the same bottleneck path and the RTT is 120 ms for all
users. The three sources start sending data at 0 s and terminate at
300 s simultaneously. Figure 10 depicts the average throughput of
three users using the high-speed TCP variants. We see that when
the buffer size is 2000 pkts, as shown in Fig. 10(b), all the
protocols enable the users fairly share the link resources, and
HCC TCP obtains approximately full utilization of bandwidth as
other high-speed protocols. As the buffer size decreases to
600 pkts, the results in Fig. 10(a) show that the fairness perfor-
mance of STCP, TCP-Illinois and FAST TCP degrades significantly.
However, HCC TCP not only achieves fair sharing of link resources
among the three users, but also maintains high utilization of
bandwidth. This is again because of the hybrid nature of HCC TCP.
When the buffer size is larger than the predefined number of
packets that need to be maintained at routers, the delay-based
strategy is implemented in HCC TCP will not cause packet loss.
Hence, HCC TCP performs well as FAST TCP to fairly share the link
capacity. When the buffer size is less than the predefined number
of packets and there are packet loss be detected, the delay-based
protocol, FAST TCP, performs inefficiently in the network envir-
onment. At that time, HCC TCP utilizes the loss-based strategy
using the binary increase scheme to adjust the window size so
that still achieves an efficient fairness performance as well as the
high utilization of bandwidth.

For heterogeneous RTT scenarios, the fairness performance of
theses high-speed TCP variants is demonstrated with a different
RTT. We first conduct the experiments that two high-speed flows
with different RTT ratios share the bottleneck link. The RTT of
flow 1 is 60 ms, and the RTT of flow 2 varies among 90, 120 and
360 ms, thus the RTT ratio for the two high-speed flows is 1.5,
2 and 6, respectively. Table 2 illustrates the results for the runs
with the buffer sizes of 600 and 2000 pkts, respectively. It can be
observed that when the buffer size is 600 pkts, as shown in
Table 2(a), the fairness performance of all the protocols is
significantly affected by the RTT ratio, and the flow 1 with a
short RTT obtains much higher throughput than the flow 2 with a
long RTT. Compare to HSTCP, STCP, HTCP, BIC TCP and FAST TCP,



Fig. 10. Average throughput of 3 homogeneous RTT (120 ms) users. (a) Buffer size is 600 pkts and (b) buffer size is 2000 pkts.

Table 2
The simulation results of EI and FI.

(a) Buffer size is 600 pkts

RTT ratio 1.5 2 6

Protocols T1 T2 EI FI T1 T2 EI FI T1 T2 EI FI

HSTCP 197.91 1.68 199.59 0.5085 196.75 2.76 199.51 0.5140 198.57 0.66 199.23 0.5033
STCP 199.53 0.08 199.61 0.5004 199.24 0.29 199.53 0.5015 199.54 0.02 199.56 0.5001
HTCP 175.96 9.38 185.34 0.5532 184.64 6.09 190.73 0.5329 166.89 9.31 176.20 0.5556
BIC TCP 199.02 0.62 199.64 0.5031 199.00 0.62 199.62 0.5031 199.31 0.34 199.65 0.5017
TCP-Illinois 156.56 42.28 198.84 0.7517 173.75 23.15 196.90 0.6309 195.81 2.93 198.74 0.5150
FAST TCP 187.13 12.43 199.56 0.5661 190.11 9.44 199.55 0.5495 186.76 6.21 192.97 0.5332
HCC TCP 177.03 22.45 199.48 0.6248 179.19 20.26 199.45 0.6116 182.33 16.18 198.51 0.5880

(b) Buffer size is 2000 pkts

RTT ratio 1.5 2 6

Protocols T1 T2 EI FI T1 T2 EI FI T1 T2 EI FI

HSTCP 196.82 2.84 199.66 0.5144 199.35 0.23 199.58 0.5012 199.01 0.32 199.33 0.5016
STCP 198.74 0.93 199.67 0.5047 199.45 0.12 199.57 0.5006 197.69 1.26 198.95 0.5064
HTCP 189.87 9.79 199.66 0.5514 189.55 10.00 199.55 0.5526 168.39 30.28 198.67 0.6742
BIC TCP 199.33 0.31 199.64 0.5016 198.17 1.33 199.50 0.5067 199.03 0.63 199.66 0.5032
TCP-Illinois 130.19 69.27 199.46 0.9147 161.90 37.56 199.46 0.7201 168.30 31.13 199.43 0.6788
FAST TCP 100.18 99.40 199.58 1.0000 100.35 99.22 199.57 1.0000 102.77 96.77 199.54 0.9991
HCC TCP 99.94 99.55 199.49 1.0000 100.13 99.33 199.46 1.0000 103.31 96.11 199.42 0.9987

T1: average throughput of user 1 (Mbps); T2: average throughput of user 2 (Mbps).
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TCP-Illinois and HCC TCP is fairer to the heterogeneous RTT users.
Moreover, HCC TCP does not significantly deteriorate as the RTT
ratio changes. We also note that when the buffer size is 2000 pkts,
as shown in Table 2(b), FAST TCP and HCC TCP achieves fairly
share of the bottleneck link and perform much better than HSTCP,
STCP, HTCP, BIC TCP and TCP-Illinois. This is because in the
scenario, FAST TCP and HCC TCP rely on the delay-based strategy
to realize the congestion control function, and the buffer size is
higher than the number of packets that need to maintained at
routers, thus the delay-based strategy can normally operate under
the high bandwidth environment and avoid the unfairness caused
by the heterogeneous RTTs.

To further demonstrate the fairness performance of the high-
speed protocols, we run the simulations that multiple users start
sending data at different times to share the bottleneck link. In
Wei et al. (2006), Li et al. (2007) Ha et al. (2008) and Liu et al.
(2008), extensive experiments have been conducted to evaluate
the fairness performance of HSTCP, STCP, HTCP, BIC TCP,
TCP-Illinois and FAST TCP in this scenario, thus here we mainly
focus on the performance of HCC TCP. Figure 11 illustrates the
rate dynamics of HCC TCP with buffer size of 600 pkts. The
results in Fig. 11(a) show that when two homogeneous RTT users
of HCC TCP coexist in the scenario, the two flows converge to a
fair share of the bottleneck link after 80 seconds. On the other
hand, when two heterogeneous RTT users of HCC TCP compete
for the link bandwidth, as shown in Fig. 11(b), the flow with
shorter RTT achieves a higher throughput than the other one.
The simulation results in Fig. 11 present the features of loss-
based strategy in HCC TCP.

We also run the simulations in which three HCC TCP users
with heterogeneous RTTs share the bottleneck link. The three
sources start sending data at 0, 100 and 200 s, respectively and
terminate at 300 s. The buffer size is set to be 2000 pkts which
means the buffer size is above the number of packets that need to
be maintained at routers by HCC TCP. The results in Fig. 12 show
that the three flows rapidly converge to a fair share of the
bottleneck link, thus HCC TCP achieves better RTT-fairness than
the other loss-based protocols. These simulation results present
the features of delay-based strategy in HCC TCP. In addition, we
increase the link bandwidth to 1 Gbps. In this environment, the
buffer size is large enough for the three users and the parameter a
of HCC TCP is set as 2000. The simulation results in Fig. 13 show
that when the link bandwidth increases to 1 Gbps, HCC TCP can
still achieve an efficient performance with proper parameter



Fig. 11. Rate dynamics of HCC TCP with buffer size of 600 pkts. (a) Rate dynamics of 2 homogeneous RTT users and (b) rate dynamics of 2 heterogeneous RTT users.

Fig. 12. Rate dynamics of HCC TCP with buffer size of 2000 pkts.

Fig. 13. Rate dynamics of HCC TCP in a 1 Gbps bandwidth environment.
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settings. The three HCC TCP users not only rapidly converge to a
fair share of the 1 Gbps bottleneck link, but also maintain perfect
RTT-fairness amongst the users.

Overall, HCC TCP shows a better fairness performance among
the high-speed TCP variants.

4.3. TCP-friendliness

For the evaluation of TCP-friendliness performance, we run the
simulations that two sources are specified to run TCP Reno while
two sources implement the high-speed TCP variants in a
homogeneous RTT scenario. Figure 14 shows the average
throughput of the four flows with different buffer sizes in which
the number 1 and 2 denote the flows using high-speed TCP
variants and the number 3 and 4 denote the flows using TCP
Reno. From the results, it can be seen that even the buffer size
changes, the loss-based protocols, e.g. HSTCP, STCP, HTCP and BIC
TCP, always perform unfair and significantly reduce the average
throughput of the TCP Reno flows. TCP-Illinois performs better
than the loss-based protocols. However, as the buffer size grows,
the TCP Reno flows achieve higher throughput than the TCP-
Illinois flows. For the delay-based protocol FAST TCP and the



Fig. 14. Average throughput of four flows, two use high-speed TCP variants, two use TCP Reno. (a) Buffer size is 600 pkts, (b) buffer size is 1000 pkts, (c) buffer size is

2000 pkts and (d) buffer size is 3000 pkts.

Fig. 15. Average throughput versus buffer size in presence of reverse traffic.
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hybrid protocol HCC TCP, if the buffer size is less than the number
of packets that need to be maintained at routers, their perfor-
mance is similar to the loss-based protocols. However, as the
buffer size increases, FAST TCP and HCC TCP achieve better
friendliness to the TCP Reno flows. We also note that when the
buffer size is 2000 pkts, the four flows can even fairly share the
bottleneck link. This is because HCC TCP uses the loss-based
strategy for window size control when buffer size is less than the
specified packet number, and thus lead to its TCP-friendliness
performance is similar to other loss-based high-speed protocols.
As the buffer size grows larger than the specified packet number,
HCC TCP sources turn to the delay-based strategy and always
maintain the predefined number of packets at routers, and the
redundant buffer is available for the TCP flows. Therefore, the TCP
Reno flows could share the bandwidth with the HCC TCP flows.
The more available buffer is provided, the higher bandwidth
utilization can be achieved by the TCP Reno flows. Obviously,
the simulation results demonstrate that HCC TCP does not always
suppress the concomitant TCP Reno flows and achieves better
TCP-friendliness performance than the loss-based high-speed TCP
variants.

4.4. Robustness

The robustness performance of HCC TCP is studied in this
subsection. It is well known that the delay-based approaches
using RTTs as the congestion measures are significantly affected
by the reverse traffic, and as the congestion on the reverse path
increases, the throughput of the flows degrades although there is
available bandwidth on the forward path. Hence, we perform the
simulations to compare the robustness performance of TCP-
Illinois, FAST TCP and HCC TCP which utilize the delay-based
strategy for congestion control. As suggested in Chan et al. (2004),
we adopt a variable-bit-rate (VBR) source which sends data
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according to Exponential ON–OFF distribution to generate traffic
and cause congestion on the reverse path. The buffer size is
2000 pkts for each router along the reverse path, and the size of
reverse packet is 500 bytes.

Figure 15 presents the average throughput of the protocols for
different buffer sizes when the ON–OFF settings are 0.9 and 1.0,
Fig. 16. Window cur

Fig. 17. Rate dynamics in pr

Fig. 18. Average throughput versu
respectively. We run each test in the simulations for 300 s.
Compare to the results shown in Fig. 6, it is observed that the
throughput performance of TCP-Illinois and HCC TCP is not
significantly affected by the reverse traffic. When the buffer size
becomes large enough, TCP-Illinois and HCC TCP are able to
achieve almost full bandwidth utilization. However, the average
ves comparison.

esence of reverse traffic.

s varying reverse traffic loads.



Fig. 19. Average throughput versus varying reverse packet sizes.
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throughput of FAST TCP is affected with the reverse traffic and
decreases dramatically. This is mainly because FAST TCP uses the
round trip queuing delay as the congestion measure, and the
reverse queuing delay could result in the inaccurate measure-
ment of FAST TCP for the congestion on the forward path so that
lead to the performance degradation of throughput. TCP-Illinois
utilizes packet loss information as the primary indicator for
congestion and the queuing delay information is utilized for
adjusting the window size. This mechanism enables TCP-Illinois
avoid the significant effect from the reverse traffic. HCC TCP uses
the forward one-way delay as the congestion measure, thus the
congestion on the forward path can be exactly measured without
the effect of the reverse traffic.

The window curves of FAST TCP and HCC TCP in present of
reverse traffic as well as FAST TCP without reverse traffic effect is
shown in Fig. 16. It can be seen that when the effect from the
reverse traffic is not significant, FAST TCP finally stabilizes at a fix
window size so that achieves full bandwidth utilization along the
forward path. However, when the reverse traffic causes signifi-
cant queuing delay on the reverse path, the window size of FAST
TCP decreases dramatically and thus result in the reduction of
throughput on the forward path. Due to the congestion on the
forward path can be exactly measured by the one-way delay
estimation mechanisms, HCC TCP performs higher window size to
conquer the reverse traffic effect and achieves better bandwidth
utilization. The rate dynamics of FAST TCP and HCC TCP in
presence of reverse traffic is illustrated in Fig. 17.

The average throughput of TCP-Illinois, FAST TCP and HCC TCP
with different reverse traffic loads is also studied. The traffic
source sending data on the forward path and the VBR source
generating congestion on the reverse path start at 0 s and
terminate at 300 s. The buffer size is 2000 pkts for either the
forward path or the reverse path. The ON–OFF setting of the VBR
source varies from zero to one accordingly. As the simulation
results shown in Fig. 18, we note that TCP-Illinois and HCC TCP
achieve better performance than FAST TCP on average through-
put, especially when the reverse traffic load is heavy. As
the reverse traffic load increases, the average throughput
of TCP-Illinois decreases slightly. However, HCC TCP always
maintains full bandwidth utilization for the different reverse
traffic loads. Figure 19 presents the average throughput of
TCP-Illinois, FAST TCP and HCC TCP with different sizes of reverse
packet when the ON–OFF setting is one. From the simulation
results, it can be seen that the average throughput of both
TCP-Illinois and FAST TCP decreases as the reverse packet size
increases, and TCP-Illinois performs better than FAST TCP. On the
other hand, HCC TCP always achieves the full utilization of
bandwidth with different reverse packet sizes.

Obviously, the obtained results demonstrate the robustness of
HCC TCP in the presence of reverse traffic.
5. Conclusion

In this paper, a novel congestion control algorithm using the
synergy of delay-based and loss-based strategies is presented for
performance enhancement of data transfer in high-speed net-
works. HCC TCP uses queuing delay as the primary congestion
indicator, and packet loss is used as the second congestion
indicator. The delay-based strategy relies on the one-way delay
measurements to estimate the congestion along the forward path,
calculates the anticipated window size which can achieve full
bandwidth utilization using the delay information, and adjusts
the window that finally stabilizes around the anticipated value.
On the other hand, the loss-based strategy using a linear to
logarithmic increase function is adopted for the window control
when the delay-based strategy performs inefficiently in networks
and the loss event is detected. The hybrid solution inherits the
advantages from the delay-based and loss-based congestion
control strategies so as to achieve efficient performance in high-
speed networks.

Extensive simulation experiments are conducted to under-
stand the performance of HCC TCP. Compare to the existing high-
speed TCP variants, HCC TCP can rapidly converge to a high
utilization of link bandwidth and always achieve higher average
throughput than other high-speed TCP variants with different
router buffer sizes. For the fairness, HCC TCP not only performs
well in a homogeneous RTT scenario, but also maintains a fair
share of bottleneck link bandwidth in a heterogeneous RTT
scenario. Moreover, HCC TCP performs better than other high-
speed TCP variants, especially on the heterogeneous RTT-fairness
for the ones using loss-based congestion control. HCC TCP is able
to achieve better performance on TCP-friendly than most of
other high-speed TCP variants, and does not suppress the
throughput of the standard TCP in proper cases. Finally, for the
robustness, HCC TCP can still perform well in the presence of
significant reverse traffic and efficiently remedy the effect of
reverse traffic for the delay-based congestion control. Overall,
the experiment results demonstrate HCC TCP satisfies the
requirements for an ideal solution to high-speed TCP protocol
and achieves better performance on throughput, fairness,
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TCP-friendliness, robustness, etc. than most of the existing high-
speed TCP variants.

Direction for future research is to implement the HCC TCP
protocol in a testbed and evaluate its performance in a real
environment.
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