
International Journal of Rock Mechanics & Mining Sciences 48 (2011) 51–58
Contents lists available at ScienceDirect
International Journal of
Rock Mechanics & Mining Sciences
1365-16

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/ijrmms
Development of a model to predict peak particle velocity in a
blasting operation
H. Dehghani n, M. Ataee-pour

Department of Mining, Metallurgical and Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran
a r t i c l e i n f o

Article history:

Received 19 December 2009

Received in revised form

6 July 2010

Accepted 14 August 2010
Available online 29 September 2010

Keywords:

Neural network

Blasting

Ground vibration

Peak particle velocity (PPV)

Dimensional analysis

Sarcheshmeh copper mine
09/$ - see front matter & 2010 Elsevier Ltd. A

016/j.ijrmms.2010.08.005

esponding author. Tel.: +98 9122523159; fax

ail address: hesam.dehghan@aut.ac.ir (H. Deh
a b s t r a c t

Ground vibrations arising from rock blasting is one of the fundamental problems in the mining industry,

and predicting it plays an important role in the minimization of environmental complaints. To evaluate

and calculate the blast-induced ground vibration by incorporating blast design and rock strength,

artificial neural networks (ANN) and dimensional analysis techniques were used. First a three-layer,

feed-forward back-propagation neural network having nine input parameters, twenty-five hidden

neurons and one output parameter was trained using 116 experimental and monitored blast records

from one of the most important copper mines in Iran. Seventeen new blast datasets were used for the

validation of the peak particle velocity (PPV) by ANN. In the second step, a new formula was developed

applying dimensional analysis on results obtained from the sensitivity analysis of the ANN

consequences. Results from the calculated formula were compared based on correlation coefficient

and root mean square error (RMSE) between monitored and predicted values of PPV. In addition to

providing the best prediction of vibration, the new formula has the greatest correlation coefficient and

the lowest RMSE, 74.5% and 3.49, respectively.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ground vibrations consume explosive energy that could be
applied instead to rock fracturing. The intensity of vibration plays
a critical role in all types of adverse effects. High ground
vibrations not only create problems to the nearby population,
but also adversely affect the integrity of the structures in the mine
area. Sometimes, it provokes the population and can lead to the
mine’s closure. High intensity vibration also damages the ground-
water and harms the ecology of the nearby area. Blast-induced
ground vibration has a detrimental effect on structures such as
buildings, dams, roads, railroads, natural slopes, etc. If ground
vibration is not controlled or minimized, it may be one of the
main causes of deforestation in the future by changing the
groundwater level, creating landslides, soil loss, etc [1]. Ground
vibration may damage the free face and generate back breaks [2].
These back breaks create problems while drilling the next blast
round and generate over-size boulders [3]. This adversely affects
the mine’s economics, hampers production and endangers the
socio-economic development of the surrounding area. Therefore,
it is important to control and measure the vibration with greater
accuracy.
ll rights reserved.

: +98 2188664108.

ghani).
To prevent vibration problems, various parameters such as the
physico-mechanical properties of rock mass, explosives specifica-
tions and geometrical and timing aspects of the blasting pattern
should be considered when designing a blasting pattern. In the
past, traditional methods were mostly used in the design of the
blasting pattern. With regard to the fact that the number of
effective parameters is too large and the interactions are too
complicated, empirical blasting design methods may not be fully
suitable for this purpose. Currently, new techniques such as
artificial neural networks (ANN), genetic algorithms (GA), fuzzy
expert systems (FES), techniques for order preference by similar-
ity to ideal solution (TOPSIS), etc., are frequently applied [3–5].

The ANN technique is a relatively new branch of ‘artificial
intelligence’ (AI) and has been developed since the 1980s. At the
present time, the ANN technique is considered to be one of the
most intelligent tools for simulating complex problems. This
technique has the ability to generalize a solution from the
patterns presented to it during training. Once the network is
trained with a sufficient number of sample datasets, for a new
input of relatively similar patterns, predictions can be made on
the basis of previous learning [6]. Due to its multidisciplinary
nature, ANNs are becoming popular among researchers, planners,
designers and the like, as an effective tool [7–18]. In the ground
vibration field, Mohamed applied ANN to predict and control the
blast vibration in a limestone quarry [19]. Khandelwal and Singh
[20] predicted the PPV by ANN, taking into consideration the
distance from the blast face to monitoring point and explosive
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charge per delay. They compared their findings with the
commonly used vibration predictors and found very good results
by ANN prediction as compared to vibration predictor equations
[1]. Khandelwal and Singh [21] also studied the blast vibration
and frequency using rock, blast design and explosive parameters
with the help of ANN and compared their results with multi-
variate regression analysis.

Since ground conditions vary from one mine to another, it is
necessary to preset a specific formula for each mine in order to
determine and decrease the vibration. Considering all the
parameters affecting vibration in a single formula is a quite
difficult task. On the other hand, for developing an efficient
mathematical model, it is necessary to select and apply all the
important factors. In this research, an attempt has been made to
develop a rather more comprehensive relationship for calculating
the peak particle velocity (PPV).

To determine PPV, dimensional analysis method was selected.
The dimensional analysis technique is based on reducing complex
physical problems to the simplest form prior to obtaining a
quantitative answer. The principal use of dimensional analysis is
to deduce certain limitations from a study of the dimensions of
the variables in any physical system on the form of any possible
relationship between those variables. The method is of great
generality and mathematical simplicity [22].

With the help of dimensional analysis and having the results of
ANN sensitivity analysis, a comprehensive mathematical model
using the SPSS 17 software was developed.
2. Artificial neural network

The ANN technique is a branch of ‘Artificial Intelligence’ (AI).
Other branches are Case Based Reasoning (CBR), Expert Systems
(ES), Genetic Algorithms (GA) and fuzzy logic. The ANN method is
an information processing system simulating the structures and
functions of the human brain. It attempts to imitate the way in
which a human brain works in processes such as studying,
memorizing, reasoning and inducing with a complex network,
which is performed by extensively connecting various processing
units. It is a highly interconnected structure that consists of many
simple processing elements or neurons capable of performing
massive parallel computations for data processing and knowledge
representation. The paradigms in this field are based on direct
modeling of the human neuronal system [23]. A neural network
can be considered as an intelligent hub that is able to predict an
output pattern when it recognizes a given input pattern. The
neural network is first trained by processing a large number of
datasets. After completion of proper training, the neural network
can detect similarities when presented a new pattern and
accordingly, predict the output pattern. This property gives
excellent interpolation capability to the technique, especially
when the input data is noisy (not exact). Depending on
computational capabilities, neural networks may be used as a
direct substitute for auto-correlation, multivariable regression,
linear regression and other statistical analysis techniques. When
data are analyzed using a neural network, it is possible to detect
important predictive patterns that were not previously apparent
to a non-expert. Thus, the neural network can act like an expert. A
particular network can be defined using three fundamental
components; transfer function, network architecture and learning
law [24]. One has to define these components according to the
type of problem to be solved.

A network first needs to be trained before interpreting new
information. Various algorithms are available for training neural
networks. The back-propagation algorithm is the most versatile
and robust technique and provides the most efficient learning
procedure for multilayer perception neural networks. Also, the
fact that the back-propagation algorithm is especially capable of
solving predictive problems makes it so popular [25]. The feed-
forward back-propagation neural network (BPNN) always consists
of at least three layers; input layer, hidden layer and output layer
[26]. Each layer consists of a number of elementary processing
units, called neurons, which are connected to the next layer
through weights, i.e. each neuron in the input layer will send its
output (as input) for neurons in the hidden layer and similar is the
connection between hidden and output layer. The number of
hidden layers and the number of neurons in the hidden layers is
changed according to the problem to be solved. The number of
input and output neurons is the same as the number of input and
output variables. For this research, multilayer network architec-
ture with a hidden layer between input and output units is
applied. To differentiate between the various processing units,
bias values are introduced in the transfer functions. These biases
are referred to as the temperature of a neuron. In the back-
propagation neural network, with the exception of input layer
neurons, all other neurons are associated with a bias neuron and a
transfer function [27]. The bias is much like a weight, except that
it has a constant input of 1, while the transfer function filters the
summed signals received from this neuron. The transfer functions
are designed to map a neuron or layers net output to its actual
output. These transfer functions are either linear or nonlinear
[27]. The type of these transfer functions depends on the purpose
of the neural network. The output layer produces computed
output vectors corresponding to the solution.

During network training, data is processed from the input layer
to the hidden layer, until it reaches the output layer (forward
pass). In this layer, the output is compared to the measured values
(the ‘‘true’’ output) and the difference (error) is processed back
through the network (backward pass) by updating the individual
weights of the connections and biases of individual neurons. The
input and output data are represented by vectors called training
pairs. The process is repeated for all the training pairs in the
dataset, until the network error converges to a threshold
(minimum) defined by a corresponding cost function. The error
can always be calculated using the root mean squared error
(RMSE) or mean absolute error (MAE).
3. Dimensional analysis

Dimensional analysis is an engineering method for forming
equations that simplifies the analysis of complex multivariable
systems [28–30]. Dimensional analysis had its origin in the work
of Maxwell who used the symbols [F], [M], [L], [T], [Q] to denote
force, mass, length, time, and charge, respectively. Lord Rayleigh
used it extensively in his ‘theory of sound’, and called it ‘the
principle of similitude’ or ‘the method of dimensions’ [30]. He was
famous for writing the following statement testifying to the
power of the method ‘‘It happens not infrequently that results in
the form of laws are put forward as novelties on the basis of
elaborate experiments, which might have been predicted a priori
after a few minutes consideration’’. Applications of dimensional
analysis to engineering problems have been conducted by well-
known scholars such as Einstein and Reynolds. The method of
dimensions developed over time to include many sub-techniques.
First, it was used to derive dimensionless groups. Then, it was
utilized for scale up purposes, so that small-scale models can be
extrapolated to real-life models. This evolved to the point where
dimensional analysis is used for appropriate scaling. Through
scaling, it is possible to judge. Scaling leads to the useful concept
of the order of magnitude. It is useful because it is possible to
compare two phenomena and decide: relevant, comparable or
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irrelevant. This engineering judgment is critical in reducing the
physical complexity of the problem to be solved [31]. For
example, when a process involves a number of factors, the order
of magnitude helps in finding which of these factors are dominant
and which are irrelevant or negligible.

One of the best techniques or variations for carrying out a
dimensional analysis is Buckingham p-theorem. The Buckingham
p-theorem (also written as Pie-theorem) states that if n

measurable quantities (or variables) form a complete functional
relationship j(a,b,g,y)¼0, then the solution has the form f(p1,
p2, p3,y)¼0 where the p’s are then the n–m independent
products of the arguments a,b,g,y, etc., which are dimensionless
in the fundamental units required to measure the quantities. It is
called complete because the relationship consists of sufficient
fundamental dimensions to describe the magnitude of the
quantity of interest. So, the dimensionally homogeneous equation
j(a,b,g,y)¼0 is reduced to a relationship among a complete set
of dimensionless products, referred to as the p terms, and the
number of the members (terms) of the set is equal to the number
n of measurable quantities/variables minus the number of
fundamental units m involved in measuring the variables. The
dimensional matrix has the variables as the column/row headings
and the fundamental dimensions forming the rows/columns.

The application of dimensional analysis goes through several
steps. First, all variables involved in the phenomenon are listed.
Because dimensional analysis finds the minimum number of groups
based on primary dimensions, close attention needs to be paid to
make sure that only relevant quantities are included and physical
irrelevant independent variables are discarded. A physically irrele-
vant variable has a sufficiently small influence on the dependent
variable (the target variable).We can also recognize a physically
irrelevant variable through physical insight of the problem at hand
or through experimental investigations. At this stage, one has to be
careful about the linear dependency among parameters. After which
the dimensional matrix is assembled (sometimes called the
constitutive matrix). Once the matrix is assembled a number of
techniques and conditions help one proceed and these depend on
the number of dimensions involved with respect to the number of
variables. When equations governing the process are provided, then
the dimensionless groups can be set to 1 for scale factors, and to zero
for reference factors. This usually leads to the minimum parametric
Fig. 1. Sarcheshmeh
representation. The p’s include dimensionless groups which are
made from combining geometric and physical quantities and other
dimensionless independent variables.
4. Model development

Blast vibration was studied in one of the most important and
largest copper mines in Iran. The Sarcheshmeh copper ore mine is
situated 160 km southwest of Kerman and 50 km south of
Rafsanjan city, Kerman province, in 5515201300 longitude and
291570000 latitude. This mine is at 2500 m above sea level (Fig. 1).
The area belongs to central part of an elongated NW–SE mountain
belt, which is principally composed of folded volcano-sedimen-
tary rocks. The geology of Sarcheshmeh porphyry deposit is very
complicated and various rock types can be found. Other minerals
such as molybdenum, gold and silver are seen in the deposit.
Mineralization in this deposit is associated with a Late Tertiary.
The main minerals of the deposit are Chalcocite, Chalcopyrite,
Pyrite, Covellite, Bornite and Molybdenite. The oxide zone of
deposit consists mainly of Cuprite, Tenorite, Malachite and
Azurite. The proved reserve of the deposit is approximately
826 Mt with an average grade of 0.7%. The mine is exploited by
open pit mining. The height and slope of working benches are
14 m and 62.51, respectively. The angle of overall slope ranges
from 321 to 341. The distance of crusher to mine is 3 km. The
annual capacity of the mill plant is 51 000 tons concentrated with
an average grade of 30% and a recovery of 65%.

The diameter and depth of blast holes are mostly 0.200 and
15 m, respectively. The explosive used is ANFO. The average
powder factor is 0.2 kg/ton. Pattern geometry is staggered.
Drilling cuttings are used as stemming material. The range of
the other blasting design parameters is listed in Table 1.

4.1. ANN model

Table 1 indicates the input and output parameters, considered
for developing the neural network, their respective symbols and
possible ranges. The previous blasting operations helped in
collecting data during the present study. The distance of the
monitoring point from blasting face was measured in the field
copper mine.



H. Dehghani, M. Ataee-pour / International Journal of Rock Mechanics & Mining Sciences 48 (2011) 51–5854
prior to blast. The term of delay in charge per delay was calculated
from the delay time in each row. To maintain statistical
consistency, the data were grouped into training and testing sets.
From a total of 116 datasets, only 99 datasets were selected
randomly for training the model. The rest of datasets, i.e. 17
datasets, were used for testing the ANN model.

To reach an appropriate architecture, MLP networks with one
and two hidden layers were examined. As errors of the two-hidden-
layer networks were high, one-hidden-layer network was selected
for simulation (Table 2). To determine the optimum network
topology, the following indexes, i.e. root mean squared error (RMSE),
mean absolute error (Ea) and mean relative error (Er) were used [2]:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOi�TiÞ

2

N

s
ð1Þ
Table 1
Input and output parameters used for developing neural network.

Parameter Symbol Range Unit

Input

Burden B 2–7.5 m

Spacing S 2.5–11 m

Delay between rows De 15–70 ms

Powder factor q 0.1–0.24 kg/m3

Number of rows in each blast n 2–7 –

Distance of monitoring point

from blasting face

m 133.02–2845.02 m

Maximum hole per delay y 6–32 –

Charge per delay ch 1332–10985 kg

Point load index s 6.51–8.9 MPa

Output

Peak particle velocity PPV 0.49–77.3 mm/s

Table 2
Results of a comparison between some of ANN.

Model Transfer Function Ea Er RMSE

9-25-1 Logsig-Logsig-Poslin (LLP) 0.012 1.345 0.0245

9-35-1 Logsig-Logsig-Poslin (LLP) 0.014 1.446 0.0280

9-15-1 Logsig-Tansig-Poslin (LTP) 0.017 1.864 0.0319

9-20-1 Logsig-Logsig-Poslin (LLP) 0.015 1.692 0.0262

9-10-20-1 Logsig-Tansig-Tansig-Poslin (LTTP) 0.137 15.099 0.1551

9-15-10-1 Logsig-Logsig-Logsig-Poslin (LLLP) 0.036 4.022 0.0776

9-12-35-1 Tansig-Tansig-Logsig-Poslin (TTLP) 0.122 13.426 0.1417

Fig. 2. Suggested ANN use
Ea ¼ 9Ti�Oi9 ð2Þ

Er ¼
9Ti�Oi9

Ti

� �
� 100 ð3Þ

Here, Ti, Oi and N represent the actual historical output, the
predicted output and the number of input–output data pairs,
respectively. The network with architecture 9–25–1, which has the
minimum RMSE, Ea and Er is considered as the optimum model
(Fig. 2). Some of the simulated ANNs were shown in Table 2. The
first and second columns of this table refer to the architecture of
simulated ANNs and their transfer functions, respectively. As shown
in row 1, the RMSE, Ea and Er for the selected network are equal to
0.0245, 0.0123% and 1.3445%, respectively.

A graphic comparison of measured and predicted PPV is shown
in Fig. 3. As seen in this figure, a very high conformity exists
between the measured PPV for different types of patterns and the
ones predicted by the ANN method.

Sensitivity analysis is a method for extracting the cause and
effect relationship between the inputs and outputs of the
network. To make sure of the influence of the input variables on
output variables, sensitivity analysis was also carried out. This
testing process provides a measure of the relative importance
among the inputs of the neural model and illustrates how the
model output varies in response to variations of an input.

A sensitivity analysis was carried out for all nine input
parameters to understand the relative significance of each
parameter on PPV (Fig. 4). The sensitivity analysis was executed
by keeping all input parameters constant except one and then
finds the effect of that input parameter on PPV. For example, the
burden was deleted from the input parameters and then the ANN
was run by eight input parameters. So, the effect of burden on the
PPV can be understood by comparing the new result of the
simulation and previous results. This procedure must be done for
the other input parameters, too.

Parameters including distance of monitoring point from
blasting face (m), powder factor (q), charge per delay (ch),
maximum hole per delay (y) and delay between rows (De) are
the most influential factors on PPV.

4.2. Dimensional analysis model

The relationships among concerned parameters with each
other and with PPV were defined in the form of dimensionless
d for the case study.



Fig. 3. Comparison of measured and predicted peak particle velocity for different type of patterns.

Fig. 4. Sensitivity analysis between the peak particle velocity and each input parameters.
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terms. As a result of ANN sensitivity analysis, it is assumed that
PPV is a function of the important input variables the score of
which was at least 80%. Therefore, a formula can be written as
follows:

PPV ¼ f ðB,S,De,ch,q,y,mÞ ð4Þ

Eq. (4) can be converted as follows:

f ðPPV ,B,S,De,ch,q,y,mÞ ¼ 0 ð5Þ

In dimensional analysis, it is necessary to select a unit system,
i.e. mass or force. Here, the force system has been chosen.
Accordingly, dimension of each variable can be defined as follows:
[PPV]¼LT�1, [B]¼L, [S]¼L, [De]¼T, [q]¼FL�4T2, [m]¼L, [y]¼1,
[ch]¼FL�1T2, where F, T and L represent force, time and length,
respectively.

With the available variables, a lot of dimensionless
combinations of complete sets can be constructed. But as a first
step, to make dimensional matrix, variables should be arranged
correctly. Dimensional matrix for PPV may be considered as
follows:
PPV
 B
 S
 y
 m
 De
 Q
 ch
F
 0
 0
 0
 0
 0
 0
 1
 1

L
 1
 1
 1
 0
 1
 0
 �4
 �1

T
 �1
 0
 0
 0
 0
 1
 2
 2
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To determine the rank of the matrix, the determinant of the
Table 3
Different conventional predictors.

Name Equation

USBM (1959) PPV ¼ a1ðm=
ffiffiffiffiffiffiffiffiffiffi
Qmax

p
Þ
�a2

Langefors–Kihlstrom (1963) PPV ¼ a1ðm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qmax=m2=3

p
Þ
a2

General predictor (1964) PPV ¼ a1m�a2 ðQmaxÞ
a3

Ambraseys–Hendron (1968) PPV ¼ a1ðm=
ffiffiffiffiffiffiffiffiffiffi
Qmax

3
p

Þ
�a2

Bureau of Indian Standard (1973) PPV ¼ a1ðQmax=m2=3Þ
a2

Ghosh–Daemen predictor (1983) PPV ¼ a1ðm=
ffiffiffiffiffiffiffiffiffiffi
Qmax

p
Þ
�a2 e�a4m

CMRI predictor (1993) PPV ¼ a5þa1ðm=
ffiffiffiffiffiffiffiffiffiffi
Qmax

p
Þ
�1
right side is calculated.

0 1 1

0 �4 �1

1 2 2

�������
�������¼ 3

The determinant is not equal to zero. Therefore, it can be
concluded that the variables are selected correctly and the rows of
matrix are not linearly dependent.

The dimensional matrix included eight variables and the rank
of this matrix is 3. According to the p theorem, in a complete set
there should exist five dimensionless terms [30,32]. P and
homogeneous algebraic equations can be written by the dimen-
sional matrix as follows:

p1 ¼ p2 ¼ p3 ¼ ðTÞ
k1
ðFL�4T2Þ

k2
ðFL�1T2Þ

k3
ðLÞ ð6Þ

p4 ¼ y ð7Þ

p5 ¼ ðTÞ
k4
ðFL�4T2Þ

k5
ðFL�1T2Þ

k6
ðLT�1Þ ð8Þ

The summation of the powers in Eqs. (6)–(8) must be equal to
zero. The summations of the powers of each parameter of Eq. (6)
are as follows:

For T : k1þ2k2þ2k3 ¼ 0

ForF : k2þk3 ¼ 0

For L : �4k2�k3þ1¼ 0

By solving the above equations, the powers are found to be
k1¼0, k2¼1/3, and k3¼�1/3.

The summations of power of each parameter of Eq. (8) are as
follow:

For T : k4þ2k5þ2k6-1¼ 0

For F : k5þk6 ¼ 0

For L : �4k5�k6þ1¼ 0

By solving the above equations, the powers are found to be
k4¼1, k5¼1/3, and k6¼�1/3.
Fig. 5. Comparison between me
The complete set consists of the following dimensionless
terms: p1 ¼ ðPPVÞðDeÞðq=chÞ1=3, p3 ¼ Sðq=chÞ1=3, p2 ¼ Bðq=chÞ1=3,
p4 ¼ mðq=chÞ1=3, p5 ¼ y.

These formulas show that the powder factor and charge per
delay as presented in the sensitivity analysis played a very
important role in PPV. In the next stage, it should be considered
whether the relationship is linear or nonlinear. With the help of
multivariable regression analysis from the collected data, unknown
coefficients can be determined. With a comparison between
correlation coefficient (R2) of the linear and nonlinear equations, it
was concluded that the nonlinear equation is more suitable:

ln½PPV�De�ðq=chÞ1=3
� ¼ kþa ln½ðBðq=chÞ1=3

� þb ln½Sðq=chÞ1=3
�

þc ln½mðq=chÞ1=3
�þd lny ð9Þ

The unknown coefficients were calculated by SPSS 17 to be
a¼�5.642, b¼3.426, c¼�1.225, d¼�1.181, and k¼5.129. After
some manipulation, the model can be expressed as

PPV ¼
168:85

De
ðq=chÞ�1:48B�5:64S3:43m�1:22y�1:18

ð10Þ

The correlation coefficient (R2) of this formula is 77.5%. It
should be mentioned that by this method, specific information of
each case should be applied for using the model, and therefore,
accuracy and reliability of the calculation of the coefficients,
depends on the accuracy of recorded information of real blasting
operations. In Fig. 5 the measured PPV and calculated PPV using
the obtained formula is compared.
asured and calculated PPV.



Table 4
Calculated values of site constants, correlation coefficient and RMSE.

Name a1 a2 a3 a4 a5 R2 RMSE

USBM (1959) 118.8 1.22 0.693 58.8% 4.75

Langefors–Kihlstrom (1963) 0.049 2.34 41.2% 4.97

General predictor (1964) 19.505 1.034 67.6% 4.63

Ambraseys–Hendron (1968) 596.3 1.19 56.1% 4.78

Bureau of Indian Standard (1973) 0.049 1.17 41.2% 4.97

Ghosh–Daemen predictor (1983) 83.048 0.996 0.00002 66.8% 4.40

CMRI predictor (1993) 84.89 3.426 �0.358 66.8% 4.49

New formula (2009) 5.129 �5.642 �1.225 �1.181 74.5% 3.49
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5. Discussion

Table 3 illustrates various conventional vibration predictor
equations proposed by different researchers [33–39]. The deter-
mined formula was compared with these formulas. The result of
comparison is shown in Table 4.

Where PPV is the peak particle velocity in mm/s, Qmax is the
maximum charge per delay in kg, m is the distance between blast
face and vibration monitoring point, in metres and {a1, a2, a3, a4, a5}
are site constants.

Here, RMSE is varying between 3.49 and 4.97 and the
correlation coefficient of the new formula is the greatest.
6. Conclusion

On the basis of the acquired results, the present study
concludes that ANN is a robust and versatile technique to
improve the efficiency of blasting in open pit mines by controlling
the undesirable phenomenon.

The back-propagation algorithm was realized as the most
efficient learning procedure. An ANN 9-25-1 topology was found
to be optimum for prediction of PPV in blasting operation at the
Sarcheshmeh copper mine located in Iran.

Dimensional analysis can be considered as an important tool
for solving most scientific problems. The contemporary effect of
several parameters on blasting results can be studied with the
help of dimensional analysis. According to the developed mathe-
matical model, vibration is a function of most important param-
eters such as powder factor, charge per delay and burden.

The proposed mathematical model has been compared by
available conventional PPV predictors and yields excellent blast
results.

The new formula with coefficient correlation 77.5% and RMSE
3.49 can estimate PPV better than other empirical formulae.
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