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Abstract

Journal of

Fleshy fruit acidity is an important component of fruit organoleptic quality and is mainly due to the presence of malic
and citric acids, the main organic acids found in most ripe fruits. The accumulation of these two acids in fruit cells is
the result of several interlinked processes that take place in different compartments of the cell and appear to be under
the control of many factors. This review combines analyses of transcriptomic, metabolomic, and proteomic data, and
fruit process-based simulation models of the accumulation of citric and malic acids, to further our understanding of
the physiological mechanisms likely to control the accumulation of these two acids during fruit development. The
effects of agro-environmental factors, such as the source:sink ratio, water supply, mineral nutrition, and temperature,
on citric and malic acid accumulation in fruit cells have been reported in several agronomic studies. This review sheds
light on the interactions between these factors and the metabolism and storage of organic acids in the cell.

Key words: Environment, metabolism, mitochondria, organic acid, proton pump, respiration, TCA cycle, tonoplast, transport,

vacuole.

Introduction

Fleshy fruit acidity, as measured by titratable acidity and/
or pH, is an important component of fruit organolep-
tic quality (Esti et al., 2002; Harker et al., 2002; Bugaud
et al., 2011). Fruit acidity is due to the presence of organic
acids, and malic and citric acids are the main acids found
in most ripe fruits (Seymour ez al., 1993). Understanding
the factors that influence the concentration of these acids
in fruit cells is thus of primary importance for fruit quality
improvement.

The predominant organic acid in ripe fruit varies among
species. Malic acid is dominant in apple (Yamaki, 1984),
loquat (Chen et al., 2009), and pear (Lu et al., 2011), whereas

citric acid is dominant in citrus fruits (Yamaki, 1989). In
many fruit species, differences in total acidity or in the bal-
ance of organic acids among cultivars are also observed, for
example in loquat (Yang et al., 2011), peach (Etienne ez al.,
2002), pear (Lu et al., 2011), citrus (Albertini et al., 2006),
pineapple (Saradhuldhat and Paull, 2007), apricot (Gurrieri
et al., 2001), and banana (Bugaud et al., 2011).

The processes involved in the metabolism and accumula-
tion of malic and citric acid in mesocarp cells are under both
genetic and environmental control. Transcriptomics (Etienne
et al., 2002; Cercos et al., 2006; Deluc et al., 2007), metab-
olomics (Deluc et al., 2007; Katz et al., 2011), proteomics
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(Famiani et al., 2005; Katz et al., 2007), and quantitative trait
loci (QTLs) (Schauer et al., 2006; Lerceteau-Kohler et al.,
2012; Xu et al., 2012) studies have helped decipher some of
the mechanisms that control acidity, and intervene at the cel-
lular level. Many agronomic studies have shown the impacts
of cultural practices, including irrigation (Wu et al., 2002;
Thakur and Singh, 2012), mineral fertilization (Cummings
and Reeves, 1971; Spironello et al., 2004; Ramesh Kumar and
Kumar, 2007), thinning (Souty et al., 1999; Wu et al., 2002;
Léchaudel ez al., 2005), and environmental factors such as
temperature (Wang and Camp, 2000; Gautier et al., 2005;
Burdon et al., 2007), on fruit acidity, but how they affect
malic and citric acid accumulation in the cell is still not clear.

In the last few years, process-based simulation models
(PBSMs) of fruit have been increasingly used to simulate the
metabolic and biophysical aspects of cell behaviour (Martre
et al., 2011) and appear to be a powerful tool to study
genotypexenvironment interactions (Bertin ez al., 2010).
Fruit PBSMs of the accumulation of citric acid (Lobit ez al.,
2003; Wu et al., 2007) and malic acid (Lobit et al., 2006) have
been developed to predict citric and malic acid concentra-
tions in the whole fruit during development in peach.

The aim of this review is to elucidate the physiological
mechanisms that probably control citric and malic acid accu-
mulation during fruit development and their possible regula-
tion by genetic and agro-environmental factors. To this end,
the review combines analyses of transcriptomic, metabo-
lomic, and proteomic data related to malic and citric acid
metabolism, and also the PBSMs of citric and malic acids.
The three first sections describe the cell mechanisms involved
in malic and citric acid accumulation and their regulation.
The last section deals with the effects of agro-environmental
factors (source:sink ratio, mineral fertilization, water supply,
and temperature) on citric and malic acid accumulation and
the related cell mechanisms they may affect.

In this review, the terms ‘malate’ and ‘citrate’, which usu-
ally describe the conjugate base of malic and citric acids, refer
to all physiological forms of each compound.

Several pathways exist for malate and
citrate metabolism in the mesocarp cells of
fleshy fruits

Even though some organic acids are supplied by the sap,
variations in the acidity of fleshy fruits are mainly due to the
metabolism of malate and citrate in the fruit itself (Bollard,
1970; Ulrich, 1970; Sweetman et «al., 2009). This section pre-
sents the metabolic pathways involved in the metabolism of
the dicarboxylate malate and the tricarboxylate citrate. We first
describe the pathways responsible for the initial formation of
organic acids [carboxylation of phosphoenolpyruvate (PEP) in
the cytosol], then the pathways responsible for the degradation
of organic acids [decarboxylation of malate and oxaloacetate
(OAA) in the cytosol], and finally those that allow conversion
between tri- and dicarboxylates [the tricarboxylic acid (TCA)
cycle in the mitochondria, the glyoxylate cycle in the glyoxy-
some, and citrate catabolism in the cytosol] (Fig. 1).

First step in synthesis of organic acids: PEP
carboxylation in the cytosol

Formation of acidity involves the synthesis of organic acids,
mostly malate and citrate, which can be stored in the vacu-
ole in large amounts. As citrate is produced from dicarboxy-
lates (mostly malate; see following section), the first step in
the development of acidity is the synthesis of dicarboxylates,
namely malate and OAA. These require fixation of CO, on
a carbon skeleton derived from hexose catabolism (Hardy,
1968; Young and Biale, 1968), which is achieved by the car-
boxylation of PEP, catalysed by the phosphoenolpyruvate
carboxylase (PEPC). This reaction takes place in the cyto-
sol, since PEP is an intermediate of the glycolysis pathway,
and produces OAA, which can then be reduced to malate
by the cytosolic NAD-dependent malate dehydrogenase
(NAD-cytMDH) (Givan, 1999) or supplied to the TCA cycle
if replenishment is necessary (Leegood and Walker, 2003)
(Fig. 1).

Multiple PEPC isoforms have been detected in fruits and
are possibly the result of transcriptomic (Sweetman et al.,
2009; Yao et al., 2009) and/or post-translational regulations
(Sweetman et al., 2009). PEPC is controlled by both cytosolic
pH and malate concentration (Lakso and Kliewer, 1975¢;
Possner et al., 1981; Davies, 1986) in a way that stabilizes the
cytosolic pH (Smith and Raven, 1979). In grape berries, tran-
scriptomic analysis (Or et al., 2000; Terrier et al., 2005) and
measurement of enzymatic activity (Hawker, 1969; Ruffner
et al., 1976; Diakou et al., 2000) pointed to a role for PEPC in
malate accumulation throughout fruit development. Several
studies based on analyses of transcriptomic and enzymatic
activity suggest that PEPC is not responsible for the differ-
ence in malate content between low and high acid peach culti-
vars (Moing et al., 2000), apple (Yao et al., 2009), and loquat
(Chen et al., 2009).

NAD-cytMDH catalyses the reversible conversion of
malate into OAA, the most likely direction being the synthe-
sis of malate (Sweetman et al., 2009; Yao et al., 2011). Even
if a mitochondrial form is also present in fruit cells (see the
following section), it has been shown in several fruits that
NAD-cytMDH represents 70— 80% of total NAD-dependent
MDH (Abou-Zamzama and Wallace, 1970; Taureilles-Saurel
et al., 1995), explaining why total NAD-dependent MDH
activity is generally related to malate synthesis in fruits (Zhao
et al., 2007; Chen et al., 2009; Martinez-Esteso et al., 2011).
Yao et al. (2011) showed that overexpression of the apple
MdcyMDH gene encoding NAD-cytMDH resulted in an
increase in malate, fructose, and sucrose content, suggesting
its direct involvement in malate synthesis. Overexpression
of MdcyMDH also resulted in the up-regulation of several
malate-related genes/enzymes, suggesting an indirect role in
malate accumulation.

Organic acid degradation: malate and OAA
decarboxylation in the cytosol

Loss of acidity implies decarboxylation of carboxylates,
which can occur through the conversion of tricarboxylates
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Fig. 1. Citrate and malate metabolic pathways in fruit mesocarp cells. Only the enzymes described in the paper are shown. ACO,
aconitase; ATP-CL, ATP-citrate lyase; CS, citrate synthase; ICL, isocitrate lyase; MS, malate synthase; NAD-MDH, NAD-malate
dehydrogenase; NAD-ME, NAD-malic enzyme; NAD-IDH, NAD-isocitrate dehydrogenase; NADP-ME, NADP-malic enzyme;
NADP-IDH, NADP-isocitrate dehydrogenase; PDH, pyruvate dehydrogenase; PEPC, phosphoenolpyruvate carboxylase; PEPCK,
phosphoenolpyruvate carboxykinase; PPDK, pyruvate orthophosphate dikinase. The probable direction of reversible reactions is
indicated by the large arrow. Dashed blue arrows indicate malate and citrate transport. Names in orange are dicarboxylates and names

in red are tricarboxylates.

into dicarboxylates (described later in the review), but also
through decarboxylation of the dicarboxylates malate and
OAA, leading to the degradation of organic acids (Fig. 1).
Decarboxylation of OAA and malate allows the produc-
tion of PEP and is linked to the activation of gluconeogen-
esis (Sweetman et al., 2009). Gluconeogenesis is a metabolic
pathway that results in the generation of glucose from PEP. It
occurs mostly during fruit ripening when sugars accumulate
rapidly (Sweetman ez al., 2009). In the past few years, pro-
teomics (Katz et al., 2011), transcriptomics, and metabolite
(Carrari et al., 2006; Deluc et al., 2007; Fait et al., 2008) anal-
yses have provided evidence for a shift from the accumulation
of organic acids to sugar synthesis during the final stage of
development in several fruit species.

PEP can originate from OAA through the activity of phos-
phoenol carboxykinase (PEPCK) which catalyses the revers-
ible reaction, the most likely direction being the synthesis of
PEP (Leegood and Walker, 2003). This reaction requires a
source of OAA that could be supplied by the oxidation of
malate by NAD-cytMDH. This hypothesis is supported by

the fact that PEPCK is involved in the dissimilation of malate
in the flesh of several fruits (Famiani ez al., 2005) and possi-
bly in the lack of malate in low acid apple cultivars (Beriiter,
2004).

PEP can also originate from the conversion of pyruvate
through pyruvate orthophosphate dikinase (PPDK) activity
(Sweetman et al., 2009). The pyruvate required for PPDK
may be supplied through the carboxylation of malate by
cytosolic NADP-dependent malic enzyme (NADP-cytME),
which catalyses a reversible conversion, the most likely direc-
tion being the decarboxylation of malate (Sweetman et al.,
2009). NADP-cytME appears to be involved in the decrease
in malate content during the ripening of several fruit species
(Dilley, 1962; Goodenough et al., 1985; Chen et al., 2009;
Sweetman et al., 2009). Involvement of NADP-cytME dur-
ing the early stage of fruit growth differs between species.
Thus, in young tomato and apple fruits, NADP-cytME does
not appear to play an important role in malate accumulation
(Dilley, 1962; Goodenough et al., 1985), whereas in young
grape berries the use of a proteomics approach suggested the
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opposite (Martiez-Esteso et al., 2011). The contribution of
NADP-cytME to the lack of malate in ripe pulp of low acid
cultivars has been demonstrated in apple (Yao et al., 2009)
and loquat (Chen et al., 2009). Studies of different fruit spe-
cies suggest that NADP-cytME is regulated at the post-trans-
lational level (Famiani et al., 2000; Bahrami et al., 2001; Yao
et al., 2009; Yang et al., 2011) by cytosolic pH and malate
concentration, among others (Lakso and Kliewer, 1975¢;
Possner et al., 1981; Davies, 1986).

Decarboxylation of malate and OAA may also be linked
to fermentative metabolism as it can occur in ripening fruit
if the cytosol becomes too acidic (for a review, see Sweetman
et al., 2009).

Conversions between di- and tricarboxylic acids:
multiple compartments, multiple pathways

Once malate and OAA have been synthesized in the cytosol,
they can be converted into tricarboxylates, mostly citrate, or
other dicarboxylates through two metabolic pathways, the
TCA cycle and the glyoxylate cycle. In its turn, citrate can
be converted into dicarboxylates via several pathways [TCA
cycle, glyoxylate cycle, y-aminobutyrate (GABA) shunt, and
acetyl-CoA catabolism]. All these conversion reactions can
modify the acidity of fruit cells.

The TCA cycle in the mitochondria: conversions between
di- and tricarboxylates

The TCA cycle results in the oxidation of pyruvate into CO,
and a reduction in co-enzymes through a series of conversions
between organic acids including malate and citrate (Fig. 1).
The cycle begins with the condensation of OAA and acetyl-
CoA, the latter provided by the action of pyruvate dehydro-
genase on mitochondrial pyruvate. The input of acetyl-CoA
allows the TCA cycle to maintain a cyclic flux mode under
which it is not able to catalyse net synthesis of cycle interme-
diates. Therefore, export of intermediates implies non-cyclic
flux modes that are known to occur in plants and have been
evidenced in citrus fruit (Katz er al., 2011), and are likely
to be controlled by ATP demand (Sweetlove ez al., 2010).
The maintenance of the pools of TCA cycle intermediates
implies that for each metabolite exported, one is imported,
and vice versa. These exchanges are achieved by a variety
of mechanisms mediated by mitochondrial carrier proteins
(for reviews, see Laloi, 1999; Haferkamp and Schmitz-Esser,
2012) that obey the general principles behind the transport
of ionic species across a biological membrane (Figs 2, 3). In
fruits, mitochondrial dicarboxylate/tricarboxylate transport-
ers have been characterized at the gene level in citrus (Deng
et al., 2008) and grape berry (Regalado et al., 2012), and at
the protein level in citrus (Katz et al., 2007).

Non-cyclic flux modes allow conversion of di- and tricar-
boxylates (Steuer ez al., 2007; Sweetlove et al., 2010) and are
sustained by the activities of the TCA cycle enzymes. The
enzymes that directly control citrate synthesis are the mito-
chondrial citrate synthase (mtCS), and citrate degradation,
the mitochondrial aconitase (mtACO) and the mitochondrial
NAD-dependant isocitrate dehydrogenase (NAD-mtIDH)

(Fig. 1). mtCS activity is positively correlated with citrate
accumulation in citrus (Sadka ez al., 2001; Wen et al., 2001)
and strawberry (lannetta et al., 2004), but transcriptomics
and protein studies suggested that this enzyme is not respon-
sible for the difference in citrate content between low and
high acid cultivars of several fruit species (Canel et al., 1996;
Sadka et al., 2001; Etienne et al., 2002; Saradhuldhat and
Paull, 2007; Tang et al., 2010). The involvement of mtACO,
which catalyses the conversion of citrate into isocitrate (the
most likely direction in mitochondria due to the way the cycle
functions), in citrate accumulation has been described by
Sadka et al. (2000a). They showed that in sour lemon, mtACO
activity decreases in the early stage of fruit growth and thus
could be responsible for the increase in citrate concentra-
tion observed during fruit growth. Two forms of isocitrate
dehydrogenase, an NADP-dependent form (NADP-IDH)
and an NAD-dependent form (NAD-IDH), can catalyse the
conversion of isocitrate into 2-oxoglutarate (the most likely
direction in mitochondria like for mtACO). NAD-IDH is
only found in mitochondria but has rarely been characterized
in fruits, and no links with citrate accumulation have been
found (Sha ez al., 2011). NADP-IDH is mainly localized in
the cytosol (NADP-cytIDH), but is also found in mitochon-
dria (NADP-mtIDH) and peroxisomes (Galvez and Gadal,
1995; Chen, 1998). In sour lemon, Sadka ef al. observed that
NADP-mtIDH activity decreased in the early stage of fruit
growth in parallel with a decrease in mtACO activity (Sadka
et al., 2000a, b). This could reflect a general reduction in cit-
rate metabolism in the mitochondria. Malate can be oxidized
in fruit mitochondria either into OAA by mitochondrial
NAD-dependent malate dehydrogenase (NAD-mtMDH)
(the most likely direction in mitochondria; Sweetman et al.,
2009), which feeds the cycle, or into pyruvate by mitochon-
drial NAD-dependent malic enzyme (NAD-mtME), which
interrupts the cycle (Macrae and Moorhouse, 1970) (Fig. 1).
These two competing metabolic pathways affect fruit acidity
in different ways. While malate oxidation by NAD-mtMDH
leads mainly to citrate production (Steuer et al., 2007,
Sweetlove er al., 2010), hence affecting the malate:citrate
ratio of fruit cells, malate oxidation by NAD-mtME leads
to the degradation of acidity since organic acids must be
imported into the mitochondria to compensate for the loss
of malate. Malate metabolism in the mitochondria therefore
depends on NAD-mtMDH and NAD-mtME activity, both
of which are regulated by the concentration of NADH and
the pH (Palmer et al., 1982; Day et al., 1984; Douce, 1985). In
young tomato fruit, the majority of malate degradation could
be due to NAD-mtME (Bahrami, 2001). Transcriptomic and
proteomic analyses suggest that NAD-mtMDH is involved in
malate degradation during grape berry ripening (Sweetman
et al., 2009; Martinez-Esteso et al., 2011).

Catabolism of citrate in the cytosol: conversion of citrate
into dicarboxylates

Once citrate has been produced by the TCA cycle, it can be
degraded in the cytosol through two metabolic pathways.
One is the GABA synthesis pathway, also called the GABA
shunt, which leads to succinate synthesis, and the other is
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Fig. 2. Mechanisms of transport of ionic species across a biological membrane. Membrane transport is mediated by three types of
membrane proteins: channels, carriers, and pumps. Channels function as selective pores through which molecules or ions can diffuse
across the membrane. Carriers catalyse either the transport of a single solute, or the coupled transport of two solutes. Pumps catalyse
the coupled transport of a solute with a chemical reaction. Three mechanisms allow the transport of an ionic species (X°) across a
biological membrane and are governed by a general principle of thermodynamics stating that the variation in free energy of the transport
reaction (AGy._,) has to be negative. (i) Diffusion (simple or facilitated) is mediated by channels (A) in the case of simple diffusion, or by
carriers (B) in the case of facilitated diffusion. This kind of transport allows the spontaneous movement of X~ down its electrochemical
potential gradient [AG(X");_, <0], which depends on the electric potential gradient of the membrane (Ay) and on the gradient of
concentrations of X~ on the two sides of the membrane. AG;_,=AG(X")_,=zFAy+RTIn(X'],/[X'];) <O where z is the electric charge of the
ionic species transported; F is Faraday’s constant; R is the gas constant; and T is temperature. (i) Primary active transport is mediated
by a specific class of proteins called pumps (D). This kind of transport allows the movement of X~ against its electrochemical-potential
gradient [AG(X),_ >0] using the energy released from the hydrolysis of ATP or PPi (AGrp (or ppy <0). AGo1=AGatp (or pry+AG(X )24 <0.

(iiiy Secondary active transport is mediated by two types of carrier proteins: antiports (E) and symports (F). This kind of transport allows
the movement of X~ against its electrochemical-potential gradient [AG(X"),_; >0] using the energy dissipated by the downhill movement
of a molecule across the membrane [AG(B),_, <0 in the case of antiport, AG(C),_; <0 in the case of symport]. Antiport: AG,_1=AG(X"),_

1+AG(B)1_o <0. Symport: AG, 1=AG(X"),_1+AG(C),_1<0.

cleavage into OAA and acetyl-CoA (Fig. 1). As these two
pathways produce dicarboxylic acids, they are responsible for
a decrease in fruit acidity.

The GABA synthesis pathway is a part of amino acid
metabolism since it produces two amino acids (glutamate
and GABA). This pathway also leads to the production
of succinate that can then enter the TCA cycle. Two major
enzymes are involved in the catabolism of citrate through
the GABA shunt: cytosolic aconitase (cytACO), which
catalyses the reversible conversion of citrate into isocitrate,
and cytosolic NADP-dependent isocitrate dehydrogenase
(NADP-cytIDH), which catalyses the reversible conversion
of isocitrate into 2-oxoglutarate (Fig. 1). The involvement of
the GABA shunt in citrate degradation during the ripening
of citrus fruits was evidenced by proteomic and metabolite
analyses (Katz et al., 2011), gene expression analyses (Sadka
et al., 2000b; Cercos et al., 2006), and enzymatic activity
analysis (Sadka ez al., 2000b; Degu et al., 2011). Activation
of the GABA shunt could partially account for the lack of
citrate in sweet lemon since activation of the genes involved in
the degradation of 2-oxoglutarate, the precursor for GABA

synthesis, was observed (Aprile e al., 2011). Activation of
the GABA shunt also appears to occur during post-harvest
ripening of banana since an increase in 2-oxoglutarate con-
tent, NADP-IDH activity, mainly attributable to the cyto-
solic form (Chen and Gadal, 1990), and total ACO gene
expression was observed (Medina-Suarez et al., 1997; Liu
et al., 2004). It is likely that the rate of citrate degradation
through the GABA shunt is mainly controlled by cytACO
and NADP-cytIDH activities. In several genotypes of citrus,
the pattern of expression of two genes encoding cytACO was
associated with the timing of acid content reduction in fruits
(Terol et al., 2010). In tomato fruit, genetic and transgenic
approaches demonstrated the key role of cytACO in the con-
trol of citrate content in ripe fruit (Morgan et al., 2013). In
sour lemon, NADP-cytIDH gene expression and NADP-
cytIDH activity increase during fruit development and could
thus be involved in the decrease in citrate content (Sadka
et al., 2000a).

The alternative citrate breakdown pathway cleaves cit-
rate into OAA and acetyl-CoA through the activity of the
ATP-citrate lyase (ATP-CL) and leads to the synthesis of
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flavonoids and isoprenoids (Fig. 1). During ripening, these
compounds accumulate in the fruit (Giovannoni, 2004), so
it is likely that citrate catabolism through this pathway is
activated during this phase. Evidence for such activation was
found in mango fruit. Indeed, ATP-CL activity increased
considerably during ripening, while there was a decrease in
citrate content (Mattoo and Modi, 1970). Proteomic analysis
identified ATP-CL in mature citrus fruit (Katz ez al., 2007).
However, this result is in contradiction to the decrease in the
levels of mRNA in this gene during ripening of citrus fruits
observed by Cercos (Cercos et al., 2006). Thus, the role of this
pathway in the decrease in acid in citrus fruit requires further
investigation.

The glyoxylate cycle: conversion of succinate and malate
The function of the glyoxylate cycle is to convert the acetyl-
CoA produced in the peroxisomes by B-oxidation of fatty
acids into succinate via a series of reactions involving malate
and citrate (Fig. 1). Succinate is then converted into malate
through the TCA cycle (Pracharoenwattana and Smith,
2008). Malate can then enter the gluconeogenesis pathway to
produce glucose. In this way, the glyoxylate cycle decreases
fruit acidity since it leads to the consumption of malate.

The five key enzymes involved in this metabolic pathway
are located in either the glyoxysome [citrate synthase, isoci-
trate lyase (ICL), and malate synthase (MS)] or the cytosol

(cytACO and NAD-cytMDH) (Pracharoenwattana and
Smith, 2008) (Fig. 1). The location of the enzymes requires
several intermediates of the cycle to cross the glyoxysomial
membrane, but which transport systems are involved is still
not clear (Rottensteiner and Theodoulou, 2006).

The glyoxylate cycle is possibly involved in malate accumu-
lation in young grape berry and ripening banana fruit (Pua
et al., 2003; Terrier et al., 2005). Activation of the glyoxylate
cycle during post-harvest ripening of banana fruit could be a
way to provide substrates for gluconeogenesis during a period
when sugar accumulation is high (Surendranathan and Nair,
1976; Liu et al., 2004). However, the involvement of the gly-
oxylate cycle in organic acid accumulation during fruit devel-
opment could be specific to certain fruit species since no ICL
proteins were detected in the flesh of several berry fruits at
any stage of development (Famiani ez al., 2005).

The complex mechanism of vacuolar
storage of organic acids

Most of the citrate and malate content of fruit is found in the
vacuole (Moskowitz and Hrazdina, 1981; Yamaki, 1984), which
occupies 90% of most mature fruit cells (Fontes ez al., 2011;
Etxeberria et al., 2012). This section is devoted to the mecha-
nisms allowing their transport into and out of the vacuole.
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The ‘acid trap’ mechanism

The mechanism that allows the accumulation of citrate and
malate in the vacuole has been described as the ‘acid trap’,
and is enabled by the fact that these two weak acids can dis-
sociate (Martinoia et al., 2007). In the cytosol, at neutral
or slightly alkaline pH, almost all malate is in the form of
dianion and almost all citrate in the form of trianion. In
the vacuole, where the pH is acidic, the dominant species is
either the protonated form or the monoanion (a significant
proportion of the acids may remain in the dianion form, or
even in the trianion form in the case of citrate, only in fruits
with high vacuolar pH). Only dianion malate and trianion
citrate can be transported into the vacuole (Liittge and Ball,
1979; Oleski et al., 1987; Rentsch and Martinoia, 1991)
because the transport systems involved are specific to these
chemical forms (Brune ez al., 1998; Martinoia et al., 2007).
Once they have crossed the tonoplast and reached the acidic
vacuole, they are immediately protonated, which maintains
their electrochemical potential gradient and allows their
continuous transport into the vacuole (Fig. 4A). It should
be pointed out that trapping efficiency depends on both
vacuolar pH and the electric potential gradient across the
tonoplast (Ay). On one hand, the lower the pH, the more
effective the protonation and trapping mechanism, on the
other hand, the A contributes strongly to the electrochemi-
cal potential gradient of the di- and trianion. Efflux of the
protonated forms of malate and citrate probably occurs
through specific carriers, but little is known on this subject
(see the following sections).

The sustained transport of organic anions must be accom-
panied by a simultaneous influx of the equivalent amount of
cations to maintain the electroneutral state of the vacuole.
This is achieved by the transport of either mineral cations
(mostly potassium) or protons (released from the dissociation
of weak acids in the cytosol), only the latter being responsible
for the acidification of the vacuole.

Malate crosses the tonoplast by facilitated diffusion

Vacuolar dianion malate uptake occurs by facilitated diffu-
sion (Rea and Sanders, 1987; Maeshima, 2001) (Fig. 2B). In
Arabidopsis, vacuolar malate transport is mediated at least
by a tonoplast malate transporter (AttDT) (Emmerlich ez al.,
2003) (Fig. 4A, no. 1) and two members of the aluminium-
activated malate transporter (ALMT) family, the AtALMT9
and AtALMT6 channels (Kovermann et al., 2007; Meyer
etal.,2011) (Fig. 4A, no. 2). An AttDT homologue has been
identified in grape berries and could play a role in malate
transport (Terrier ez al., 1998). ALMTs may be responsible
for vacuolar malate transport in fruits since four candidate
genes homologous to AtALMTY9 have been identified in
grape berry (Rongala, 2008), and two ALMT-like genes have
been discovered in apple (Bai ez al., 2012).

Malate currents through AtALMTY9 and AtALMT6 are
strongly inward rectifying; that is, malate transport occurs
only in the presence of a Ay (positive inside the vacuole)
(Hafke et al., 2003; Epimashko et al., 2004; Hurth et al.,
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2005; Meyer et al., 2011). As A is expected to decrease with
a decrease in vacuolar pH (see the following section), these
channels may close at low vacuolar pH when the acid trap
mechanism would be most effective, perhaps as a mechanism
to prevent overacidification of very acidic vacuoles. AttDT
appears to play a role in the import and export of malate
(Hurth et al., 2005), consequently this transporter could be
less rectifying than the malate channel. AttDT also appears
to be involved in the regulation of cytosolic pH homeostasis
(Hurth et al., 2005).

Citrate crosses the tonoplast by facilitated diffusion
and secondary active transport

In most species of fleshy fruit, vacuolar trianion citrate
uptake occurs by facilitated diffusion (Fig. 2B), possibly
through the malate channel (Oleski ez al., 1987; Rentsch and
Martinoia, 1991) (Fig. 4A, no. 2).The thermodynamic condi-
tions are more favourable for the uptake of citrate than of
malate at any vacuolar pH and Ay (Fig. 4B, C). Thus, citrate
appears to be easily transported into the vacuole as soon as
its cytosolic concentration increases sufficiently (Gout et al.,
1993). AttDT could also play a role in the transport of cit-
rate into the vacuole, but, according to Hurth ez al. (2005), it
is not the main tonoplast citrate carrier since AttDT knock-
out vacuoles contain much more citrate than wild-type vacu-
oles, and the transport rate of citrate was higher in AttDT
knock-out plants. In citrus, several authors proposed that an
ATP-dependent citrate pump may operate in addition to the
malate channel. However, further investigation is needed to
provide complete evidence that citrate transport is coupled to
ATP hydrolysis though a single transporter and not through
the tonoplastic pH gradient (ApH) and At setting up by
the V-ATPase (see the following section) (Canel ez al., 1995;
Brune et al., 1998; Ratajczak et al., 2003).

Citrate content generally decreases during fruit ripen-
ing (Léchaudel et al., 2005; Wu et al., 2005; Shimada et al.,
2006; Saradhuldhat and Paull, 2007), meaning that cit-
rate is exported from the vacuole. The existence of a sym-
porter involved in citrate efflux has been evidenced in citrus
(Fig. 2E). This carrier (CsCitl) is able to mediate the electro-
neutral co-transport of H* and CitH* outside the vacuole of
juice cells (Shimada er al., 2006) (Fig. 4A, no. 3).

Setting up the electric potential and pH gradient
across the tonoplast

The main determinants of malate and citrate accumulation
in the vacuole are vacuolar pH (always acidic) and the inside-
positive Ay, with values commonly ranging between 20 mV
and 30 mV (Taiz and Zeiger, 2010). Proton pumping into the
vacuole contributes to the generation of both acid vacuolar
pH and positive Ay (Fig. 4A, nos 4 and 5). Two types of
proton pumps are present in fruit vacuoles: the H*-ATPase
(V-ATPase) (Ratajczak, 2000), characterized in several fruit
species (Miiller et al., 1996, 1997; Terrier et al., 1998; Suzuki
et al., 2000), and the H*-PPiase (V-PPase) (Maeshima, 2000),
also characterized in several fruit species (Terrier ez al., 1998;
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Fig. 4. (A) ‘Acid trap’ mechanism of vacuolar organic acid storage in fruit cells. Several tonoplastic carriers are involved in the transport
of malate and citrate across the tonoplast. Once the dianions or trianions have crossed the tonoplast, they are immediately protonated
due to the acid pH of the vacuole according to the following equations: Malate: H,MalHMal+H —Mal?>™ + 2H*, (pKal ~3.40, pKa2
~5.10). Citrate: HyCite>H,Cit+H*-HCit> +2H* - Cit> +3H*, (pKal1 ~3.10, pKa2 ~4.70, pKa3 ~6.40). The two vacuolar proton pumps are
responsible for the acid pH of the vacuole and for the electric potential gradient across the tonoplast (Av). The cation channel is also
involved in the regulation of the Ay. (B) Theoretical changes in citrate (orange line) and malate (blue line) concentrations in the vacuole as
a function of the pH of the vacuole. The concentrations were calculated using the Nernst equation (i.e. AGy,2. and AGg2. are equal to
zero, assuming that the dianion malate and trianion citrate are in thermodynamic equilibrium across the tonoplast) and the dissociation
equations of the two organic acids with a vacuolar pH ranging from 4.5 to 6, and a Ay equal to 30 mV (Martinoia et al., 2007). We did

not consider any limitation by tonoplastic carriers.

(Cits‘ )Vac = (Cit3‘ )cyt * exp

Nernst equations:
(Malz‘) = (Malz‘) * expw
vac cyt R*T
3xF* Ay

R=T
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Suzuki et al., 2000). These enzymes catalyse chemiosmotic
coupling between the hydrolysis of a high energy phosphate
bond [ATP or pyrophosphate (PPi)] and proton transport
into the vacuole. The thermodynamic conditions of these
reactions are determinant for the activity of the pumps.
Protons can be pumped into the lumen only if the variation
in free energy of the chemiosmotic coupling (AG) is negative
(Fig. 2C).

AG =AGprporppi +AG,, <0. (D

where AGarp and AGpp; are the free energy of the substrate
hydrolysis, and AGy;, is the free energy of proton transport.
A Gy, can be written (derived from the diffusion equation of
ionic species, see Fig. 2) as:

AG,., :n(FA\V+2.3RTApH) 2)

where A=y, ApH=pH,—pH,,., and n is the cou-
pling ratio (i.e. the number of protons transported during the
hydrolysis of one phosphate bond).

The thermodynamic constraints impose a limit on the Ay
that can be achieved at a given ApH, as shown by combining
Equations 1 and 2:

_AG or PPi .
atporpri  2.3RT ApH 3)
nF F

Ay <

Dissociation equations:
Mal?" ] = [(K'm1 *K'm2) / (0 + (0 #K 1) + (K 1 #K )] ¥ [Mal]

[Cits_] = [(K,c1 * K,c2 * K,c3 ) / (hS + (h2 * K’c1 )+ (h K'c1 * K,c2 ) +
(K c1* K c2* K c3 ))] * [Cit]

where Ay is the tonoplastic electric potential gradient; (l\/IaIQ—)cyt
is the cytosolic activity of the dianion malate that is equal to the
product of the cytosolic concentration and activity coefficient
of the dianion malate; (Cit3—)cyt is the cytosolic activity of the
trianion citrate; [Mal?-],, is the vacuolar concentration of the
dianion malate; [Cit®-],,. is the vacuolar concentration of the
trianion citrate; F is Faraday’s constant; R is the gas constant;
T is temperature; K’ 1, K’ 1o, are apparent acidity constants of
malate; K’q, K'so, K'3, @re apparent acidity constants of citrate;
and h=10"" (Lobit et al., 2002). Since malate and citrate are
stored in the vacuole, their cytosolic concentrations are low
and were set at 1 mM (Gout et al., 1993; Lobit et al., 2006). (C)
Theoretical changes in citrate (orange line) and malate (blue
line) concentrations in the vacuole as a function of the Ay. The
concentrations were calculated using the same equations as in
(B), with the vacuolar pH set at 5, and the Ay ranged from 20
to 30 mV.
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The free energy of the substrate hydrolysis (AGsrp and
AGpp;) 1s negative, but may fluctuate with the cytosolic con-
centrations of their substrates (Davies ez al., 1993). The cou-
pling ratio (determined by electrophysiology experiments) is
1 for the V-PPase (Maeshima et al., 1994). For the V-ATPase,
the coupling ratio is variable and decreases with an increase
in ApH (Davies et al., 1994; Rienmiller ez al., 2012). In lemon
fruits, Miiller and Taiz (2002) also reported for the V-ATPase
a coupling ratio that decreases from 2 to 1 with an increase in
ApH. Assuming a model cytosol with a composition assumed
to be representative of a plant cell, Davies ez al. (1993) mod-
elled the ApH obtained as a function of Ay and showed that
both pumps are able to sustain vacuolar pH as low as in the
most acidic fruits, but that A1 dropped to zero.

Apart from these thermodynamic limitations, various
mechanisms are involved in regulating the proton pumps,
including gene expression and substrate availability. Several
studies of organic acid-related genes and enzymes suggested
that the difference in organic acid content between species
and between cultivars of fruits could be linked to differences
in their proton pumps (Echeverria et al., 1997; Etienne et al.,
2002; Lu et al., 2011; Yang et al., 2011). The contribution
of the V-ATPase and V-PPase to proton pumping also var-
ies during fruit development. In the grape berry and in pear,
the V-PPase is most active in young tissues, but subsequently
decreases, and the V-ATPase dominates during fruit ripening
(Shiratake et al., 1997; Suzuki et al., 2000; Terrier et al., 2001).
The high V-PPase activity in young fruits may be explained
by the need to scavenge the PP1i, a by-product and inhibitor of
several polymerization reactions (synthesis of RNA, proteins,
cellulose, and starch) (Maeshima, 2000). In mature tissues,
PPi production may decrease as these syntheses slow down,
while ATP is constantly supplied by cell respiration.

The transport of potassium (K*) across the tonoplast also
plays a role in the regulation of the Ay and of the vacuolar
pH. Since the concentration of cytosolic K* is controlled
homeostatically (Leigh, 2001) and because of the small
size of the cytosol, most of the K* supplied to the fruit cell
has to be transported to the vacuole. Facilitated diffusion
through vacuolar cation channels is the most likely mecha-
nism (Isayenkov et al., 2010). However, in fruit with a high K*
content such as banana, it can be calculated using the Nernst
equation (Fig. 4B); with a cytosolic concentration of K* of
~100mM (Leigh, 2001), and a Ay of 30 mV (Martinoia et al.,
2007), passive transport accounts for accumulation of up to
30mM K* in the vacuole. This is very far from the 80mM
found in ripe banana (Chandler, 1995). Thus, in such fruits,
active transport is required. The most likely mechanism is
a K*/H" antiport, as identified in the tonoplast of tomato
plants (Leidi ef al., 2010). Cation channels help reach a posi-
tive Ay (Isayenkov e al., 2010), since the passive influx of K*
hyperpolarizes the tonoplast (Fig. 4A, no. 6). In contrast, the
K*/H* antiport, which mediates an electroneutral exchange,
has no effect on Ay. Concerning acidity, transporting K* as
the balancing charge for organic anions is equivalent to stor-
ing not the acid, but its conjugated base, which leads to an
increase in pH. In the case of the K*/H* antiport, there is an
additional effect on pH due to protons leaving the vacuole.

9T0Z ‘9T Jego100 uo AISIBAIUN BUIS 1Y Ng T8 /B10'seulno(pioxo-gx(//:dny wo.y papeoumoq


http://jxb.oxfordjournals.org/

1460 | Etienne et al.

Citrate accumulation could be driven by
metabolism and malate accumulation by
vacuolar storage

In the previous sections, we showed that both metabolism and
vacuolar storage play a role in the accumulation of malate
and citrate in fruit cells. A relevant question is whether their
accumulation in fruit cells is primarily controlled by metabo-
lism or vacuolar storage.

Concerning malate, we showed that the thermodynamic
conditions of its transport into the vacuole may limit its
accumulation. Therefore, one can hypothesize that malate
accumulation in fruit cells is mainly controlled at the level
of vacuolar storage, and that metabolism responds appropri-
ately to regulate the cytosolic concentration of malate since
it plays a fundamental role in the regulation of cytosolic pH
(Smith and Raven, 1979). Several authors agree with this
hypothesis. When comparing two apple cultivars with dif-
ferent acidity, Beriiter ez al. (2004) reported higher vacuolar
accumulation of '“C-labelled malate in the high-acid cultivar.
The higher rate of malate degradation in the low-acid cultivar
may only be a consequence of its impaired capacity to store
malate. In interspecific introgression lines of tomato, Schauer
et al. (2006) showed that the V-PPase gene co-localized with
the QTL for malate content. In apple, Bai e al. (2012) sug-
gested that one of the two ALMT-like genes discovered, Mal,
could be the major determinant of malate content in fruit.
The relationship between malate accumulation and vacuolar
functioning has been modelled in peach by Lobit ez al. (2006).
The model predicts malate accumulation in peach based on
the calculation of the thermodynamic constraints on both
proton and malate transports, and model results were in
good agreement with experimental data, thus reinforcing the
hypothesis of control by tonoplastic transports.

Concerning citrate, we showed that its accumulation in the
vacuole is unlikely to be limited by thermodynamic condi-
tions. However, the rate of citrate transport into the vacuole
may be limited by the activity of its transport system, given
that the malate channel transports citrate much more slowly
than malate (Hafke er al., 2003). Thus, it is likely that cit-
rate accumulation in the vacuole is controlled by its cytosolic
concentration and consequently by its metabolism. Among
several possible pathways related to citrate metabolism, the
TCA cycle is the only one that allows citrate synthesis, so that
citrate accumulation is probably controlled by respiration.
A fruit PBSM based on a representation of the TCA cycle
reactions and their responses to temperature and respiration
(Lobit, 1999; Wu et al., 2007) led to predictions that were
in agreement with observed data. In particular, this model
reproduced the increase in citrate content during the early
stage of fruit development and the subsequent decrease dur-
ing the later stage (Léchaudel ez al., 2005; Wu et al., 2005;
Albertini et al., 2006; Saradhuldhat and Paull, 2007). The
fact that citrate synthesis is positively linked to fruit respira-
tion during the green stage, and negatively during ripening
may reflect a change in the respiratory substrates used by the
TCA cycle from malate (or other intermediates) to citrate. It
should be noted that dilution due to pulp growth is required

to explain the variations in the concentration of organic acids
(Wu et al., 2007).

Influence of agro-environmental factors
on malate and citrate accumulation in the
mesocarp cells of fleshy fruits

The literature shows that the plant source:sink ratio, mineral
fertilization, water supply, and temperature are the agro-envi-
ronmental factors that have the most impact on fruit acid-
ity. This section focuses on their effects on malate and citrate
accumulation in fruits considering the mechanisms described
above.

The source:sink ratio influences fruit acidity by
modifying the supply of sugars

Orchard management practices such as fruit thinning, plant
pruning, or defoliation affect the source:sink ratio of the
plant, which usually results in altered sugar supply and fruit
growth. These practices also affect fruit acidity (Table 1). In
peach and mango, it has been observed that an increase in the
source:sink ratio increases citrate content early in fruit devel-
opment, and decreases it near maturity (Souty ez al., 1999;
Wu et al., 2002; Léchaudel et al., 2005). The opposite effects
have been reported for malate, with a decrease during early
stages followed by an increase near maturity (Wu ez al., 2002;
Léchaudel et al., 2005).

It can be hypothesized that during the green stages, large
amounts of sugars imported from the leaves are available
for the production of malate via glycolysis and its conver-
sion to citrate via the TCA cycle. It is well known that fruits
grown with a high sugar supply, due to a high source:sink
ratio, are bigger and consequently have a higher respiration
rate. Therefore, in these stages, an increase in fruit respira-
tion due to a high supply of sugars may stimulate glycoly-
sis and conversion of malate into citrate. In contrast, during
ripening, sugars may no longer be available for respiration
since they are stored in the vacuole (Coombe, 1976), causing
a shift from sugars to organic acids (in particular citrate) as
respiratory substrate. During this stage, an increase in respi-
ration (due to bigger fruit in response to the high source:sink
ratio) may stimulate the conversion of citrate into malate to
maintain the pool of TCA cycle intermediates constant. This
behaviour has been represented in the PBSM of citrate accu-
mulation (Lobit ez al., 2003; Wu et al., 2007), the results of
which are in agreement with observations made in field trials
(Génard et al., 1991, 1994, 1999; Génard and Bruchou, 1993).

Different but strong effects of mineral fertilization on
fruit acidity

Potassium fertilization has an impact on fruit acidity, but
agronomic observations are contradictory (Table 1). Some
authors reported that potassium fertilization increased fruit
titratable acidity (TA) (which is the amount of weakly bound
hydrogen ions that can be released from the acids by NaOH
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would reduce the supply of assimilates to the fruits). The
effect of nitrogen on fruit acidity may also depend on the
form of nitrogen applied (NO; or NH,*). NO; fertilization
is likely to have a positive impact on the concentration of
organic anions in the phloem sap since nitrate assimilation in
the leaves requires the coordinated synthesis of organic acids
(Benzioni et al., 1971; Smith and Raven, 1979; Scheible et al.,
1997), which are then transported in the phloem sap together
with K*. Conversely, NH," fertilization does not cause the
synthesis of organic anions, and may affect cation uptake by
roots, like K™, as observed in banana (Sathiamoorthy and
Jeyabaskaran, 2001).

Very few studies have been conducted on the effects of other
mineral elements on fruit acidity (Table 1). However, mag-
nesium has been shown to have no significant effect on fruit
acidity (Cummings and Reeves, 1971), and phosphorus nutri-
tion appears to have little effect on fruit acidity (Cummings
and Reeves, 1971; Spironello et al., 2004).

Water supply influences fruit acidity probably due
to modlifications in fruit water content and osmotic
adjustment

The impact of water supply on fruit acidity has been widely
studied (Table 1). In most cases, water supply was shown to
be negatively correlated with TA and organic acid content in
ripe fruits (Mills et al., 1996; Yakushiji et al., 1998; Gonzales-
Altozano and Castel, 1999; Veit-Kohler et al., 1999; Hudina
and Stampar, 2000; Wu ef al., 2002; Kallsen et al., 2011).
However, some authors reported a positive relationship
between water supply and both TA and organic acid con-
tent in ripe fruits (Esteban et al., 1999; des Gachons et al.,
2004; De la Hera-Orts et al., 2005; Thakur and Singh, 2012).
Even if water supply modifies fruit acidity, there is apparently
no change in the seasonal patterns of the accumulation of
organic acids (Wu et al., 2002; De la Hera-Orts et al., 2005;
Thakur and Singh, 2012). Taken together, these data suggest
that water stress tends to increase organic acid content and
TA in ripe fruits through a simple dilution/dehydration effect
(Gonzales-Altozano and Castel, 1999). Another mechanism
through which the plant water status may interfere with fruit
acidity is osmotic adjustment: under water stress, all plant
tissues accumulate solutes, mainly sugars and organic acids
(Hummel et al., 2010), to lower their osmotic potential and
prevent a drop in cell turgor pressure. As water stress increases
the accumulation of organic acids in the leaves and xylem
fluid (Andersen, 1995; Hummel, 2010), it may also increase
imports of organic acids to the fruit.

Temperature influences fruit acidity by affecting both
metabolism and vacuolar storage of organic acids

Increasing the temperature during fruit growth or storage
decreases fruit TA (Kliewer, 1973; Rufner, 1982; Wang and
Camp, 2000; Gautier et al., 2005) (Table 1) as well as malate
and citrate concentrations, as shown in the grape berry
(Buttrose et al., 1971; Kliewer, 1973; Rufner, 1982) and in
banana (Bugaud er al., 2009). Nevertheless, all organic acids
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do not appear to be equally sensitive to temperature (Rufner,
1982; Wang and Camp, 2000).

Modifications in organic acid metabolism in response to
temperature probably result from the impact of tempera-
ture on the reaction rates of glycolysis and of the TCA cycle
(Araujo et al., 2012) by modifying enzyme activities (Lakso
and Kliewer, 1975b), and also on the kinetic properties of the
mitochondrial transport systems involved (Halestrap, 1975).
The main effect of increasing temperature would be to stim-
ulate respiration, with the above-mentioned effects on cit-
rate metabolism (increasing citrate production during green
stages and decreasing citrate production during ripening) (see
previous section). Results of the fruit PBSM developed by
Lobit et al. (2003), which models net citrate production as a
function of temperature, fruit mesocarp weight, and respira-
tion, were in good agreement with experimental data. Further
simulations showed that temperature can affect fruit acidity
in different ways depending on the fruit cultivar or species
(Wu et al., 2007).

Temperature probably affects vacuolar storage of organic
acids via several mechanisms. Temperature is a key variable
in the thermodynamic equations that limit the operation
of the proton pumps and the diffusion of organic anions
through the tonoplast. In the PBSM of malate accumula-
tion in fruit developed by Lobit ez al. (2006), increasing the
temperature reduced the ability of the fruit to accumulate
malate, which is in accordance with observations made in
agronomic studies. Temperature also affects membrane flu-
idity by modifying lipid properties (Murata and Los, 1997).
Thus, high temperatures may change the tonoplastic perme-
ability of fruit cells, which could increase leakage of sol-
utes such as protons or protonated forms of organic acids.
The increase in tonoplastic permeability could explain the
increased activity of vacuolar proton pumps observed in
grape berry cells in response to an increase in temperature
(Terrier et al., 1998). The increase in proton pump transport
activity may compensate for the leakage of solutes, which is
known to occur during grape berry ripening (Terrier, 2002),
but only partially, resulting in a net efflux of malic and citric
acid to the cytosol and their further degradation (because
of the cytosolic pH homeostasis), leading to a decrease in
fruit acidity.

Conclusions

This review showed that accumulation of malate and citrate
is the result of interactions between metabolism and vacuolar
storage, and identified the main mechanisms likely to drive
them. It also showed that agro-environmental factors affect
the acidity of fleshy fruit by acting on various cellular mecha-
nisms. To increase our understanding of the development of
acidity in fleshy fruit, we believe that integrative approaches
would be particularly appropriate (Struik ez al., 2005; Génard
et al.,2010). The combination of PBSMs and molecular data,
as a tool for model parameterization, could advance our
understanding of the response of citrate and malate accumu-
lation to environmental fluctuations and genetic control.
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