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Abstract The major concerns in Wireless Sensor Networks (WSN) are energy efficiency as they

utilize small sized batteries, which can neither be replaced nor be recharged. Hence, the energy must

be optimally utilized in such battery operated networks. One of the traditional approaches to

improve the energy efficiency is through clustering. In this paper, a hybrid differential evolution

and simulated annealing (DESA) algorithm for clustering and choice of cluster heads is proposed.

As cluster heads are usually overloaded with high number of sensor nodes, it tends to rapid death of

nodes due to improper election of cluster heads. Hence, this paper aimed at prolonging the network

lifetime of the network by preventing earlier death of cluster heads. The proposed DESA reduces

the number of dead nodes than Low Energy Adaptive Clustering Hierarchy (LEACH) by 70%,

Harmony Search Algorithm (HSA) by 50%, modified HSA by 40% and differential evolution by

60%.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wireless Sensor Networks (WSNs) consist of large number of

tiny nodes which are either manually or randomly deployed in
diversified applications. The network considered is of homoge-
neous or heterogeneous in nature. Eventually due to the energy

consumption being dependent on the distance between the
cluster head and the node or the base station and the node,
the energy of the nodes reduces in each and every round.

The network totally dies when all the nodes present in the net-
work have zero energy. Thus, the energy must be optimally
used [1]. Optimization is the procedure of finding the condi-

tions that minimize the death of the nodes [2]. Optimization
in general can be either heuristic or meta-heuristic. Heuristics
work on one problem at a time. Meta-heuristics on the other
hand work on a set of problems at a time. Heuristics take full

advantage of the particularities of the problem and they are
greedy in nature in the sense that the solution gets trapped
in local minimum and fails to find the global optimum [3].

However, meta-heuristics are problem dependent and do not
take advantage of the particularities of the problem and find
nnealing
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the global minimum. On the other hand, heuristics is tailored
to solve a specific problem.

Meta-heuristics are general algorithms and can be applied

to various fields. But, heuristics uses a trial and error proce-
dure to find acceptable solutions for complex problems in a
reasonable amount of time. Meta heuristics might not give a

best solution but gives a solution good enough or even optimal
most of the time. Meta heuristics are incomplete methods and
are black box procedures [29]. Meta Heuristics are embedded

with operators to escape from local minimum. Unlike heuristic
Dijkstra algorithm, Genetic algorithms, Differential Evolution
(DE) [28], and Simulated Annealing (SA) are instances of
meta-heuristics algorithm [29,30]. The method in [29] aimed

to combine differential evolution with particle swarm opti-
mization for node localization. The technique in [30] solves
the cluster head selection using fuzzy concept. However, the

fuzzy does not provide optimal solution but converges to the
intermediate solution as it requires accurate and complete
information about the network. Hence, this technique may

not be appropriate for random deployment of sensor nodes.
Meta-heuristics approach has been utilized in wireless sensor

networks for selectionof clusterheadorselectionofabetter setof

population for the next generation in the case of evolutionary
algorithms [3,31,32,35,36]. These algorithmsmake use of the fit-
ness function to obtain a better offspring. In this paper, a hybrid
algorithm using DE and SA is used for wireless sensor networks

to improve the network lifetime. Alternatively, numerous works
have been carried out in the area of network coding for cluster
head selection [4] by considering the residual energy or the dis-

tance from base station [5,6].
The motivation of this paper is that during cluster forma-

tion, if the sensor nodes are not assigned properly to the cluster

heads then the cluster heads eventually get over loaded, which
leads to earlier death of the cluster heads [24,25]. This increases
the latency and reduces the performance of the network. In

this paper, we make use of DE for local search along with
SA for global optimal solutions. Here, the proposed hybrid
differential evolution and simulated annealing (DESA) algo-
rithm aim at maximizing the network lifetime of the WSN

by optimal search of the cluster heads. The results show that
the proposed DESA outperforms the existing Low Energy
Adaptive Clustering Hierarchy (LEACH), differential evolu-

tion, Harmony Search Algorithm (HSA) and Modified Har-
mony Search Algorithm (MHSA).

The rest of the paper is organized as follows. Section 2

describes the related work for lifetime improvement in wireless
sensor network. In Section 3, the system model of the wireless
sensor network has been detailed. Section 4 details the pro-
posed differential evolution and simulated annealing algo-

rithm. In Section 5, simulation results are discussed and
Section 6 concludes the major findings of the paper.

2. Related works

There are number of clustering protocols proposed in the liter-
ature [7]. Low Energy Adaptive Clustering Hierarchy

(LEACH) has been the most well-known algorithms that
forms nodes based on received signal strength and random
probabilistic distribution. LEACH is used in WSN for mini-

mization of energy dissipation [9]. It is a cluster based protocol
which elects cluster heads on a round basis. The protocol
Please cite this article in press as: Potthuri S et al., Lifetime Improvement in Wireless
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works in two phases namely set up and steady state phase. It
starts with the set up phase where the cluster heads are chosen
followed by the steady state phase where the data are transmit-

ted. LEACH is a stochastic protocol which makes use of a
probability p. Here, r represents the round, G is the set of all
the nodes that are eligible to become cluster heads and p is

the probability that each of the nodes will become the cluster
heads. For each sensor node a random number in the range
[0,1] is chosen. If the number is lesser than the threshold, T,

the node is chosen as the cluster head.

TiðtÞ ¼
p

1�p� r mod1pð Þ ; n 2 G

0 ; n R G

(
ð1Þ

In addition to LEACH, Particle Swarm Optimization
(PSO) and ant colony optimization (ACO) are widely evolu-
tionary based approaches used in WSNs [3,10–13,16]. How-

ever, the abovementioned evolutionary clustering algorithms
form the clusters by modest CH selection and allowing the
non-CHs to join their nearest CHs. Moreover, they assume

that the sensor nodes are equally distributed. Therefore, if
the non-CH sensor nodes join the nearest CH as with LEACH
then the CHs of densely deployed areas will be overloaded

with higher number of member sensor nodes.
In [24,25], the authors have exploited PSO for clustering

and routing in wireless sensor networks. Though PSO is a very

efficient optimizer it suffers from curse of dimensionality [26].
However, the performance of Differential Evolution (DE) has
been proved to be outstanding in comparison with the other
conventional algorithms for clustering in WSN [27]. It is sim-

ple and robust, converges fast, and finds the optimum in
almost every run. In addition, it has few parameters to set,
and the same settings can be used for many different problems.

Among the various algorithms, the DE can rightfully be
regarded as an excellent candidate, when faced with new opti-
mization problems [27,28].

The Harmony Search Algorithm (HSA) and Modified HSA
(MHSA) exploited in [19,20], respectively, suffer from fixed
pitch adjustment rate that sources uncertain and random
search directions. This uncertainty causes them to obtain local

optimal solution and the random search reasons slow conver-
gence toward optimum value. Hence, it is very time consuming
for the improvization of cluster head selection and during the

searching of new cluster head.
The DE [21–23] advantages the above limitation by enhanc-

ing the capacity of local search by keeping the multiplicity of

the population. The reason is that the DE does not require
much fine tuning of the cross over rate parameter as the cross-
over operator shuffles information about positive combina-

tions. Conversely, the DE does not guarantee an optimal
solution as the convergence is unstable and more often locks
itself into the regional optimal solution. Unlike binary Particle
Swarm Optimization (PSO) [29], the DE supports only real

number based decision variables.
The SA [17,18] mechanism advantages from finding the glo-

bal optimal solution as it uses probabilistic jump during local

optimal solution and avoids search process in local minimum.
However, the simulated annealing cannot guarantee the find-
ing of optimal solution. Hence, it takes longer period for opti-

mization process that results in lower convergence speed. In
addition, the simulated annealing tends to provide many solu-
tions and few of them are not optimal.
Sensor Networks using Hybrid Differential Evolution and Simulated Annealing
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2.1. Differential evolution

Differential evolution is a meta-heuristic evolutionary algo-
rithm [8]. It is a robust algorithm, which aims at global opti-
mization. Also, DE is a simple, easily adaptable algorithm

for optimization of multimodal search spaces. DE is similar
to Genetic Algorithm in the sense that both of them are evolu-
tionary approaches. There exist some changes from GA
though. GA applies crossover first followed by mutation which

is the other way round in the case of DE. In GA, mutation is
used to maintain population diversity and hence applied occa-
sionally. DE on the other hand uses mutation operation in

every generation to produce a better offspring. GA usually
makes use of binary representation while DE can make use
of set of real numbers [21,22].

DE consists of the following steps and the flowchart is
shown in Fig. 1.

� Initialization of population vector i is done using a random
set of values with n being the maximum size of the popula-
tion for a particular generation ‘Gen’ and is given as
follows:
Pleas
(DE
Xi;Gen ¼ ½x1;Gen; x2;Gen; x3;Gen . . . ; xn;Gen� ð2Þ

� Mutation is the process of generating the donor vector
using the target vectors.
vi;Genþ1 ¼ xr1;Gen þ Fðxr2;Gen � xr3;GenÞ ð3Þ
where r1,Gen, r2,Gen, r3,Gen are three random values chosen
which are in the range {1,2, . . . n} and F is the amplification

factor of the differential variation.
� Crossover is the operation carried out after the mutation
phase. The trial vectors are obtained in the crossover stage.

A random number in the range [0,1] is compared with the
crossover rate (Cr). If the crossover rate is lower than the
random number, the donor vector is chosen else the same

vector remains.�

ui;Genþ1 ¼

vi;Genþ1; randðiÞ < Cr

xi;Gen; randðiÞ > Cr
ð4Þ

� Selection is an important phase of choosing the vectors for
the next generation. Either the trial vector or the target vec-
tor is chosen as the offspring.�

xi;Genþ1 ¼

ui;Gen; fitnessðui;GenÞ P fitnessðxi;GenÞ
xi;Gen; otherwise

ð5Þ
2.2. Simulated annealing

Simulated Annealing is a meta-heuristic algorithm used in
materials which uses the concept of not ruling out the worse
solution. This is very useful as the solution might not be the

worst during the first little iteration [14]. Although the solution
does not satisfy the criterion, the solution is not rejected
straight away but is rejected with a probability as follows:

p ¼ exp � DE
kBT

� �
ð6Þ

The change in energy in Eq. (8) is represented in Eq. (9) as
follows:
e cite this article in press as: Potthuri S et al., Lifetime Improvement in Wireless
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DE ¼ cDf ð7Þ
where Df is the change in the fitness function and c is chosen as
the inverse of the Boltzmann’s constant. On substituting

change in energy in Eq. (8), the resultant probability is given
as follows:

p ¼ exp �Df
T

� �
ð8Þ

where D E is the change in energy levels, kB is the Boltzmann’s
constant, T is the temperature for controlling the annealing
process, which is chosen as the average value of the fitness

function and c is chosen as the inverse of the Boltzmann’s con-
stant. Thus, the probability is expressed as an exponential
function of the difference in fitness function and the

temperature.

3. System model

The radio dissipation model is a free space model which con-
sists of the transmitter and receiver section with a separation
of distance, d. The transmission section consists of transmit

electronics and transmission amplifier and the receiving section
consists of receive electronics part for information to be trans-
mitted in terms of bits. Assume a set of sensors is dispersed on
a rectangular field [9]. The energy required by the sensor nodes

to transmit (ETx) and receive (ERx) the information (k) over
the distance d given in Eqs. (9) and (10), respectively, is as
follows:

ETx ¼ kEelec þ kefsd
2; d 6 d0

kEelec þ kempd
4; d > d0

(
ð9Þ

ERx ¼ kEelec ð10Þ
Eelec is the energy consumed to send one bit of data; efs is the
amplification coefficient of the transmission amplifier in free

space, and emp is the coefficient of amplifier under multipath

consideration. The following properties about the network
are anticipated:
� The nodes in the network are considered to be quasi-
stationary in nature.

� The energy consumption is not uniform for all the nodes

and depends on the distance from the base station or the
cluster head depending on whichever is closer.

� Nodes are unaware of the location.

� All the nodes are homogeneous in nature.
� The nodes are self-organizing and need not be monitored
after deployment.

� Each node has a fixed number of power levels.

4. Proposed Differential Evolution and Simulated Annealing

(DESA) algorithm

The Differential evolution and simulated annealing (DESA)
algorithm consists of the following steps:

� The set of sensor nodes is denoted by S= {s1, s2, . . ., sn}.
� From the set of sensor nodes we choose a small percentage

of them as cluster heads.
Sensor Networks using Hybrid Differential Evolution and Simulated Annealing
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Figure 1 Proposed Differential Evolution and Simulated Annealing (DESA) algorithm.
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� All the nodes are assigned to cluster heads using the proce-
dure given in Section 4.7.

� Now, we go ahead with initialization of the population vec-
tor followed by mutation, crossover and selection using the
simulated annealing meta-heuristic algorithm.

The DESA consists of four phases, namely initialization of
the population vector, mutation, crossover and selection for
the next generation as carried out in the conventional DE algo-

rithm. In this paper, initialization of the population vector is
done using the opposite point method. Here,
Please cite this article in press as: Potthuri S et al., Lifetime Improvement in Wireless
(DESA), Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.03.004
� The population is first initialized randomly.
� The value is optimized by generation another set of popula-

tion vectors from the initial set called the opposite
population.

� From the entire set, only ‘n’ fittest individuals are consid-

ered for the following generation.

For Mutation a random number in the range [0,1] is first
chosen. In the proposed hybrid approach, a threshold of 0.5

is assumed to choose between various DE schemes. In the lit-
erature [15] and the references therein, the notation of DE/x/y
Sensor Networks using Hybrid Differential Evolution and Simulated Annealing
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is used, which is similar to Kendall’s notation in queuing the-
ory. Here, x represents mutation vector that is randomly cho-
sen, y is the number of variance in vectors used in the mutation

process and z refers to the crossover scheme, which usually
takes the value of binomial or exponential. In the proposed
approach, if the random number chosen is greater than a

threshold value it performs DE/rand/1 else it performs DE/
current-to-best/1. The z factor for crossover scheme is chosen
as in Eq. (14).

For crossover we used the blending rate using the Gaussian
distribution. In the selection phase, the fittest offspring is
chosen for the next generation using selection using simulated
annealing. Differential evolution depends on three control

parameters namely population size, amplification factor and
the crossover rate. The amplification factor and the crossover
rate are made self-adaptive. The hybrid algorithm is depicted

by the flowchart in Fig. 1. Each of the steps in Fig. 1 is dis-
cussed in detail in the following sections.

4.1. Initialization of population vectors using the opposite point
method

The opposite point method is more effective than just the ran-

domly chosen population for global optimization problems.
Evaluating the opposite point simultaneously provides us
another opportunity to find a point closer to the global opti-
mum. The opposite point method must be applied before

and after each round [23]. Here, the aim is to find the best
set of population. It involves the following:

� Initialize the population randomly at the start as with the
size population.

� Calculate the opposite population using the opposite point

method.
� Find the union of the set of the population randomly
selected and the opposite population.

� From the union, select the n fittest individuals. The same
procedure needs to be repeated after the selection of the off-
spring for the next round.

� The next generation is obtained after the DE operations,

namely, mutation, crossover, and selection.
� Obtain the opposite population.
� Select the n fittest individuals.

� Increment the next generation.

4.2. Self adaptive control parameters

The control parameters for Differential Evolution are
amplification factor, crossover rate and the population size.

In the proposed method, the Amplification Factor (F) and
the crossover rate (CR) are made self-adaptive hence change
in every round and for every individual to get better results
[18].

Fi;Genþ1 ¼
Fl þ rand1 � Fu ðrand2 < s1Þ
Fi;Gen otherwise

�
ð11Þ

CRi;Genþ1 ¼
rand3 ðrand4 < s2Þ
CRi;Gen otherwise

�
ð12Þ
Please cite this article in press as: Potthuri S et al., Lifetime Improvement in Wireless
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Here, randj, j 2 {1,2,3,4} are uniform random values and s1
and s2 represent probabilities to adjust factors F and CR
respectively. Upper bound (Fu) is chosen as 0.9 and lower

bound (Fl) is chosen as 0.1. The probabilities s1 and s2 are cho-
sen as 0.1 to adjust the amplification factor. They influence the
mutation, crossover, and selection operations of the new vec-

tor xi,G+1.

4.3. Mutation

A random number in the range [0,1] is chosen and compared
with a threshold value, in this case 0.5. If the random number
chosen is lesser than the threshold DE/rand/1 is chosen else

DE/current-to-best/1 is performed.

vi;Genþ1 ¼
xr1;Gen þ Fi;Genþ1ðxr2;Gen � xr3;GenÞ rand½0; 1� 6 0:5

xi;Gen þ Fi;Genþ1ðxbest;Gen � xi;GenÞ
þFi;Genþ1ðxr2;Gen � xr3;GenÞ otherwise

8><
>:

ð13Þ
4.4. Crossover

A part of the mutant vectors is kept intact as in classical DE

with probability Cr. The other features are not directly taken
from the parent vector but are considered to be a mix, in a def-
inite ratio. The blending rate Br determines the rate by which

the mix occurs [19]. As we can observe if the value of the blend-
ing rate, Br is taken to be zero then the uj,i,Gen vector becomes
vj,i,Gen for the next generation.

uj;i;G ¼ Br � xj;i þ ð1� BrÞ � vj;i;G ð14Þ
where the blending rate (Br) is Br ¼ Nð0:5; ð1=2pÞÞ and Nðl; rÞ
is the normal distribution with mean l and standard deviation

r.

4.5. Selection

xi;Gþ1 ¼
ui;G fitnessðui;GÞ P fitnessðxi;GÞ
ui;G choose with a probabilty of pi

xi;G otherwise

�
8><
>: ð15Þ

Depending on the fitness function either u or x is chosen for
the next generation [20]. If the fitness function of solution after

crossover operation is greater than that of the original solution
u is chosen else x is chosen with a probability. The probability
is expressed in exponential form of the difference of the fitness

function and the average fitness value in each round. The idea
behind using the probability is that the worse solution at each
round is not rejected straight away but depends on the proba-

bility given by

probability ¼ exp �ðfitnessuiðtþ1Þ � fitnessxiðtÞÞ
averageðfitnessÞ

� �
ð16Þ
4.6. Fitness function

The aim of using the fitness function is to get the best set of

population vectors for the next generation. Distance and the
Sensor Networks using Hybrid Differential Evolution and Simulated Annealing
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Table 2 Simulation parameters.

Parameter Value

Area 200 * 200 m
2

No. of nodes 100

Initial energy of nodes 0.5 J

k, Packet size 4000

Eelec 70 nJ

EDA 5 nJ

Efs 10 pJ

Emp 0.0013 pJ

Eamp 120 nJ

Figure 2 Random deployment of wireless sensor network.
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energies of the nodes are the factors taken into account as fol-
lows [21]:

fitness ¼ e � f1 þ ð1� eÞ � f2 ð17Þ

f1ðiÞ ¼
EðiÞPm

k¼1;k – iEðkÞ
ð18Þ

f2ðiÞ ¼
ðm� 1ÞPm

k¼1;k – idði; kÞ
ð19Þ

where e is an user defined constant, it determines the contribu-
tion of each of the functions used, f1 is the ratio of the energy
of the present node to the energy of the nodes in the cluster

and f2 is the total Euclidean distance of the cluster nodes to
node i and d(i,k) refers to the distance between node i and node
k and m is the number of nodes in the particular cluster.

4.7. Cluster head distribution

After obtaining the set of the cluster heads and the set of the

sensor nodes, the task of allotting a cluster head to each of
the sensor nodes is carried out using the following procedure:

� The set of cluster head, ComCH (sj) is obtained by the set of

nodes which are within the radius of 20 m from the sensor
node.

� The index number of ComCH is considered.

� The population xi,G, is a random number generated in the
range [0,1].

� The ceil of (xi,G * ComCH(sj)) is computed.

� The cluster head is assigned using the obtained number. If
the ceil value is found to be 2, the next value of the set
ComCH(sj) is selected.

The resultant cluster head selection using the proposed
method is shown in Table 1.

5. Simulation results and discussion

The simulation was carried out using Matlab 2015a simulator.
Along with DESA, the performance of the network is analyzed

for LEACH, HSA, modified HSA and differential evolution
algorithm. The parameters [33,34] taken into consideration
for simulating the network are shown in Table 2. The network

parameters such as the number of dead nodes, number of alive
nodes, energy consumption and throughput are analyzed and
plotted against the number of rounds. The wireless sensor net-

work consists of nodes deployed randomly as shown in Fig. 2.
Table 1 Formation of cluster head in the proposed algorithm.

Sensor ComCH(sj) |ComCH(sj)|

s1 {CH3, CH1, CH2} 3

s2 {CH4, CH5} 2

s3 {CH5,CH3} 2

s4 {CH1,CH4, CH5,CH3} 4

s5 {CH5} 1

s6 {CH1,CH2} 2

s7 {CH2} 1

Please cite this article in press as: Potthuri S et al., Lifetime Improvement in Wireless
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These are now grouped into small sectors called clusters. The

results have been obtained after averaging the results from
15 seeds and each seed is carried out for 1000 runs.

The number of dead nodes with varying number of rounds
is shown in Fig. 3. The number of dead nodes must be as min-

imal as possible for better performance of the network. If the
cluster heads die earlier, the clusters will be left without any
CH. Such scenarios should be avoided. From the results

obtained we observe that using DESA there is an increase of
70% when compared to LEACH, 50% when compared to
HAS, 40% when compared to modified HSA and 60% when

compared to differential evolution, respectively. The nodes
are alive for longer duration due to the hybridization of differ-
ential evolution algorithm along with the modifications simu-

lated annealing approach. Hence, the hybrid method
provides better results as compared to other algorithms.
xi,Gen Ceil(xi,Gen * ComCH(sj)) Assigned CH

0.46 2 CH1

0.19 1 CH4

0.39 1 CH3

0.67 3 CH5

0.86 1 CH5

0.63 2 CH2

0.24 1 CH2

Sensor Networks using Hybrid Differential Evolution and Simulated Annealing
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Figure 3 Number of dead nodes with varying number of rounds.
Figure 5 Residual energy with varying number of rounds.

Figure 6 Throughput with varying number of rounds.

Lifetime Improvement in Wireless Sensor Networks 7
The number of alive nodes for varying number of nodes is
shown in Fig. 4. From the curves it could be observed that the
number of alive node with DESA is increased than that of
LEACH, HSA, modified HSA and differential evolution algo-

rithms. This proves that the nodes stay alive in the network for
longer period and reduce the probability of early death of the
nodes. This is due to the fact that the cluster heads are assigned

to the nodes by the method discussed in cluster head allocation
of DESA and much of the energy is not being consumed.

The residual energy of the network with varying number of

rounds is shown in Fig. 5. It is the energy left after each and
every round. The batteries used in the wireless sensor networks
are very small in size and cannot be replaced; hence, the energy
consumption by residual energy must be as minimal as possi-

ble. From the curves we could infer that in the proposed
DESA algorithm, the residual energy increases as the nodes
die gradually. This is due to the suitable choice of fitness func-

tion chosen, which considers the residual energy and the dis-
tance. Fig. 6 shows the throughput with varying number of
rounds. Throughput of the network indicates the amount of

data being sent in each round. As the number of alive nodes
increases the throughput of the network also increases.
Figure 4 Number of alive nodes with varying number of rounds.

Please cite this article in press as: Potthuri S et al., Lifetime Improvement in Wireless
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Throughput of the network is calculated as the product of
the number of alive nodes per round and the data packet

length. From the curves, the proposed hydride DESA algo-
rithm outperforms LEACH, MHSA, HAS and DE
algorithms.

6. Conclusion

In this paper, a hybrid Differential Evolution and Simulated

Annealing (DESA) was proposed, which is a hybrid of Differ-
ential Evolution and Simulated Annealing. It is used to
improve the network lifetime by prolonging the death of the

cluster heads. DESA includes a fitness function taking into
consideration the residual energy and distance between the
cluster head and the nodes. Among the various methods, the
experimental results have shown that the network lifetime with

DESA algorithm has been improved by 40% as compared to
modified HSA algorithm.
Sensor Networks using Hybrid Differential Evolution and Simulated Annealing
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