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a b s t r a c t

In this paper a novel evolutionary algorithm, suitable for continuous nonlinear optimization problems,
is introduced. This optimization algorithm is inspired by the life of a bird family, called Cuckoo. Special
lifestyle of these birds and their characteristics in egg laying and breeding has been the basic motivation
for development of this new evolutionary optimization algorithm. Similar to other evolutionary methods,
Cuckoo Optimization Algorithm (COA) starts with an initial population. The cuckoo population, in differ-
eywords:
uckoo Optimization Algorithm (COA)
volutionary algorithms
onlinear optimization

ent societies, is in two types: mature cuckoos and eggs. The effort to survive among cuckoos constitutes
the basis of Cuckoo Optimization Algorithm. During the survival competition some of the cuckoos or their
eggs, demise. The survived cuckoo societies immigrate to a better environment and start reproducing and
laying eggs. Cuckoos’ survival effort hopefully converges to a state that there is only one cuckoo society,
all with the same profit values. Application of the proposed algorithm to some benchmark functions and
a real problem has proven its capability to deal with difficult optimization problems.
. Introduction

Optimization is the process of making something better. In other
ords, optimization is the process of adjusting the inputs to or char-

cteristics of a device, mathematical process, or experiment to find
he minimum or maximum output or result. The input consists of
ariables: the process or function is known as the cost function,
bjective function, or fitness function; and the output is the cost
r fitness [1]. There are different methods for solving an optimiza-
ion problem. Some of these methods are inspired from natural
rocesses. These methods usually start with an initial set of vari-
bles and then evolve to obtain the global minimum or maximum
f the objective function. Genetic Algorithm (GA) has been the most
opular technique in evolutionary computation research. Genetic
lgorithm uses operators inspired by natural genetic variation and
atural selection [2,3]. Another example is Particle Swarm Opti-
ization (PSO) which was developed by Eberhart and Kennedy in

995. This stochastic optimization algorithm is inspired by social
ehavior of bird flocking or fish schooling [3–5]. Ant Colony Opti-
ization (ACO) is another evolutionary optimization algorithm
hich is inspired by the pheromone trail laying behavior of real

nt colonies [3,6,7]. On the other hand Simulated Annealing sim-

lates the annealing process in which a substance is heated above

ts melting temperature and then gradually cools to produce the
rystalline lattice, which minimizes its energy probability distribu-
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tion [1,8,9]. Besides these well known methods, the investigations
on nature inspired optimization algorithms are still being done and
new methods are being developed to continually solve some sort
of nonlinear problems. In [10], making use of the ergodicity and
internal randomness of chaos iterations, a novel immune evolu-
tionary algorithm based on the chaos optimization algorithm and
immune evolutionary algorithm is presented to improve the con-
vergence performance of the immune evolutionary algorithm. The
novel algorithm integrates advantages of the immune evolution-
ary algorithm and chaos optimization algorithm. [11] introduces
a new optimization technique called Grenade Explosion Method
(GEM) and its underlying ideas, including the concept of Optimal
Search Direction (OSD), are elaborated. In [12] a new particle swarm
optimization method based on the clonal selection algorithm is pro-
posed to avoid premature convergence and guarantee the diversity
of the population.

The main advantages of evolutionary algorithms are [3]:

(1) Being robust to dynamic changes: Traditional methods of opti-
mization are not robust to dynamic changes in the environment
and they require a complete restart for providing a solution.
In contrary, evolutionary computation can be used to adapt
solutions to changing circumstances.

(2) Broad applicability: Evolutionary algorithms can be applied to
any problems that can be formulated as function optimization
problems.
(3) Hybridization with other methods: Evolutionary algorithms can
be combined with more traditional optimization techniques.

(4) Solves problems that have no solutions: The advantage of evolu-
tionary algorithms includes the ability to address problems for
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www.elsevier.com/locate/asoc
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Fig. 1. Flowchart of Cuckoo Optimization Algorithm.

which there is no human expertise. Even though human exper-
tise should be used when it is needed and available; it often
proves less adequate for automated problem-solving routines.

Considering these features, evolutionary algorithms can be
pplied to various applications including: Power Systems oper-
tions and control [13,19,20], NP-Hard combinatorial problems
14,15], Chemical Processes [16], Job Scheduling problems [17],
ehicle Routing Problems, Mobile Networking, Batch process
cheduling, Multi-objective optimization problems [18], Modeling
ptimized parameters [21], Image processing and Pattern recogni-
ion problems.

In this paper we introduce a new evolutionary optimization
lgorithm which is inspired by lifestyle of a bird family called
uckoo. Specific egg laying and breeding of cuckoos is the basis
f this novel optimization algorithm. Cuckoos used in this model-
ng exist in two forms: mature cuckoos and eggs. Mature cuckoos
ay eggs in some other birds’ nest and if these eggs are not recog-
ized and not killed by host birds, they grow and become a mature
uckoo. Environmental features and the immigration of societies
groups) of cuckoos hopefully lead them to converge and find the
est environment for breeding and reproduction. This best envi-
onment is the global maximum of objective functions. This paper
llustrates how the life method of cuckoos is modeled and imple-

ented.

Section 2 investigates the birds called cuckoo and reviews their

mazing life characteristics. In Section 3, the Cuckoo Optimization
lgorithm (COA) is proposed and its different parts are studied in
etails. The proposed algorithm is tested with some benchmark
ting 11 (2011) 5508–5518 5509

functions and also with a controller design of a Multi-Input Multi-
Output (MIMO) process as a real case study in Section 4. Finally the
conclusions are presented in Section 5.

2. Cuckoos and their special lifestyle for reproduction

All 9000 species of birds have the same approach to mother-
hood: every one lays eggs. No bird gives birth to live young. Birds
quickly form and lay an egg covered in a protective shell that is
then incubated outside the body. The large size of an egg makes
it difficult for the female to retain more than a single one egg at a
time – carrying eggs would make flying harder and require more
energy. And because the egg is such a protein-rich high-nutrition
prize to all sorts of predators, birds must find a secure place to hatch
their eggs. Finding a place to safely place and hatch their eggs, and
raise their young to the point of independence, is a challenge birds
have solved in many clever ways. They use artistry, intricate design
and complex engineering. The diversity of nest architecture has no
equal in the animal kingdom. Many birds build isolated, inconspic-
uous nests, hidden away inside the vegetation to avoid detection by
predators. Some of them are so successful at hiding their nests that
even the all-seeing eyes of man has hardly ever looked on them.

There are other birds that dispense with every convention of
home making and parenthood, and resort to cunning to raise their
families. These are the “brood parasites,” birds which never build
their own nests and instead lay their eggs in the nest of another
species, leaving those parents to care for its young. The cuckoo is
the best known brood parasite, an expert in the art of cruel decep-
tion. Its strategy involves stealth, surprise and speed. The mother
removes one egg laid by the host mother, lays her own and flies
off with the host egg in her bill. The whole process takes barely
ten seconds. Cuckoos parasitize the nests of a large variety of bird
species and carefully mimic the color and pattern of their own eggs
to match that of their hosts. Each female cuckoo specializes on one
particular host species. How the cuckoo manages to lay eggs to imi-
tate each host’s eggs so accurately is one of nature’s main mysteries.
Many bird species learn to recognize a cuckoo egg dumped in their
own nest and either throw out the strange egg or desert the nest to
start afresh. So the cuckoo constantly tries to improve its mimicry
of its hosts’ eggs, while the hosts try to find ways of detecting the
parasitic egg. The struggle between host and parasite is akin to an
arms race, each trying to out-survive the other [22].

For the cuckoos suitable habitat provides a source of food (prin-
cipally insects and especially caterpillars) and a place to breed, for
brood parasites the need is for suitable habitat for the host species.
Cuckoos occur in a wide variety of habitats. The majority of species
occur in forests and woodland, principally in the evergreen rain-
forests of the tropics. In addition to forests some species of cuckoo
occupy more open environments; this can include even arid areas
like deserts. Temperate migratory species like the Common Cuckoo
inhabit a wide range of habitats in order to make maximum use of
the potential brood hosts, from reed beds to treeless moors.

Most species of cuckoo are sedentary, but several species of
cuckoo undertake regular seasonal migrations, and several more
undertake partial migrations over part of their range. The migration
may be Diurnal, as in the Channel-billed Cuckoo, or nocturnal, as in
the Yellow-billed Cuckoo. For species breeding at higher latitudes
food availability dictates that they migrate to warmer climates dur-
ing the winter, and all do so. The Long-tailed Koel which breeds
in New Zealand flies migrates to its wintering grounds in Poly-
nesia, Micronesia and Melanesia, a feat described as “perhaps the

most remarkable over water migration of any land bird” [23]; and
the Yellow-billed Cuckoo and Black-billed Cuckoo breed in North
America and fly across the Caribbean Sea, a non-stop flight of
4000 km. Other long migration flights include the Lesser Cuckoo,
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hich flies from India to Kenya across the Indian Ocean (3000 km)
nd the Common Cuckoos of Europe which fly non-stop over the
editerranean Sea and Sahara Desert on their voyage to south-

rn Africa. Within Africa 10 species make regular intra-continental
igrations that are described as polarized, that is they spend the

on-breeding season in the tropical centre of the continent and
ove north and south to breed in the more arid and open savannah

nd deserts [24].
About 56 of the Old World species and 3 of the New World

pecies are brood parasites, laying their eggs in the nests of other
irds [25]. These species are obligate brood parasites, meaning that
hey only reproduce in this fashion. The cuckoo egg hatches earlier
han the host’s, and the cuckoo chick grows faster; in most cases
he chick evicts the eggs or young of the host species. The chick
as no time to learn this behavior, so it must be an instinct passed
n genetically. The chick encourages the host to keep pace with its
igh growth rate with its rapid begging call [26] and the chick’s
pen mouth which serves as a sign stimulus [27]. Female para-
itic cuckoos specialize and lay eggs that closely resemble the eggs
f their chosen host. This has been produced by natural selection,
s some birds are able to distinguish cuckoo eggs from their own,
eading to those eggs least like the host’s being thrown out of the
est [27]. Host species may engage in more direct action to prevent
uckoos laying eggs in their nest in the first place – birds whose
ests are at high risk of cuckoo-contamination are known to mob
uckoos to drive them out of the area [28]. Parasitic cuckoos are
rouped into gents, with each gent specializing in a particular host.
here is some evidence that the gents are genetically different from
ne another. Host specificity is enhanced by the need to imitate the
ggs of the host.

. The proposed Cuckoo Optimization Algorithm (COA)

Fig. 1 shows a flowchart of the proposed algorithm. Like other
volutionary algorithms, the proposed algorithm starts with an ini-
ial population of cuckoos. These initial cuckoos have some eggs to
ay in some host birds’ nests. Some of these eggs which are more
imilar to the host bird’s eggs have the opportunity to grow up and
ecome a mature cuckoo. Other eggs are detected by host birds and
re killed. The grown eggs reveal the suitability of the nests in that
rea. The more eggs survive in an area, the more profit is gained in
hat area. So the position in which more eggs survive will be the
erm that COA is going to optimize.

Cuckoos search for the most suitable area to lay eggs in order to
aximize their eggs survival rate. After remained eggs grow and

urn into a mature cuckoo, they make some societies. Each soci-
ty has its habitat region to live in. The best habitat of all societies
ill be the destination for the cuckoos in other societies. Then they

mmigrate toward this best habitat. They will inhabit somewhere
ear the best habitat. Considering the number of eggs each cuckoo
as and also the cuckoo’s distance to the goal point (best habitat),
ome egg laying radii is dedicated to it. Then, cuckoo starts to lay
ggs in some random nests inside her egg laying radius. This pro-
ess continues until the best position with maximum profit value
s obtained and most of the cuckoo population is gathered around
he same position.

.1. Generating initial cuckoo habitat

In order to solve an optimization problem, it’s necessary that

he values of problem variables be formed as an array. In GA and
SO terminologies this array is called “Chromosome” and “Particle
osition”, respectively. But here in Cuckoo Optimization Algorithm
COA) it is called “habitat”. In a Nvar-dimensional optimization
Fig. 2. Random egg laying in ELR, central red star is the initial habitat of the cuckoo
with 5 eggs; pink stars are the eggs’ new nest.

problem, a habitat is an array of 1 × Nvar, representing current living
position of cuckoo. This array is defined as follows:

habitat = [x1, x2, . . . , xNvar ] (1)

Each of the variable values (x1, x2, . . . , xNvar ) is floating point num-
ber. The profit of a habitat is obtained by evaluation of profit
function fp at a habitat of (x1, x2, . . . , xNvar ). So

Profit = fp(habitat) = fp(x1, x2, . . . , xNvar ) (2)

As it is seen COA is an algorithm that maximizes a profit function. To
use COA in cost minimization problems, one can easily maximize
the following profit function:

Profit = −Cost(habitat) = −fc(x1, x2, . . . , xNvar ) (3)

To start the optimization algorithm, a candidate habitat matrix of
size Npop × Nvar is generated. Then some randomly produced num-
ber of eggs is supposed for each of these initial cuckoo habitats. In
nature, each cuckoo lays from 5 to 20 eggs. These values are used
as the upper and lower limits of egg dedication to each cuckoo at
different iterations. Another habit of real cuckoos is that they lay
eggs within a maximum distance from their habitat. From now on,
this maximum range will be called “Egg Laying Radius (ELR)”. In
an optimization problem with upper limit of varhi and lower limit
of varlow for variables, each cuckoo has an egg laying radius (ELR)
which is proportional to the total number of eggs, number of cur-
rent cuckoo’s eggs and also variable limits of varhi and varlow. So
ELR is defined as:

ELR = ˛ × Number of current cuckoo’s eggs
Total number of eggs

× (varhi − varlow) (4)

where ˛ is an integer, supposed to handle the maximum value of
ELR.

3.2. Cuckoos’ style for egg laying

Each cuckoo starts laying eggs randomly in some other host
birds’ nests within her ELR. Fig. 2 gives a clear view of this concept.
After all cuckoos’ eggs are laid in host birds’ nests, some of them
that are less similar to host birds’ own eggs, are detected by host
birds and though are thrown out of the nest. So after egg laying
process, p% of all eggs (usually 10%), with less profit values, will be
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Fig. 3. Immigration of a sam

illed. These eggs have no chance to grow. Rest of the eggs grow
n host nests, hatch and are fed by host birds. Another interesting
oint about laid cuckoo eggs is that only one egg in a nest has the
hance to grow. This is because when cuckoo egg hatches and the
hicks come out, she throws the host bird’s own eggs out of the nest.
n case that host bird’s eggs hatch earlier and cuckoo egg hatches
ater, cuckoo’s chick eats most of the food host bird brings to the
est (because of her 3 times bigger body, she pushes other chicks
nd eats more). After couple of days the host bird’s own chicks die
rom hunger and only cuckoo chick remains in the nest.

.3. Immigration of cuckoos

When young cuckoos grow and become mature, they live in
heir own area and society for sometime. But when the time for
gg laying approaches they immigrate to new and better habitats
ith more similarity of eggs to host birds and also with more food
or new youngsters. After the cuckoo groups are formed in differ-
nt areas, the society with best profit value is selected as the goal
oint for other cuckoos to immigrate. When mature cuckoos live in
ll over the environment it’s difficult to recognize which cuckoo

Fig. 4. Pseudo-code for Cuckoo
uckoo toward goal habitat.

belongs to which group. To solve this problem, the grouping of
cuckoos is done with K-means clustering method (a k of 3–5 seems
to be sufficient in simulations). Now that the cuckoo groups are con-
stituted their mean profit value is calculated. Then the maximum
value of these mean profits determines the goal group and conse-
quently that group’s best habitat is the new destination habitat for
immigrant cuckoos.

When moving toward goal point, the cuckoos do not fly all the
way to the destination habitat. They only fly a part of the way and
also have a deviation. This movement is clearly shown in Fig. 3.

As it is seen in Fig. 3, each cuckoo only flies �% of all distance
toward goal habitat and also has a deviation of ϕ radians. These two
parameters, � and ϕ, help cuckoos search much more positions in
all environment. For each cuckoo, � and ϕ are defined as follows:

�∼U(0, 1)
ϕ∼U(−ω, ω)

(5)
where � ∼ U(0,1) means that � is a random number (uniformly dis-
tributed) between 0 and 1. ω is a parameter that constrains the
deviation from goal habitat. An ω of �/6 (rad) seems to be enough

Optimization Algorithm.
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of cuckoos are on the best habitat, which is the global minimum
of the problem. This habitat is (9.0396, 8.6706) with the cost value
−18.5543. Fig. 13 depicts the cost minimization for test function
F1.
512 R. Rajabioun / Applied Soft C

or good convergence of the cuckoo population to global maximum
rofit.

When all cuckoos immigrated toward goal point and new habi-
ats were specified, each mature cuckoo is given some eggs. Then
onsidering the number of eggs dedicated to each bird, an ELR
s calculated for each cuckoo. Afterward new egg laying process
estarts.

.4. Eliminating cuckoos in worst habitats

Due to the fact that there is always equilibrium in birds’ pop-
lation so a number of Nmax controls and limits the maximum
umber of live cuckoos in the environment. This balance is because
f food limitations, being killed by predators and also inability to
nd proper nest for eggs. In the modeling proposed here in this
aper, only those Nmax number of cuckoos survive that have better
rofit values, others demise.

.5. Convergence

After some iterations, all the cuckoo population moves to one
est habitat with maximum similarity of eggs to the host birds and
lso with the maximum food resources. This habitat will produce
he maximum profit ever. There will be least egg losses in this best
abitat. Convergence of more than 95% of all cuckoos to the same
abitat puts an end to Cuckoo Optimization Algorithm (COA). The
ain steps of COA are presented in Fig. 4 as a pseudo-code. In the

ext part, COA is applied to some benchmark optimization prob-
ems.

Theoretical proofs for convergence to asymptotic probability
aws in all stochastic optimization algorithms, considering the

arkovian nature of the underlying processes, require some sort of
etailed balance or reversibility condition which means the algo-
ithm loses much of its efficiency. Furthermore, if one insists on
ventual convergence to the global optima in the strong or even
eak sense, very slow annealing is also called for. The strength of

tochastic algorithms stem from the fact that their very probabilis-
ic nature ensures that the algorithms will not necessarily get stuck
t local optima, and there is no need for using any information on
bjective gradients, further requiring differentiability conditions.

. Benchmarks on Cuckoo Optimization Algorithm

In this section the proposed Cuckoo Optimization Algorithm
COA) is tested with 4 benchmark functions from Ref. [1], one 10-
imensional Rastrigin function and a real case study.

.1. Test cost functions

All the benchmark functions are minimization problems. These
unctions are listed below:

Function F1:

f = x × sin(4x) + 1.1y × sin(2y)
0 < x, y < 0, minimum : f (9.039, 8.668) = −8.5547

(6)

Function F2:

f = 0.5 +
sin2

(√
x2 + y2 − 0.5

)
1 + 0.1(x2 + y2)

0 < x, y < 2, minimum : f (0, 0.5) = 0.5

(7)
Function F3:

f = (x2 + y2)
0.25 × sin{30[(x + 0.5)2 + y2]

0.1} + |x| + |y|
−∞ < x, y < +∞, minimum : f (−0.2, 0) = −0.2471

(8)
Fig. 5. A 3D plot of cost function F1.

Function F4:

f = J0(x2 + y2) + 0.1
∣∣1 − x

∣∣ + 0.1
∣∣1 − y

∣∣
−∞ < x, y < +∞, minimum : f (1, 1.6606) = −0.3356

(9)

Function F5 (10-dimensional Rastrigin function):

f = 10n +
n∑

i=1

(xi
2 − 10 cos(2�xi)), n = 9

−5.12 ≤ xi ≤ 5.12, f (0, 0, . . . , 0) = 0

(10)

First function F1 is studied. This function has the global minimum
of −18.5547 at (x, y) = (9.039, 8.668) in interval 0 < x, y < 10. Fig. 5
shows the 3D plot of this function.

The initial number of cuckoos is set only to 20. Each cuckoo
can lay between 5 and 10 eggs. Fig. 6 shows initial distribution of
cuckoos in problem environment.

Figs. 7–12 show the cuckoo population habitats in consequent
iterations. Convergence is gained at iteration 7. The COA has
obtained the global minimum just in 7 iterations.

As it is seen in Figs. 7–12, cuckoos have found 2 minima at iter-
ation 4. Then in iteration 5 it is seen that one group of cuckoos
is immigrating toward the global minimum. In iteration 6 most of
cuckoos are in global minimum. And finally at iteration 7 nearly all
Fig. 6. Initial habitats of cuckoos.
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Fig. 7. Habitats of cuckoos in 2nd iteration.

R
f
t

Fig. 10. Habitats of cuckoos in 5th iteration.
Fig. 8. Habitats of cuckoos in 3rd iteration.

In order to do a comparison, PSO and continuous GA with

oulette wheel selection, uniform cross-over are applied to this
unction too. The initial population of GA is also set to 20, muta-
ion and selection rates are set to 0.2 and 0.5, respectively. For PSO

Fig. 9. Habitats of cuckoos in 4th iteration.
Fig. 11. Habitats of cuckoos in 6th iteration.

cognitive and social parameters are both set to 2. Due to the fact

that different initial populations of each method affect directly to
the final result and the speed of algorithm, a series of test runs is
done to have a mean expectance of performance for each method.

Fig. 12. Habitats of cuckoos in 7th iteration.
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Fig. 13. Cost minimization for test function F1.
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Table 1
Mean stopping iterations of GA, PSO and COA in 30 runs.

F2 F3 F4

GA 12.6 52.2 44.1
PSO 10.3 24.8 38.6
COA 5.2 6.9 6.3

Fig. 16. Cost minimization plot of function F2.
Fig. 14. Cost minimization using GA.

unning the simulations for 30 times produces a mean of 45.9, 38.7
nd 6.8 stopping iterations for GA, PSO and COA.

Fig. 14 shows a sample cost minimization plot of function F1 for
A in 100 iterations.

As it is seen from Fig. 14, GA has reached to global minimum at
4th iteration. Best chromosome is (9.0434, 8.6785) and the cost
alue is −18.5513. Fig. 15 depicts cost minimization of function F1

sing PSO.

As it is seen from Fig. 15, PSO has reached to global minimum at
9th iteration. Best particle position is (9.0390, 8.6682) and the cost

Fig. 15. Cost minimization using PSO.
Fig. 17. Cost minimization plot of function F3.

value is −18.5547. Considering Table 1 it can be seen that while GA
and PSO need a mean of 46.8 and 39.1 iterations, COA reaches to
the goal point in a mean of 6.9 (approximately 7) iterations. Until
now it can be concluded that COA has out performed GA and PSO.
For more test we apply these three optimization algorithms on
test functions F2, F3 and F4.

Figs. 16–18 show the cost minimization plot of all three algo-
rithms for test functions F2, F3 and F4 in a random run. Table 1

Fig. 18. Cost minimization plot of function F4.
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Fig. 19. 3D plot of Rastrigin function.

hows the mean stopping iterations for aforementioned test func-
ions.

The most interesting point seen in Figs. 16–18 and also in Table 1,
s faster convergence of Cuckoo Optimization Algorithm.

Considering the results obtained for test functions F1, F2, F3 and
4 it can be seen that all three methods have been able to find the
lobal minimum. The only interesting point of Cuckoo Optimiza-
ion Algorithm (COA) might be its faster convergence. But to show
he superiority of COA over GA and PSO, the 10-dimensional Ras-
rigin function is chosen as test function F5. This function has lots
f local minima and is one of the difficult problems to solve, even
n 3-dimensional case. Fig. 19 shows the 3-dimensional Rastrigin
unction.

As it is seen even in 3-dimensional case, the Rastrigin func-
ion is a really challenging optimization problem. But to see the
eal performance of COA, GA and PSO the 10-dimensional Rastri-
in function is selected as last benchmark function. Fig. 20 depicts
he cost minimization results for all three algorithms. For all three

ethods, the initial population size and the maximum number of
terations are set to 20 and 100, respectively.

Now it is clearly seen that GA and PSO have not been able to
nd the global minimum in 100 iterations, but COA has converged

n only 66 iterations to almost the global minimum of f(x*) = 0. In
his benchmark function, COA has stunningly out performed and
as found a very good estimation of the real global minimum.

After that the great performance of COA is proven in test cost

unctions it is needed to investigate its performance in real prob-
ems. For this, a Multi-Input Multi-Output (MIMO) distillation
olumn process is chosen in order to be controlled by means of
ultivariable PID controller. The parameters of PID controller are

Fig. 20. Cost minimization for 10-dimensional Rastrigin function.
ting 11 (2011) 5508–5518 5515

designed using COA, GA and the method proposed in [29]. Before
illustrating the design process a brief description is given about
multivariable controller design.

4.2. Multivariable controller design

4.2.1. PID controller for MIMO processes
Consider the multivariable PID control loop in Fig. 21.
In Fig. 21, multivariable process P(s) could be demonstrated as

follows:

P(s) =

⎡
⎣ p11(s) . . . p1n(s)

...
. . .

...
pn1(s) . . . pnn(s)

⎤
⎦ (11)

where pij(s) is the transfers function between yi and uj. In Fig. 21,
vectors Yd, Y, U and E are in following form:

Yd = [ yd1 yd2 · · · ydn ]T

Y = [ y1 y2 · · · yn ]T

U = [ u1 u2 · · · un ]T

E = Yd − Y = [ e11 e22 · · · enn ]T

Multivariable PID controller C(s) in Fig. 21, is in the following form:

C(s) =

⎡
⎣ c11(s) . . . c1n(s)

...
. . .

...
cn1(s) . . . cnn(s)

⎤
⎦ (12)

where cij(s) that i, j ∈ {1,2,. . .,n} is as follows:

cij(s) = KPij + KIij
1
s

+ KDijs (13)

where KPij is the proportional, KIij is the integral and KDij is the
derivative gains of the PID controller cij(s).

4.2.2. Evolutionary PID design
In designing PID controllers, the goal is to tune proper coef-

ficients KP, KI and Kd so that the output has some desired
characteristics. Usually in time domain, these characteristics are
given in terms of overshoot, rise time, settling time and steady state
error. Two kinds of performance criteria in output tracking, usu-
ally considered in the controller designing, are the integral squared
error (ISE) and integral absolute error (IAE) of the desired output.

In design of a multivariable controller, one of the major aims is
diagonally domination of the control process. That is the controller
be designed in such a way that yi(t) be able to track the desired
input ydi(t) and to reject the response of other inputs ydj(t), for i,
j ∈ {1,2,. . .,n | i /= j}.

Considering the decupling aim, IAE is defined in the following
form:

IAE�
n∑

i=1

n∑
j=1

IAEij �
n∑

i=1

n∑
j=1

∫ ∞

0

(∣∣eij(t)
∣∣)dt (14)

where |eii(t)| is absolute error of the output yi(t) when tracking

input ydi(t) and |eij(t)| is the absolute error caused by the effect
of the input ydj(t), on the output yi(t), (i /= j). Also IAEij is defined
as integral of absolute error eij(t) over time. The source of |eij(t)| is
the coupling problem.
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multivariable controlled process.
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Fig. 21. Block diagram of a

Another performance criteria used in controller design is the
ercentage of Overshoot (PO) and Undershoot (PU) which is defined
s follows:

OU�
n∑

i=1

n∑
j=1

POUij �
n∑

i=1

n∑
j=1

Max{POij, PUij} (15)

he aim is to design a controller to track the desired outputs and
o decuple controlled process as much as possible. Because POU
sually has small values compared with IAE and also to accentuate
n POU, we added up 10 times of POU to IAE to build the objective
unction.

ost = IAE + 10 × POU (16)

sing the proposed evolutionary optimization algorithm, the PID
ontroller parameters are tuned for a typical distillation col-
mn process. Obtained results are compared with that of Genetic
lgorithm (GA) and with the method introduced in [29], called
ecentralized relay feedback (DRF).

.2.2.1. Experimental case study. Here a multivariable PID con-
roller is designed for a MIMO chemical system. This system is a
ypical 2 × 2 model of distillation column [30]. A simple schematic
f Distillation Column System (DCS) is shown in Fig. 22.

The matrix transfer function of DCS is defined as:

XD(s)
XB(s)

]
=

⎡
⎣ 12.8 e−s

1 + 16.7s

−18.9 e−3s

1 + 21s
6.6 e−7s

1 + 10.9s

−19.4 e−3s

1 + 14.4s

⎤
⎦ .

[
R(s)
S(s)

]
(17)

here XD(s) and XB(s) are percentage of methanol in the distillate
nd percentage of methanol in the bottom products, respectively.

lso R(s) and S(s) are reflux flow rate and steam flow rate in the
eboiler, respectively.

DCS is a 2 × 2 MIMO system with strong interactions between
nputs and outputs. The four transfer functions in multivariable

Fig. 22. A simple schematic of distillation column system.
Fig. 23. Minimum cost of COA and GA versus iteration.

process have first-order dynamics and significant time delays. The
control objectives are (a) tracking the control inputs y1d and y2d by
the outputs y1 and y2 and (b) diagonally domination of the con-
trolled process as much as possible. In [29] a multivariable PID
controller for DCS is designed using decentralized relay feedback
(DRF) method. The diagonal and off-diagonal elements of this con-
troller are designed in PI and PID forms, respectively. This controller
is as follows:

C(s) =

[
0.184 + 0.0469

1
s

−0.0102 − 0.0229
1
s

+ 0.0082s

−0.0674 + 0.0159
1
s

− 0.0536s −0.066 − 0.0155
1
s

]
(18)

To compare the results of COA and GA with DRF method, in tun-
ing parameters of the PID controller for the plant defined by (17),
controller C(s) is considered as the following form.

C(s) =

⎡
⎣ KP11 + KI11

1
s

KP12 + KI12
1
s

+ KD12s

KP21 + KI21
1
s

+ KD21s KP22 + KI22
1
s

⎤
⎦ (19)
So the objective will be a 10 dimensional optimiza-
tion problem of determining the optimal coefficients[

KP11 KI11 KP12 KI12 KD12 KP21 KI21 KD21 KP22 KI22
]

Table 2
Parameters of PID controller obtained by COA, GA and DRF.

PID parameters Method

COA GA DRF

KP11 0.2751 0.1763 0.184
KI11 0.0803 0.0592 0.0469
KP12 −0.0675 −0.0418 −0.0102
KI12 −0.0290 −0.0246 −0.0229
KD12 0.0835 0.1037 0.0082
KP21 −0.0522 0.0404 −0.0673
KI21 0.0330 0.0227 0.0159
KD21 −0.0680 −0.0425 −0.0536
KP22 −0.1243 −0.1127 −0.066
KI22 −0.0210 −0.019 −0.0155
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Table 3
Different parts of cost function that are optimized by methods, COA, GA and DRF.

Criteria Method

COA GA DRF

IAE11 3.849 6.5688 4.9278
IAE12 0.99608 1.1735 1.0625
IAE21 2.6465 3.8051 4.4716
IAE22 7.1225 7.2117 9.0288
IAE 14.614 18.759 19.4907
POU11 9.1797% 16.118% 9.91%
POU12 7.2331% 8.8628% 4.07%
POU21 10.967% 31.293% 22.05%
POU22 9.3256% 9.8398% 9.86%

t
t
s

o
m
t

s
p
f
w

f

F
i

POU 36.705% 66.114% 45.89%
Cost 18.283 25.376 24.0791

o minimize the cost function (16). Both COA and GA are applied
o this problem 10 times and the best result of each is given and
tudied in this section.

A COA with 20 cuckoos and with maximum egg laying value
f 5 is used in order to tune controller parameters. As for GA, the
aximum iterations of the COA is set to 200 but it reached to the

otal cost of 18.28 in 51 iterations and the algorithm stopped.
A GA with 100 initial population, tournament selection, Gaus-

ian mutation and scattered crossover was used to tune the
arameters of the multivariable PID controller for the process. To
ully exploit GA’s potential in cost minimization it was equipped

ith a hybrid function.

Fig. 23 depicts the minimum costs for the best results of 10 dif-
erent runs of COA and GA. As shown in this figure, the steady state

ig. 24. The response of distillation column process to different delays in step
nputs: (a) first output, (b) second output.

[

ting 11 (2011) 5508–5518 5517

convergence value of COA is 18.283, which is smaller than that of
GA, 25.367.

Parameters of PID controller and their relevant cost values
obtained by COA, GA and DRF methods are demonstrated in
Tables 2 and 3. According to Table 2, the controller obtained by DRF
has only resulted in the least POU12. Considering all other parame-
ters it can be clearly seen that the controller designed with COA is
the best of all three methods. The values in Table 3 shows that using
the controller with parameters designed by COA both outputs will
have best tracking and the least coupling. The total cost obtained
in Table 3 demonstrates the better performance of the controller
designed by COA.

Fig. 24 shows the response of controlled distillation column pro-
cess to step inputs using different controllers obtained by COA, GA
and DRF. To have a better view of decoupling created by different
controllers, step inputs are applied with delays at time step 110 s.

5. Conclusions

In this paper, a new optimization algorithm was proposed which
was inspired by lifestyle of a bird called Cuckoo. Special charac-
teristics of cuckoos in egg laying and breeding had been the basic
motivation for development of this new optimization algorithm.
Each individual in the algorithm has a habitat around which she
starts to lay eggs. In case the eggs survive, they grow and become
mature cuckoos. Then for reproduction purposes cuckoos immi-
grate toward best habitat, found up to now. The diversion occurred
when moving toward goal habitat makes the population search
more area than the case population moves straight forward on
a line. After some immigrations all cuckoo population gather the
same habitat which is the area’s best position. The introduced algo-
rithm was tested on 5 benchmark cost functions. The comparison
of COA with standard versions of PSO and GA with Roulette wheel
selection, uniform cross-over, showed the superiority of COA in
fast convergence and global optima achievement. In the first 4 test
functions all methods have found the global minima but COA has
converged faster in less iterations. But in the last test function (10-
dimensional Rastrigin function) GA and PSO could not converge to
even a close value of global optima. But COA had found a very good
and acceptable estimation of global minimum in just 66 iterations.
Off course, it should be noted that the higher performance of COA
in reaching better results for these 5 benchmark functions and a
real case study does not necessarily mean that COA is the ever best
evolutionary method developed. It just can be considered as a suc-
cessful mimicking of nature; suitable for some sort of optimization
problems.
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