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This article discusses the steady state analysis of the M=G=2 queuing system with two heterogeneous
servers under new queue disciplines when the classical First Come First Served ‘(FCFS)’ queue discipline
is to be violated. Customers are served either by server-I according to an exponential service time distri-
bution with mean rate l or by server-II with a general service time distribution BðtÞ. Sequel to some
objections raised in the literature on the use of the classical FCFS queue discipline in heterogeneous
service systems, two alternative queue disciplines (Serial and Parallel) are considered in this work with
the objective that if the FCFS is violated then the violation is a minimum in the long run. Using the
embedded method under the serial queue discipline and the supplementary variable technique under
the parallel queue discipline, we present an exact analysis of the steady state number of customers in
the system and most importantly, the actual waiting time expectation of customers in the system. Our
work shows that one can obtain all stationary probabilities and other vital measures for this queue under
certain simple but realistic assumptions.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

We consider the M=G=2 queuing system with an exponential
server (server-I) and a general server (server-II). Customers arrive
according to a Poisson process at a rate k for service with much
expectation of spending the least waiting time in the system.
Server-I has a faster service rate compared with server-II. This
information is not new to prospective customers. Thus, server-I
is always busy when there is at least a customer in the system.
The service times of customers1 are assumed to be a sequence of
mutually independent and identically distributed random variables
with finite moments. In addition, services are without preemption.
For customers serviced by server-I, the service time T1 follows the
exponential distribution with rate l i.e. F1ðtÞ ¼ PðT1 < tÞ ¼ 1� e�l t

with probability density function (PDF) f1ðtÞ ¼ dF1ðtÞ
dt and Laplace-Stiltjes

Transform (LST) f �1 ðsÞ ¼
R1

0 e�stdF1ðtÞdt. Similarly, for customers
serviced by server-II, their service time distribution BðtÞ ¼ P½T2 < t�
is general with PDF bðtÞ, a mean b ¼ E½T2� and a LST b�ðsÞ given by
b�ðsÞ ¼

R1
0 e�stdBðtÞ. We supposed that l2 ¼ 1

b ;q ¼ k
l and the servers
occupation rate (servers utilization) q1 ¼ k
lþl2

< 1, so that all steady

state results are tractable, see Boxma, Deng, and Zwart (2002).
Generally, a number of literature sources on queuing systems

raises some objections to the use of the classical First Come First
Served (FCFS) queuing discipline in systems with heterogeneous
structures (Krishnamoorthy, 1962; Alexander, Marcus, &
Cristobal, 20142). This stand can be justified. For instance, if clerks
in a reservation counter provide service with varying speeds then
customers might prefer to choose the fastest clerk for service. On
the other hand, if one chooses the slowest clerk randomly then cus-
tomers that entered the system after him may clear out earlier by
obtaining service from a clerk with a faster working rate. Apparently
in this case, the FCFS queue discipline is violated due to heterogene-
ity in service speeds of the clerks. This and similar real life scenarios
make the FCFS queue discipline unrealistic in queuing systems with
embedded heterogeneity because of the high probability of violation
therein. Hence, there is the need for designing alternative queue dis-
ciplines that can reduce the impact of the violation so that the result-
ing waiting times of customers are almost identical with that of the
FCFS. Similarly in a business center, one may come across a scenario
where both the salesman and the boss3 (owner) are providing
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services together. If there is only one customer then he is serviced by
the salesman provided that no any other one arrives during his ser-
vice period. On the other hand, if at least an arrival occurs then the
boss joins the salesman either serially (working jointly with the
salesman to serve the initial customer) or in parallel (attending a dif-
ferent customer). As a schedule, if there are up to two customers in
the center then the boss will join the salesman in service4 so that
customers do not get bored by excessive waiting and choose to
renege or balk thereby making the business loose market. We refer
to the first service approach as serial service as implied in the serial
queue discipline below and the later as parallel service as in parallel
queue discipline also below. Note that the class of serial queuing sys-
tems is not extensively studied in the literature in contrast to the
parallel case systems (see Emrah, Ceyda, & Irem, 2013) even though,
significant areas of application are found in reality. Our motivation
stemmed from these numerous physical applications of the pro-
posed models (both serial and parallel) in shops, malls, supermar-
kets, offices, banks and several other business outfits where
heterogeneity of servers is embedded. An in-depth analysis therefore
is an excellent tool for decision making relative to congestion man-
agement, better service provision, etc. For instance, a business mogul
owning two shops each with two staff (servers) of varying work
speed may wish to understand which of the two models above5 min-
imizes waiting times better.6 Similarly, he may wish to understand
whether an equilibrium point exists under which one model is to
be preferred to the other or even when the two models are identical.
These kind of questions are vital for performance evaluation and bet-
ter management practice since heterogeneity is a natural embedding
in reality and is the necessitating factor leading to server discrimina-
tion. For instance between a well experienced shop seller and an
apprentice, a senior doctor and a junior doctor, a professor and a
bachelor, etc. Basically, customers hate to wait for a longer time
arising from the in-effectiveness of a slow server and in several
instances may prefer to wait for the remaining service time of a
customer being served by a fast server even when the slow server
is idle. Over the years, a lot have been written on homogeneous
service systems for instance, Hoksad (1978), Hoksad (1979),
Senthamaraikannan and Sivasamy (1997), Tijms, Vaan Hoorn, and
Federgruen (1981), etc. The reader is referred to these and many
others to refresh. Similarly research works on heterogeneous service
systems has grown tremendously in the last two decades; Kim, Ahn,
and Righter (2011), Kumar, Madheswari, and Venkatakrishnan
(2007), Krishnamoorthy (1962), Shenkar and Weinrib (1989), Singh
(1968), etc. In the models described in these works, the heterogene-
ity structure is saddled on servers following relatively the same
distributions. A model of the general service type is studied by
Boxma et al. (2002) unfortunately, due to complex structuring,
formations and assumptions, it could not estimate certain areas in
the general case. Part of this complexity may be saddled on the
assumption of the FCFS queue discipline adopted in such a heteroge-
neous structure.7

In this article, we have introduced two queue disciplines (serial
and parallel) whose effects on the two models described below can
all be computed numerically. Most importantly, the serial queue
discipline is relatively close to that of Boxma et al. (2002) and
the parallel queue discipline is that of Krishnamoorthy (1962).
Thus, our work in this sense is a base for comparing the effects
4 Jointly but independently (one customer at a time) in the first model bu
independently paralleled in the second model.

5 Suppose that one of his shops adopts the M=ðM þ GÞ=2 model under the seria
queue discipline while the other shop adopts the parallel service order of the
M=M;G=2 with service schedule following a parallel queue discipline

6 This is one of the many physical scenarios involving the applications of the two
models under the designed serial and parallel queue disciplines.

7 For instance, the unknown function Q1ðxÞ.

8 A realistic scenario for the serial model occurs for instance in a shop with two
servers when a customer is being serviced by the first server. Upon arrival of another
customer the second server joins the first server to service the first customer to
hasten his service process there by reducing the waiting time of the second and
subsequent customers. The other model i.e. the ðM=M;G=2Þ comes into picture if the
second server decides to serve the second customer independently.

9 In a manner similar to that of a device functioning with two components.
t

l

of these queue disciplines on the models for better use and adop-
tion in real life business applications. The rest of the article is orga-
nized as follows: in Section 2, we describe the model together with
the preliminary assumptions employed. Section 3 deals with the
steady state analysis of the M=ðM þ GÞ=2 queue with two heteroge-
neous servers operating under the serial queue discipline. Here, the
Probability Generating Function (PGF) of the number of customers
in the system, the LST of the waiting time distribution and their
mean values have been obtained. Similarly, a numerical illustration
is provided to support the results on mean waiting times. Section 4
provides an analysis via the supplementary variable technique and
LST methods on the M=M;G=2 queue where a necessary condition
under which the steady state behavior of the M=ðM þ GÞ=2 and that
of the M=M;G=2 are identical. In particular; when the mean queue
length and the mean waiting time values are almost equal. Sec-
tion 5 highlights the various special features of the proposed meth-
odology and its future scope.
2. Modeling and preliminary assumptions

A representation of the M=G=2 queuing system under the serial
queue discipline with servers is modeled as an M=ðM þ GÞ=2 queue
with a Poisson arrival process and a general service time process on
the two servers in the system.8 Similarly, an M=G=2 queuing system
under the parallel queue discipline is modeled as the M=M;G=2
queue with parallel servers.

Two alternative queue disciplines (serial and parallel) are pro-
posed in this work. We suppose that an arbitrary shop whose
queuing features are that of the M=M=1 type (here server-I) is
experiencing an increase in demand resulting from the increasing
needs of customers. As a remedy, it can be decided that an addi-
tional general server (server-II) be put in place to operate jointly9

with the existing server in series or be placed in parallel to the initial
server. In each case, one can infer that, some degree of service
improvements will be experienced generally.

Lemma 2.1. Suppose T1 � expðlÞ and T2 � BðtÞ denote the service
times of customers in the M=ðM þ GÞ=2 queuing system with the
number of customers NðtÞP 2. Let T ¼ minðT1; T2Þ and
DðtÞ ¼ P½T > t� with PDF fminðtÞ. Then the departure rate rðtÞ of the
serialized servers is given by
rðtÞ ¼ fminðtÞ
DðtÞ ¼ lþ B0ðtÞ

1� BðtÞ ð2:1Þ
Proof. Given that T1 � expðlÞ and T2 � BðtÞ, let D1ðtÞ ¼ 1� F1ðtÞ
and D2ðtÞ ¼ 1� BðtÞ be the tail service time distributions for T1

and T2 respectively. Given that DðtÞ ¼ P½minðT1; T2Þ > t� ¼ P½T > t�
where T1 and T2 are independent random variables then

DðtÞ ¼ P½minðT1; T2Þ > t� ¼ P½T1 > t� þ P½T2 > t� ¼ R2
i¼1DiðtÞ ð2:2Þ

Consequently, the departure rate rðtÞ of the complementary distri-
bution function DðtÞ with PDF fminðtÞ is

rðtÞ ¼ fminðtÞ
DðtÞ ¼

f1ðtÞ
1� F1ðtÞ

þ B0ðtÞ
1� BðtÞ ¼ lþ B0ðtÞ

1� BðtÞ � ð2:3Þ
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The Serial Queue Discipline:
Suppose that the decision reached above favors the installation

of an additional general server (server-II) jointly in series with the
exponential server (server-I) such that:

1. If a customer arrives during the idle state of the system,
his service is immediately initiated by server-I (since ser-
ver-I is faster than server-II). This customer receives ser-
vice at exponential rate l if no other customer arrives
during his ongoing service period; otherwise if at least
one more customer arrives, then the initial customer is
served jointly by both servers but independently accord-
ing to the service time distribution FminðtÞ defined in
item 2(i) below.

2. As long as the system size NðtÞP 2 at any time t, then ser-
ver-II joins server-I to serve a customer in service jointly in
series, otherwise server-I is the only available server in the
system.

To conceptualize the above type of server interaction process
between the two servers during an operational period of the
M=ðM þ GÞ=2 model proposed in this work, suppose that there
exist a shop selling distinct products with two human servers
and system size NðtÞP 2 at anytime t, such that:

i. The queuing system is busy if and only if at least one of the
two servers is busy with service time distribution FminðtÞ
where FminðtÞ ¼ PðT < tÞ; T ¼ minðT1; T2Þ with PDF fminðtÞ and
LST f �minðsÞ given by the integral f �minðsÞ ¼

R1
0 e�stdFminðtÞ ¼

f �1 ðsÞ þ b�ðsþ lÞ �f �1 ðsÞ b�ðsþ lÞ.
ii.If the system has only one customer then that customer is

served by server-I entirely at a constant rate l without being
interrupted until his service is completed.

The Parallel Queue Discipline:
For the M=M;G=2 model proposed here, we adopt the parallel

queue discipline of Krishnamoorthy (1962) subject to the condi-
tion10 that the mean service rates of server-I and server-II are
respectively l and l2.

A customer arrives to find:

1. Both servers free; he occupies server-I (assuming that ser-
ver-I gives faster service on average).

2. Server-I is engaged; he waits for service from server-I
whether or not server-II is free. But if the number of custom-
ers waiting for service from server-I becomes m (a positive
integer), he goes to server-II for service if that server is free;
otherwise he waits as the ðmþ 1Þth customer in the queue.
Note that the first m customers in the queue will be getting
service from server-I and the ðmþ 1Þth customer in the
queue will go to server-II if that server becomes free prior
to the finishing of service of the customer in server-I.
Otherwise he will move up as the mth customer in the
queue. Hence may decide to take service from server-I.

3. Both servers are engaged and a queue of length ’n greater than
or equal to m is formed. He joins the queue as the ðnþ 1Þth
customer. All customers after the mth customer in the queue
take a decision only when they reach the ðmþ 1Þth position
in the queue. The decision is taken according to the rule
mentioned in 2 of server-I engaged above.
The positive integer m is to be chosen such that it is one less
than the greatest integer in the ratio l

l2
. It is clear that for this
10 We provide an analysis for m ¼ 1 customer who might prefer to wait for server-I
even when server-II is idle.
choice of m the following happens: When there are m customers
waiting for service from server-I, an incoming customer finds it
profitable to go to server-II if that server is free since
ðmþ 2Þl�1 < l�1

2 . Similarly, when there are only ðm� 1Þ custom-
ers waiting for service from server-I, an incoming customer will
find it profitable to join the queue for service from server-I, even
if server-II is free since ðmþ 1Þl�1 < l�1

2 . In case ll�1
2 is an integer

then m ¼ ll�1
2 � 1 so that joining the queue for service from ser-

ver-I is not any more or any less profitable than going to server-
II if the server is free. But there is no harm in assuming that even
in this case the customer joins the queue for service from server-
I when there are only ðm� 1Þ customers waiting for service. Thus,
this queue discipline achieves the objective that the least amount
of waiting time is spent in the system according to the conditions
present upon its arrival (for this specific choice of m) and also, it
reduces the violation of first-in first-out principle. Generally,
results on methodologies for choosing m under any specific queue
discipline is limited. However, the work of Efrosinin and Sztrik
(2011) is worth mentioning here. Efrosinin and Sztrik (2011) have

shown that, if m is chosen such that m ¼ ðl�kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�kÞ2þ4l2kÞ
p
ð2l2Þ

, then an

optimal value for the mean number of customers in the system
under the parallel queue discipline will be attained.11

3. Steady state characteristics of the M=ðM þ GÞ=2 queue under
the serial queue discipline

Consider ‘the embedded time points’ generated at departure
instants of customers just after a service is completed by either
server-I or server-II. By analogy, a Markov chain can be discovered
at these points. Let this chain represent the state of the system
Nj ¼ NðtjÞ left behind by the jth customer upon departure epoch
tj. Then the discrete time process fNjg constitutes a Markov chain
on the discrete state space S ¼ f0;1;2; . . .1g. Let qj be the station-
ary probability that j customers are left behind by a departing cus-
tomer with a z-transform VðzÞ ¼

P1
j¼0qjz

j and let pj be the steady
state probability that there are j customers in the system at an
arbitrary instant between successive embedded points with
z-transform PðzÞ ¼

P1
j¼0pjz

j. Since the number of customers in the
system changes at most by �1 at a transition (arrival or departure)
epoch, we can claim that PðzÞ is the generating function of the
system states at departure instants of customers.12 Suppose

RjðtÞ ¼ P½NðtÞ ¼ j; j P 2; t < f < t þ Dt� such that pj ¼
R1

0
RjðtÞ

1�FminðtÞ
dt

and qj ¼
R1

0
RjðtÞ

1�FminðtÞ
dFminðtÞ respectively, then application of the

PASTA property of the system yields that PðzÞ ¼ VðzÞ. Let aj denote
the probability that j customers arrive at departure instants of
customers with PDF fminðtÞ and let dj denote the probability that j
customers arrive at arbitrary instants when a service is in progress
with PDF f1ðtÞ. Since arrivals follow a Poisson process at a steady rate

k, then for j ¼ 2;3; . . .1, one can have aj ¼
R1

0 e�kt ðktÞj fminðtÞ
j! dt and

dj ¼
R1

0 e�kt ðktÞj f1ðtÞ
j! dt. Denote by AðzÞ and A1ðzÞ the z-transforms of

the probability distributions fajg and fdjg respectively such that
AðzÞ ¼

P1
j¼0ajzj ¼ f �minðk� kzÞ and A1ðzÞ ¼

P1
j¼0djzj ¼ f �1 ðk� kzÞ. Now,

focusing on the embedded points under equilibrium conditions, let
the unit step conditional transition probability of the system going
from state ‘i’ of the ðk� 1Þth embedded point to state j of the kth
embedded point be qij ¼ PðNk ¼ j=Nk�1 ¼ iÞ for i; j 2 S. Then the tran-
sition probabilities will form the unit step transition probability
matrix Q=(qij) below:
11 In a two-server heterogeneous retrial queue with threshold policy.
12 In view of PASTA.
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Q ¼

d0 d1 d2 d3 : : : :

d0 d1 d2 d3 : : : :

0 a0 a1 a2 a3 : : :

0 0 a0 a1 a2 a3 : :

0 0 0 a0 a1 a2 a3 :

0BBBBBB@

1CCCCCCA ð3:1Þ

If we denote by qj ¼ limn!1qn
ij the equilibrium state probabili-

ties at departure instants where qn
ij represents the n-step probabil-

ity of moving from state i to j such that Q ¼ qij with
q ¼ ðq0; q1; q2; . . .Þ and e ¼ ð1;1;1; . . .Þ0, then a numerical evaluation
of q can be done by solving the following matrix equations:

qQ ¼ q;qe ¼ 1 ð3:2Þ

Now, multiplying the jth equation of qQ ¼ q in (3.2) by zj and
summing all the left-hand sides and the right-hand sides from
j ¼ 0 to j ¼ 1, one obtains that

VðzÞ ¼ q1z½AminðzÞ � A1ðzÞ� þ q0½AminðzÞ � A1ðzÞz�
AminðzÞ � z

ð3:3Þ

Let q ¼ k
l. Since q1 ¼ qq0, A0minð1Þ ¼ �kf 0�minð0Þ ¼ k

lþl2
¼ q1 < 1,

A01ð1Þ ¼ �kf 0�1 ð0Þ ¼ k
l ¼ q. At z ¼ 1, we derive from (3.3) that

q0 ¼
1� q1

1þ ðq� q1Þð1þ qÞ ð3:4Þ

And the mean number of customers EðNÞ present in the system at a
random point or at a departure epoch is

EðNÞ ¼ qþ q2
1

ð1� q1Þ
þ ðq� q1Þ½qþ q1ð1þ qÞ�

1þ ðq� q1Þð1þ qÞ ð3:5Þ

Similarly, the mean waiting time W13 of customers in the system
can be obtained using the well-known Little’s formula kW ¼ EðNÞ.

For a numerical illustration, suppose that k varies from 5to12 as
in Table 1 below while l ¼ 8:0;l2 ¼ 7:5. The following numerical
results corresponding to q;q1; q0, EðNÞ, and W are obtained14:
Table 1
Mean queue length EðNÞ and mean waiting time W l ¼ 8:0 and l2 ¼ 7:5.

k q q1 q0 EðNÞ W

5 0.625 0.322581 0.454208 1.011633193 0.202326639
6 0.750 0.387097 0.374846 1.311295347 0.218549224
7 0.875 0.451613 0.305704 1.653291986 0.236184569
7.2 0.9 0.464516 0.293027 1.727752316 0.239965599
7.5 0.9375 0.483871 0.274697 1.843814969 0.245841996
7.7 0.9625 0.496774 0.26292 1.924332864 0.249913359
7.9 0.9875 0.509677 0.25149 2.007571644 0.254122993
8 1 0.516129 0.245902 2.050273224 0.256284153
8.2 1.025 0.529032 0.234975 2.137977356 0.260728946

10 1.25 0.645161 0.150299 3.115150221 0.311515022
11 1.375 0.709677 0.112522 3.898952161 0.354450196
12 1.5 0.774194 0.080229 5.04031928 0.420026607
From Table 1, it can be seen that both the mean queue length
EðNÞ and the mean waiting time W steadily increases with increase
in k. Similarly, the stationary q0 values decrease with increase in k
as expected.

4. Steady state characteristics of the M=M;G=2 queue under the
parallel queue discipline and m ¼ 1

We will now discuss the steady state analysis of the M=M;G=2
queue under the parallel queuing discipline outlined in section
13 Inclusive of the service time.
14 The range of the arrival rate is varied from low to high so that the results of this

work cover all cases of the utilization parameter up to a value sufficiently close to
unity.

15 The supplementary variable.
16 Strictly, for j P 2 when server-II is busy only.
17 The equivalent of P(z).
two given that m ¼ 1 customer. The analysis is carried out using
the past service time of the customer being served by server-II as
a supplementary variable.

Denote by N the steady state number of customers in the sys-
tem and by f the steady state past service time15 of the current cus-
tomer on server-II. Looking at the system at departure instants, then
the bi-variate process fN; fg is a Markov process with state space
S ¼ f0;1;2; . . .g � ½0;1Þ. Suppose that P is a probability measure
such that

R0 ¼ P½Both servers are idle� ð4:1Þ
R1;0 ¼ ½Server-I is busy; server-II is idle; N ¼ 1� ð4:2Þ
R0;1ðgÞ ¼ P½Server-I is idle; Server-II is busy N ¼ 1;

g 6 f < gþ dg� ð4:3Þ
R1;1ðgÞ ¼ P½Both servers are busy; N ¼ 2; g 6 f < gþ dg� ð4:4Þ
R1;1;0 ¼ P½servers-I is busy; N ¼ 2; and server-II is idle� ð4:5Þ

and that

R1;1;1ðgÞ ¼ P½Both servers are busy; N ¼ 3; and g 6 f < gþ dg�
ð4:6Þ
Note: We assign g to Rj only when server-II is busy. Given that
two or more customers are present in the system and that their
past service time lies in ðg;gþ dgÞ then in steady state,
RjðgÞ ! Rj as seen in (4.7)–(4.10) and (4.11) below.

Now, if Rj ¼ P½N ¼ j� is the stationary probability that there are
j-customers in the system. Then

R0 ¼ P½N ¼ 0� ¼ R0;0 ð4:7Þ
R1 ¼ P½N ¼ 1� ¼ R1;0 þ R0;1 ð4:8Þ
R2 ¼ P½N ¼ 2� ¼ R1;1;0 þ R1;1 ð4:9Þ
R3 ¼ P½N ¼ 3� ¼ R1;1;1 ð4:10Þ
Rj ¼ PðN ¼ jÞ ð4:11Þ

Since if j P 2; we have j ¼ ð1;1Þ or ð1;1;0Þ; j ¼ ð1;1;1Þ; and
j ¼ 4; j ¼ 5; . . . then for f > 0, we can write

RjðgÞ ¼ P½N ¼ j; g 6 f 6 gþ dg� ð4:12Þ

Furthermore, let

QjðgÞ ¼
RjðgÞ

1� BðgÞ; j P 2: ð4:13Þ

16such that

Q �j ðsÞ ¼
Z 1

0
e�sg RjðgÞ

1� BðgÞ dg;
fQ jðgÞ ¼ b eRj ðgÞ ð4:14Þ

where

eRjðgÞ ¼
Z 1

0
Q jðgÞdBðgÞ ð4:14aÞ

Here, the service time distribution is either F1ðgÞ or BðgÞ throughout
since each service period depends on the server providing service
with departure rates

r1ðgÞ ¼ f1ðgÞ
D1ðgÞ
¼ l or r2ðgÞ ¼ bðgÞ

D2ðgÞ
¼ B0 ðgÞ

1�BðgÞ.

PGF of the Stationary Customer Distribution P(z)
In this subsection, we explain a methodology for computing the

sequence of probability functions fRjg representing the steady
state number of customers in the system leading to the generating
function PðzÞ ¼

P1
0 Rjzj but not PðzÞ itself.17 The standard argument

discussed above shows that the sequence fRjg satisfies a set of
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steady state equations given in Appendix A. Using (4.14) and (4.14a)
in that sense, we can rewrite them as given below:

kR0 ¼ lR1;0 þ
1
b
eQ 0;1 ð4:15Þ

ðkþ lÞR1;0 ¼ kR0 þ lR1;1;0 þ
1
b
eQ 1;1 ð4:16Þ

ðkþ lÞR1;1;0 ¼ kR1;0 þ
1
b
eQ 1;1;1 ð4:17Þ

Q 00;1ðgÞ ¼ �kQ 0;1ðgÞ þ lQ1;1ðgÞ ð4:18Þ
Q 0;1ð0þÞ ¼ 0; j ¼ 1 ð4:19Þ
Q 01;1ðgÞ ¼ �ðkþ lÞQ1;1ðgÞ þ kQ 0;1ðgÞ þ lQ 1;1;1ðgÞ ð4:20Þ
Q 1;1ð0þÞ ¼ 0; j ¼ 2 ð4:21Þ
Q 01;1;1ðgÞ ¼ �ðkþ lÞQ 1;1;1ðgÞ þ kQ 1;1ðgÞ þ lQ 4ðgÞ ð4:22Þ

Q 1;1;1ð0þÞ ¼ kR1;1;0 þ
1
b
eQ 4; j ¼ 3 ð4:23Þ

For j P 4, we have

Q jðgÞ ¼ �½kþ l�QjðgÞ þ kQj�1ðgÞ þ lQ jþ1ðgÞ ð4:24Þ

Q jð0þÞ ¼
1
b
eQ jþ1; j P 4 ð4:25Þ

To solve (4.18)–(4.24) and (4.25), apply the Laplace operator on the
mentioned differential equations coupled with the appropriate
boundary conditions. Then one obtains that

sQ �0;1ðsÞ þ kQ�0;1ðsÞ ¼ lQ �1;1ðsÞ ð4:26Þ

And for j P 2, we have

sQ �1;1ðsÞ þ ðkþ lÞQ �1;1ðsÞ ¼ kQ�0;1ðsÞ þ lQ �1;1;1ðsÞ ð4:27Þ
sQ �1;1;1ðsÞ þ ðkþ lÞQ �1;1;1ðsÞ ¼ kQ �1;1ðsÞ þ lQ �4ðsÞ

þ kR1;1;0 þ
1
b
eQ 4 ð4:28Þ

sQ �4ðsÞ þ ðkþ lÞQ�4ðsÞ ¼ kQ �1;1;1ðsÞ þ lQ �5ðsÞ þ
1
b
eQ 5 ð4:29Þ

sQ �j ðsÞ þ ðkþ lÞQ�j ðsÞ ¼ kQ�j�1ðsÞ þ lQ �jþ1ðsÞ þ
1
b
eQ jþ1 j P 5 ð4:30Þ

To solve (4.26)–(4.29) and (4.30), we take advantage of the follow-
ing lemma.

Lemma 4.1. Given that the traffic condition k < lþ 1
b holds, then in a

busy period

Q �j ð0Þ ¼ eQ j; j ¼ 2;3; . . . :; ð4:31Þ
Proof. Suppose that a busy period is in progress such that the time
Tn between two successive departures from server-II is given as
Tn ¼ tn � tn�1; n ¼ 1;2;3;4; . . . Then for any number of departure
n P 1 during this busy period, the service period is a probabilistic
replication of the initial period t1. More so, if the queue length pro-
cess at any time t during this period is NðtÞ, we are assured that
NðtÞwould reach steady state starting at t ¼ 0;Nð0ÞP 2 in the long
run. Consequently, NðtÞ is a regenerative process over t on state
space S2 ¼ 2;3; . . . and Tn ¼ tn � tn�1 is an underlying renewal pro-
cess at tj each time a departure occurs on server-II. Now, given that
k < lþ 1

b holds, then upon service completion on server-II, the
state probability is

RjðtÞ ¼ P½NðtÞ ¼ j; j ¼ 2;3; . . .� ð4:32Þ

and if the past service time is g at a time t, then the conditional
probability that there are j customers in the system is

Rjðt;gÞ ¼ P½NðtÞ ¼ jjt ¼ g; j ¼ 2;3; . . .� ð4:33Þ
Let

Qjðt;gÞ ¼
Rjðt;gÞ

1� Bðt;gÞ ð4:34Þ

So that

QjðtÞð1� BðtÞÞ ¼ RjðtÞ ¼ P½NðtÞ ¼ jjt1 > t� ð4:35Þ

ThenX1
j¼2

QjðtÞ ¼ P½t1 > t� ¼ 1� BðtÞ ð4:36Þ

and

QjðtÞ ¼
Z 1

0
P½NðtÞ ¼ jjt1 > t� ¼

Z 1

0
P½NðtÞ ¼ j; t1 > tjt1 ¼ g�

ð4:37Þ
which can be simplified to

QjðtÞ ¼
Z 1

g
P½NðtÞ ¼ jjt1 ¼ g�dBðgÞ ð4:38Þ

Here, it is seen that

RjðtÞ ¼
Z 1

0
P½NðtÞ ¼ j; t1 ¼ g�dBðgÞ ð4:39Þ

Thus, by conditioning on t1, under steady state conditions, it can be
shown that the following renewal equation is satisfied.

RjðtÞ ¼ Q jðtÞ þ
Z t

0
Rjðt � xÞdBðxÞ ð4:40Þ

This renewal equation has a unique solution of the form

RjðtÞ ¼ Q jðtÞ þ
Z t

0
Qjðt � xÞdMðxÞ ð4:41Þ

where MðxÞ is the renewal function of a renewal process with inter-
renewal time distribution B(t). Thus, the application of the key-
renewal theorem yields that

lim
t!1

RjðtÞ !
1
b

Z 1

0
QðxÞdx ð4:42Þ

The integral in (4.42) is the probabilistic version of eQ j when the
mean service time on server-II is b. Thus,eRjb ¼ eQ j ¼ Q �j ð0Þ ð4:43Þ
Thus, the lemma holds. h

The Stationary PGF P(z)
If Lemma 4.1 is applied in (4.15)–(4.29) and (4.30) and then

simplified as s! 0, one can obtain a compact expression for each
member of the sequence fRjg subject to the condition that
k 6 lþ 1

b. The results are reported in Appendix B. A summarized
version for the results is given below for two real values
a ¼ ðl2 þ klþ k2Þ and b ¼ ðaþ klþ 2k2Þ.

R1 ¼ R0;1 þ R1;0 ¼
k
b

� �
k2

l2
þ k

l

� �
½aþ k2 þ kl�

" #
R0 ð4:44Þ

R2 ¼ R1;1;0 þ R1;1 ¼
k
b

� �
k
l

� �
1
l2

� �
a
l
þ k2

� �
R0 ð4:45Þ

R1;1;1 ¼
k
b

� �
k2

l2

" #
k
l

� �2

R0 ð4:46Þ

R4 ¼
k3 � l2a
lþ l2

" #
k3

l2b

" #
R0 ð4:47Þ

Rj ¼ q1Rðj�1Þ
� �

for j P 5 ð4:48Þ

Rj ¼ ðq1Þ
ðj�4Þ

h i k3 � l2a
lþ l2

 !
k3

l2b

" #
R0 for j P 4 ð4:49Þ

X1
j¼4

Rj ¼
R4

1� q1
¼ k3 � l2a

lþ l2

" #
k3

l2b

" #
R0

ð1� q1Þ
ð4:50Þ



Table 2b
Mean waiting time distributions W .

k q q1 WM=M;G=2 WM=ðMþGÞ=2

15.11 1.7988 0.9503 1.32015792 1.396165445
15.21 1.8107 0.9566 1.52627785 1.57972863
15.31 1.8226 0.9629 1.79033387 1.82547701
15.41 1.8345 0.9692 2.15140997 2.171484484
15.51 1.8464 0.9755 2.68734605 2.694875074
15.61 1.8583 0.9818 3.5821662 3.579150707
15.71 1.8702 0.9881 5.40608519 5.394133094
15.81 1.8821 0.9943 11.2618041 11.24218471

Table 2a
Mean queue length distributions E½N�.

k q q1 EðNÞM=M;G=2 EðNÞM=ðMþGÞ=2

15.11 1.7988 0.9503 19.9475864 21.09605988
15.21 1.8107 0.9566 23.2146864 24.02767247
15.31 1.8226 0.9629 27.4100119 27.94805302
15.41 1.8345 0.9692 33.1532281 33.4625759
15.51 1.8464 0.9755 41.6807379 41.79751239
15.61 1.8583 0.9818 55.9176152 55.87054254
15.71 1.8702 0.9881 84.9295996 84.7418309
15.81 1.8821 0.9943 178.049126 177.7389403
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Similarly, the generating function PðzÞ, the mean queue length EðNÞ
and the mean waiting time W are respectively given by

PðzÞ ¼
X1
j¼0

Rjzj ¼ R0 þ R1zþ R2z2 þ R3z3 þ R4z4

ð1� q1zÞ ð4:51Þ

EðNÞ ¼ R1 þ 2R2 þ 3R3 þ R4
4� 3q1

ð1� q1Þ
2

" #
ð4:52Þ

W ¼
ðR1 þ 2R2 þ 3R3Þ þ R4

4�3q1

ð1�q1Þ
2

h i
k

ð4:53Þ

Lemma 4.2. Suppose k ¼ l. Then the underlying realization fNk ¼ jg
of the Markov Chain fNkg is ergodic if and only if l > 3l2.

Under the stability condition k < lþ l2 i.e. q1 < 1, the realiza-
tion fNk ¼ jg of the Markov chain fNkg is ergodic if and only if each

PðN ¼ jÞ ¼ Rj is positive inclusive of R4 ¼ k3�l2a
lþl2

h i
k3

l2b

h i
R0. This

implies that k3�l2a
lþl2

> 0. Now, given that k ¼ l, then the lemma

holds.

Lemma 4.3. The stationary distribution fRj ¼ PðN ¼ jÞg of the system
size of the M=M;G=2 queue exists if and only if ðk3 > l2aÞ holds where
a ¼ k2 þ klþ l2.
Proof. Since R4 is proportional to k3 � l2a and is positive definite
(being a probability value), it is trivial that the stationary distribu-
tion fRj ¼ PðN ¼ jÞg of the system size of the M=M;G=2 queue exist
if ðk3 > l2aÞ holds. Conversely, suppose ðk3 > l2aÞ > 0. Then R4 is
positive definite and so it is proportional to ðk3 � l2aÞ. h
5. Numerical approximations

For a comparative study on the mean number of customers E½N�
and the mean waiting times W of the two models namely; the
M=ðM þ GÞ=2 and the M=M;G=2 queues, we suppose that k varies
from 15:11to15:81 while l ¼ 8:4 and l2 ¼ 7:5. Tables 2a and 2b
below summarize the approximate values for q, q1 leading to
EðNÞ and W for the two models studied in this work.18

6. Discussions and scope

Note that under equilibrium conditions, there is an insignificant
difference between

(i) EðNÞM=M;G=2 and EðNÞM=ðMþGÞ=2.
(ii) WM=M;G=2 and WM=ðMþGÞ=2.

Thus, one can conclude that though, some violations of the
FCFS principle occurred because of heterogeneity of servers in
M=G=2 queues generally as pointed out by Krishnamoorthy
(1962), the two alternative queue disciplines serial and parallel
here minimize such violations in the long run. This is because
the steady state characteristics19 for the M=M;G=2 queue under
the parallel queue discipline and that of the M=ðM þ GÞ=2 queue
under the serial queue discipline differ insignificantly as observed
in Tables 2a and 2b.
18 The stability condition k < ðlþ l2Þ holds since ðlþ l2Þ ¼ 15:9 > 15:81 ¼ kmax .
19 Both the mean queue length and the mean waiting time.
Similarly, we infer from these results that, if q1 is relatively far
from one, then it is operationally better to allocate a customer to a
server instead of joint service when another customer is present.
As can be seen in the tables above, both the mean queue length
and the mean waiting time in the latter under the parallel queue
discipline is stationary smaller than that of the former. Hence,
the parallel queue discipline is a better alternative when arrival
rates is not approaching the combined server rates.

Similarly, if q1 ! 1, then it is operationally better to join service
than allocating servers to distinct customers. This is evident from
Tables 2a and 2b that when q1 ! 1, the expected behavior of the
serial model becomes better than that of the parallel model. The
results obtained here can be applied in service systems where
customer distribution are required for better practice. Most
importantly is the new result of our work that under serial queue
discipline applied on the two connected servers as in the
M=ðM þ GÞ=2 and parallel queue discipline applied as in the
M=M;G=2, given that k < ðlþ l2Þ holds, then the behavior of
the M=ðM þ GÞ=2 and that of the M=M;G=2 are identical if and only
if k3 > l2ðl2 þ klþ k2Þ holds. This ensures that the associated
Markov chain for the customer distribution is ergodic. There is a
scope to studying the models discussed here via Markov-renewal
theory. This will ensure an equality relationship between the
arrival distribution and those specified in Lemma 4.1. Finally, we
are grateful to all the sources of literature used and to those that
encourage us to see the great work of Boxma et al. (2002) model
in a different way.
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Appendix A

It can easily be verified that the steady state probability func-
tions R0;R1 . . . and RjðgÞ for ðg P 0Þ satisfy the below differential
equations:
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kR0 ¼ lR1;0 þ
Z 1

0
R0;1ðgÞ

dBðgÞ
1� BðgÞ ð6:1Þ

ðkþ lÞR1;0 ¼ kR0 þ lR1;1;0 þ
Z 1

0
R1;1ðgÞ

dBðgÞ
1� BðgÞ ð6:2Þ

R00;1ðgÞ ¼ �ðkþ
dBðgÞ

1� BðgÞÞR0;1ðgÞ þ lR1;1ðgÞ ð6:3Þ

R0;1ð0þÞ ¼ 0; j ¼ 1 ð6:4Þ

ðkþ lÞR1;1;0 ¼ kR1;0 þ
Z 1

0
R1;1;1ðgÞ

dBðgÞ
1� BðgÞ ð6:5Þ

R01;1ðgÞ ¼ � kþ lþ dBðgÞ
1� BðgÞ

� �
R1;1ðgÞ þ kR0;1ðgÞ þ lR1;1;1ðgÞ ð6:6Þ

R1;1ð0þÞ ¼ 0; j ¼ 2 ð6:7Þ

R01;1;1ðgÞ ¼ � kþ lþ dBðgÞ
1� BðgÞ

� �
R1;1;1ðgÞ þ kR1;1ðgÞ þ lR4ðgÞ ð6:8Þ

R1;1;1ð0þÞ ¼ kR1;1;0 þ
Z 1

0
R4ðgÞ

dBðgÞ
1� BðgÞ ; j ¼ 3 ð6:9Þ

For j P 4, we have

R0jðgÞ ¼ � kþ lþ dBðgÞ
1� BðgÞ

� �
RjðgÞ þ kRj�1ðgÞ þ lRjþ1ðgÞ ð6:10Þ

Rjð0þÞ ¼
Z 1

0
Rjþ1ðgÞ

dBðgÞ
1� BðgÞ ð6:11Þ
Appendix B

R0 ¼ R0 ð6:12Þ

R1;0 ¼
l2

k
k2 þ klþ a

kl

 !" #
R0;1 ð6:13Þ

R1;1;0 ¼
l2

k

h i a
l2

� �� �
R0;1 ð6:14Þ

R0;1 ¼
k3

l2½aþ 2k2 þ kl�

" #
R0 ð6:15Þ

R2 ¼ R1;1;0 þ R1;1 ¼
k2

ll2½aþ 2k2 þ kl�
a
l
þ k2

� �" #
R0 ð6:16Þ
R1 ¼ R0;1 þ R1;0 ¼
k3

l2½aþ 2k2 þ kl�
þ k

l

� �
k2 þ klþ a

2k2 þ klþ a

 !" #
R0

ð6:17Þ

R1;1;1 ¼
k
l

� �2 k3

l2½aþ 2k2 þ kl�

" #
R0 ð6:18Þ

R4 ¼
k3 � l2a
lþ l2

" #
k3

l2½aþ 2k2 þ kl�

" #
R0 ð6:19Þ

X1
j¼4

Rj ¼
R4

1� q1
¼ k3 � l2a

lþ l2

" #
k3

l2½aþ 2k2 þ kl�

" #
R0

ð1� q1Þ
ð6:20Þ
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