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a b s t r a c t

The application of inertial stabilization system is to stabilize the sensor's line of sight toward a target by
isolating the sensor from the disturbances induced by the operating environment. The aim of this paper
is to present two axes gimbal system. The gimbals torque relationships are derived using Lagrange
equation considering the base angular motion and dynamic mass unbalance. The stabilization loops are
constructed with cross coupling unit utilizing proposed fuzzy PID type controller. The overall control
system is simulated and validated using MATLAB. Then, the performance of proposed controller is
evaluated comparing with conventional PI controller in terms of transient response analysis and
quantitative study of error analysis. The simulation results obtained in different conditions prove the
efficiency of the proposed fuzzy controller which offers a better response than the classical one, and
improves further the transient and steady-state performance.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The optical equipments (such as IR, radar, laser, and television)
have found a wide use in many important applications, for
example image processing, guided missiles, tracking systems,
and navigation systems. In such systems, the optical sensor axis
must be accurately pointed from a movable base to a fixed or
moving target. Therefore, the sensor's line of sight (LOS) must be
strictly controlled. In such an environment where the equipment
is typically mounted on a movable platform, maintaining sensor
orientation toward a target is a serious challenge. An Inertial
Stabilization Platform (ISP) is an appropriate way that can solve
this challenge [1]. Usually, two axes gimbal system is used to
provide stabilization to the sensor while different disturbances
affect it. The most important disturbance sources are the base
angular motion, the dynamics of gimballed system, and the gimbal
mass unbalance. It is therefore necessary to capture all the
dynamics of the plant and express the plant in analytical form
before the design of gimbal assembly is taken up [2]. The system
performance depends heavily on the accuracy of plant modelling.
A typical plant for such problems consists of an electro-mechanical
gimbal assembly having angular freedom in one, two or three axes

and one or more electro-optical sensors [3]. The control of such
LOS inertia stabilization systems is not a simple problem because
of cross-couplings between the different channels. In addition,
such systems are usually required to maintain stable operation and
guarantee accurate pointing and tracking for the target even when
there are changes in the system dynamics and operational condi-
tions. The mathematical model and the control system of two axes
gimbal system have been studied in many researches. Concerning
the mathematical model, several derivations have been proposed
using different assumptions. In [4], the kinematics and geometrical
coupling relationships for two degree of freedom gimbal assembly
have been obtained for a simplified case when each gimbal is
balanced and the gimballed elements bodies are suspended about
principal axes. [5] presented the equations of motion for two axes
gimbal configuration, assuming that gimbals are rigid bodies and
have no mass unbalance. In [5], Ekstrand has shown that inertia
disturbances can be eliminated by certain inertia symmetry
conditions, and certain choices of inertia parameters can eliminate
the inertia cross couplings between gimbal system channels.
A single degree of freedom gimbal operating in a complex
vibration environment has been presented by Daniel in [6]. He
illustrated how the vibrations excite both static and dynamic
unbalance disturbance torques that can be eliminated by statically
and dynamically balancing the gimbal which is regarded costly
and time consuming [6]. In [7], the motion equations have been
derived assuming that gimbals have no dynamic mass imbalance
and without highlighting the effects of base angular velocities.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/isatrans

ISA Transactions

0019-0578/$ - see front matter & 2013 ISA. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.isatra.2013.12.008

n Corresponding author. Tel.: þ98 937 750 4893.
E-mail addresses: maherabdo74@yahoo.com (M.M. Abdo),

ar.vali@aut.ac.ir (A.R. Vali), toloei@sbu.ac.ir (A.R. Toloei),
arvan@mut.ac.ar (M.R. Arvan).

ISA Transactions 53 (2014) 591–602

Downloaded from http://www.elearnica.ir

www.sciencedirect.com/science/journal/00190578
www.elsevier.com/locate/isatrans
http://dx.doi.org/10.1016/j.isatra.2013.12.008
http://dx.doi.org/10.1016/j.isatra.2013.12.008
http://dx.doi.org/10.1016/j.isatra.2013.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2013.12.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2013.12.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2013.12.008&domain=pdf
mailto:maherabdo74@yahoo.com
mailto:ar.vali@aut.ac.ir
mailto:toloei@sbu.ac.ir
mailto:arvan@mut.ac.ar
http://dx.doi.org/10.1016/j.isatra.2013.12.008


In [8], a two axes gimbal mechanism was introduced and just the
modelling of azimuth axis was focused while the elevation angle
was kept fixed and cross moments of inertia were taken to be zero.
In both [5,9], the dynamical model of elevation and azimuth
gimbals have been derived on the assumption that gimbals mass
distribution is symmetrical so the products of inertia were
neglected and the model was simplified. It must be mentioned,
that most of these researches considered that the elevation and
azimuth channels are identical so that one axis was simulated and
tested. Therefore, the cross coupling, which is caused by base
angular motion and the properties of gimbal system dynamics,
was ignored. Also, it was supposed that gimbals mass distribution
is symmetrical so the gimbals have not dynamic unbalance.
In addition, Newton's law has been utilized to derive the mathe-
matical model. On the other hand, the control system of two axes
gimbal configuration has been constructed using different control
approaches. In [7], a proxy-based sliding mode has been applied
on two axes gimbal system; also [10] proposed the sliding mode
control under the assumption of uncoupled identical elevation and
azimuth channels. In [11], modern synthesis tools such as linear
quadratic regulator (LQR) or linear quadratic Gaussian with loop
transfer recovery (LQG/LTR) control for a wideband controller have
also been used in the line of sight stabilization for mobile land
vehicle. Also, [12] presented a linear quadratic Gaussian (LQG)
algorithm for estimating and compensating in real time a parti-
cular class of disturbances. Besides conventional control methods,
some advance control techniques such as robust control [13],
variable structure control (VSC) [14], and H1 control methodology
[15] were also applied in LOS inertia stabilization systems. How-
ever, a majority of these algorithms were complex and difficult to
be realized. In recent years, the fuzzy control technology has been
developed successfully. It improves the control system perfor-
mance, and has the good adaptability for the system with non-
linear mathematical model and uncertain factors [16,17]. Unlike
the conventional control, the fuzzy logic control usually does not
need the accurate mathematical model of the process which must
be controlled and therefore fuzzy logic is considered one of the
best solves for wide section of stubborn and challenging control
problems [18,19]. There are two types of fuzzy logic-based
controllers; Takagi Sugeno (T–S) based and Mamdani based. In
literature, it can be found that almost all nonlinear dynamical
systems can be represented by Takagi Sugeno fuzzy models to high
degree of precision. In fact, it is proved that Takagi-Sugeno fuzzy
models are universal approximators of any smooth nonlinear
system [20]. When the fuzzy logic system is incorporated into
adaptive control scheme, a stable fuzzy adaptive controller is
obtained to be used in complex environments that impose
perturbations on plant parameters. In such environments, this
controller is used online to modify and adjust the control para-
meters automatically [17]. Basically, the adaptive fuzzy controllers
have been developed for unknown SISO and MIMO nonlinear
systems but they are limited only to nonlinear systems whose
states can be measured [21]. A fuzzy control system was imple-
mented in [22] to control inertial rate of LOS. [23] Introduced an
efficient full-matrix fuzzy logic controller for a gyro mirror line-of-
sight stabilization platform. A fuzzy logic based controller and
adaptive-neuro fuzzy inference system (ANFIS) have been pre-
sented in [19–24] for speed control of DC servo motor. In [25],
a comparative study of PID, ANFIS, and hybrid-PID ANFIS con-
trollers has been accomplished for the speed control of brushless
direct current motor. In this paper, a self-tuning PID-type fuzzy
technique is introduced for a two axes gimbal system which its
mathematical model is completely derived using Lagrange equa-
tion considering the cross coupling between two channels, the
dynamic unbalance, and the base angular velocities. The control
aims are mainly to achieve good transient and steady-state

performance with respect to step input commands. The contribu-
tions of this paper can be summarized as follows. The complete
model of two axes gimbal system is derived assuming that gimbals
have mass unbalance as well as considering all inertia distur-
bances and cross coupling. Then, an applicable adaptive fuzzy
controller is designed utilizing simple tuning algorithm which can
considerably reduce the overshoot without significant increase in
the rise time value. The paper is organized in the following
manner. In Section 2, the problem is formulated and the equations
of gimbals motion are derived in Section 3. Afterwards, the
stabilization loop is investigated and constructed in Section 4.
Then, in Section 5 the proposed fuzzy controller is designed. The
simulation results are introduced in Section 6. Finally, the conclu-
sion remarks are highlighted in Section 7.

2. Problem formulation

The stabilization is usually provided to the sensor by suspend-
ing it on the inner gimbal of two axes gimbal system as shown in
Fig. 1 [26]. A rate gyro located on the inner gimbal is utilized to
measure the angular rates in the two planes of interest. The gyro
outputs are used as feedback to torque motors related to the
gimbals to provide boresight error tracking and stabilization
against base angular motion. The overall control system is con-
structed utilizing two identical stabilization loops (Fig. 2) for the
inner (elevation) and outer (azimuth) gimbals. The control system
of two axes gimbal system attempts to align the sensor optical axis
in elevation and azimuth planes with a line joining the sensor and
target which is called the line of sight (LOS) so that the sensor
optical axis is kept nonrotating in an inertial space despite torque
disturbances which affect the elevation and azimuth gimbals and
basically caused by the base angular motions which are usually
imposed by the operating environment. Therefore, the stabiliza-
tion loop must isolate the sensor from the angular base motion
and disturbances that disturb the aim-point, i.e. the output rates of
stabilization loops must follow certain input rate commands so
that the rate error is made zero. According to Newton's first and
second laws, all that is required to prevent an object (sensor) from
rotating with respect to inertial space is to ensure that the applied
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torque is zero [27]. However, even in well designed and careful
electromechanical systems, the operating environment creates
numerous sources of torque disturbances that affect on a real
mechanism making extreme motion or jitter of line of sight [27].
In such environments, as all control systems, the gimbal control
system suffers from problems related to undesirable overshoot,
longer settling times and vibrations, and stability. In order to
overcome these problems, the gimbal system control loops will be
developed using adaptive PID-type fuzzy controller. The elevation
and azimuth control loops are related by the cross coupling unit
which is built based on the relationships of torques affect the
gimbals. The cross coupling express the properties of the gimbal
system dynamics and reflects the fact that azimuth gimbal can
affect on elevation gimbal even when base body is nonrotating.
Also, there is similar impact from elevation gimbal on azimuth
gimbal. As a result, the cross coupling is defined as the effect on
one axis by the rotation of another [6]. In this paper, the model of
two axes gimbal system is obtained and simulated considering the
dynamic mass unbalance which is the result of a non-symmetrical
mass distribution called Product of Inertia (POI) [6]. The dynamic
mass unbalance concept can be indicated by the inertia matrix.
If the gimbal has a symmetrical mass distribution with respect to
its frame axes, so the gimbal has no dynamic mass unbalance and
its inertia matrix is diagonal and vice versa.

3. Equations of gimbals motion

In this paper, a two axes gimbal system depicted in Fig. 1 is
considered. Three reference frames are identified; frame P fixed to
fuselage body with axes (i,j,k), frame B fixed to azimuth gimbal
with axes (n,e,k), and frame A fixed to elevation gimbal with axes
(r,e,d). The r-axis coincides with the sensor optical axis. The k axis
is pointing “downwards”. The rotation center is at the frame
origin, which is assumed to be the same point for three frames.
The transformation matrices in terms of rotation angles ε, η

B
PC ¼

cos η sin η 0
� sin η cos η 0

0 0 1

2
64

3
75; A

BC ¼
cos ε 0 � sin ε
0 1 0

sin ε 0 cos ε

2
64

3
75 ð1Þ

where B
PC is the transformation from frame P to frame B. Similarly,

A
BC is the transformation from frame B to frame A. The inertial
angular velocity vectors of frames P, B, and A, respectively are

pω
,

P=I ¼
ωpi

ωpj

ωpk

2
64

3
75; Bω

,
B=I ¼

ωBn

ωBe

ωBK

2
64

3
75; Aω

,
A=I ¼

ωAr

ωAe

ωAd

2
64

3
75 ð2Þ

where ωpi ; ωpj ; ωpk are the body angular velocities of frame P in
relation to inertial space about i, j, and k axes respectively,
ωBn ; ωBe ; ωBk are the azimuth gimbal angular velocities in rela-
tion to inertial space about n, e, and k axes, respectively, and
ωAr ; ωAe ; ωAd

are the elevation gimbal angular velocities in
relation to inertial space about the r, e, and d axes, respectively.
Inertia matrices of elevation and azimuth gimbals are

AJ inner ¼
Ar Are Ard

Are Ae Ade

Ard Ade Ad

2
64

3
75; BJouter ¼

Bn Bne Bnk

Bne Be Bke

Bnk Bke Bk

2
64

3
75 ð3Þ

where Ar, Ae, Ad are elevation gimbal moments of inertia about r, e,
and d axes, Are, Ard, Ade are elevation gimbal moments products of
inertia, Bn, Be, Bk are azimuth gimbal moments of inertia about n, e,
and k axes, and Bne, Bnk, Bke are azimuth gimbal moments products
of inertia. Also, it is introduced TEL as the total external torque
about the elevation gimbal e-axis, and TAZ as the total external
torque about the azimuth gimbal k-axis. As mentioned above, the

aim is to stabilize the gimbal system LOS (r-axis), i.e. the output
rates of stabilization loops ωAe,ωAd, which can be measured by
a rate gyro placed on the elevation gimbal, must follow the input
rate commands ωEL,ωAZ. In general, Euler angles define the
position between two related reference frames [28]. For frames P
and B utilizing the angle η, then between azimuth gimbal frame B
and elevation gimbal frame A utilizing the angle ε, the following
relations can be respectively obtained.

Eq:a : ωBn ¼ωPi cos ηþωPj sin η;

Eq:b : ωBe ¼ �ωPi sin ηþωPj cos η;

Eq:c : ωBK ¼ωPkþ _η ð4Þ

Eq:a : ωAr ¼ωBn cos ε�ωBK sin ε;

Eq:b : ωAe ¼ωBeþ _ε;

Eq:c : ωAd ¼ωBn sin εþωBk cos ε ð5Þ

The orientation of the gimbal system in an inertial system is
completely determined by four independent consecutive rotations
ϕ, θ, ψ, ε where ϕ, θ, ψ are Euler rotations of the azimuth gimbal
and ε is elevation gimbal angle [5]. Then, rotation angles can be
taken as generalized coordinates in Lagrange equations. The
rotations order is essential [5]. Fig. 3 shows the order of con-
secutive Euler rotations of azimuth gimbal. By taking the rotations
in the order roll (ϕ), elevation (θ), and azimuth (ψ) followed by ε,
the generalized “forces” corresponding to the coordinates ψ and ε
are the external torques TAZ and TEL applied to azimuth and
elevation gimbals, respectively [5]. The kinetic energy T of rotating
body is given by the scalar product (T ¼ω� ðH=2Þ; H ¼ Jω); where
H the angular momentum, ω the body inertial rate expressed in
the body fixed frame, and J the body inertia matrix. Thus the total
kinetic energy of two axes gimbal system is the sum of kinetic
energy of elevation and azimuth gimbals.

T ¼ω� H
2

�����
A

þω� H
2

�����
B

¼ 1
2
ðArω2

ArþAeω2
AeþAdω2

AdÞ

þAreωArωAeþArdωArωAdþAdeωAeωAdþ
1
2
ðBnω2

BnþBeω2
BeþBkω2

BkÞ

þBneωBnωBeþBnkωBnωBkþBkeωBeωBk ð6Þ

.

Fig. 3. Azimuth gimbal angular velocities.
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Based on Fig. 3, the azimuth gimbal angular velocities can be
derived as follows

ωBn ¼ _ϕ cos θ cos ψþ _θ sin ψ ;

ωBe ¼ � _ϕ cos θ sin ψþ _θ cos ψ ; ωBk ¼ _ϕ sin θþ _ψ ð7Þ

Using (7) and (5) in (6) give the kinetic energy as a function of
the generalized coordinates and their time derivatives. Thus,
Lagrange equation can be formulated utilizing T from (6) and
equations of motion are obtained. The complete derivation of
azimuth relationships is illustrated in Appendix A. Lagrange
equation for ψ is

d
dt

∂T
∂ _ψ

� �
� ∂T
∂ψ

¼ TAZ ð8Þ

The equation of azimuth gimbal motion can be derived as
a differential equation for ωBk as follows

Jeq _ωBk ¼ TAzþTd1þTd2þTd3; Td ¼ Td1þTd2þTd3 ð9Þ

After some mathematical operations, Eq. (9) can be converted
to a differential equation for ωAd as follows

Jeq _ωAd ¼ TAz cos εþTd cos εþT 0
d ð10Þ

In [5], Eq. (9) has been simplified assuming that gimbals have
no dynamic mass unbalance i.e. (Are¼Ard¼Ade¼Bne¼Bnk¼Bke¼0)
as well as applying other choices of inertia parameters (Ar¼Ad,
BnþAr¼Be). Therefore in [5], the disturbances Td have been
reduced to one term (AeωBnωAe). Thus, Eq. (9) becomes

Jeq _ωBk ¼ TAz�AeωBnωAe ð11Þ

Also, the complete derivation of elevation relationships is
illustrated in Appendix B. Lagrange equation for ε is

d
dt

∂T
∂ _ε

� �
�∂T
∂ε

¼ TEL ð12Þ

The elevation gimbal motion equation is obtained as a differ-
ential equation for the elevation rate ωAe as follows

Ae _ωAe ¼ TELþðAd�ArÞωArωAd

þArdðω2
Ar�ω2

AdÞ �Adeð _ωAd�ωAeωArÞ �Areð _ωArþωAeωAdÞ
ð13Þ

In [5], Eq. (13) has been simplified by eliminating all distur-
bances assuming that elevation gimbal has no dynamic mass
unbalance, i.e. (Are¼Ard¼Ade¼0 and Ar¼Ad). Therefore, Eq. (13)
becomes as follows

Ae _ωAe ¼ TEL ð14ÞFig. 4. Simplified two axes gimbal torque relationships introduced in [5].

Fig. 5. Complete two axes gimbal torque relationships (cross coupling unit).
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Based on (11) and (14), the simplified model obtained in [5] is
indicated in Fig. 4. While utilizing Eqs. (10), (A.10), (A.11), (A.12) of
azimuth channel in addition to Eqs. (13), (B.4),…, (B.14) of eleva-
tion channel, the complete torque relationships of two axes gimbal
system introduced in this work is presented in Fig. 5.

Concerning cross coupling, the elevation disturbances (B.3) can
be divided into two parts TD�EL¼TB�ELþTC�EL where

TB�EL ¼ �ðAde sin εþAre cos εÞð _ωBnþωBeωBkÞ
þðAde cos ε�Are sin εÞωBnωBe

þ½ðAd�ArÞ cos ð2εÞ�2Ard sin ð2εÞ�ωBnωBk

þ1
2
½ðAd�ArÞ sin ð2εÞþ2Ard cos ð2εÞ�ω2

Bn ð15Þ

TC�EL ¼ ðAre sin ε�Ade cos εÞ _ωBk�
1
2
½ðAd�ArÞ sin ð2εÞþ2Ard cos ð2εÞ�ω2

Bk

ð16Þ
It can be seen that the azimuth gimbal may affects the

elevation gimbal irrespective of the base body motions because
even when the base is nonrotating i.e., ωpi¼ωpj¼ωpk¼0 the term
TB�EL is absolutely zero because from (4) we haveωBn¼ωBe¼0 but
ωBk and consequently the term TC�EL is not necessarily zero.
Therefore, the term TC�EL is the elevation cross coupling term.
Similarly, the disturbances of azimuth channel Td¼Td1þTd2þTd3
can be divided into two parts Td¼TB�AZþTC�AZ. Applying the same
discussion above, the term TC�AZ is the azimuth cross coupling
term which expresses the effect of elevation gimbal on the
azimuth gimbal even when the base is nonrotating.

TB�AZ ¼ Td1þTd2þ½ðAr�AdÞ cos ð2εÞþ2Ard sin ð2εÞ�Ae�_εωBn

þ½ðAr�AdÞ sin ð2εÞ�2Ard cos ð2εÞ�ωBeωBk

þðAde cos ε�Are sin εÞ _ωBe�ðAde sin εþAre cos εÞω2
Be

ð17Þ

TC�AZ ¼ ðAre sin ε�Ade cos εÞ _ωAeþðAre cos εþAde sin εÞω2
Ae

þ½ðAd�ArÞ sin ð2εÞþ2Ard cos ð2εÞ�ωAeωBk ð18Þ
In [5], Ekstrand has assumed that the inertia cross coupling

between channels of gimbal system indicated by (16) and (18) can
be eliminated assuming that (Are¼Ard¼Ade¼0 and Ar¼Ad). While
in this paper, this assumption has not been applied and conse-
quently the cross coupling effects have been completely
considered.

4. Stabilization loop construction

The components of stabilization loop are indicated in Fig. 2.
Although, the researchers tried to utilize and apply many different
modern techniques to control inertia stabilization systems, the
conventional PID and its constructions are still the most used
approach due to their simple structure, cheap costs, simple design
and high performance [29]. Therefore, to evaluate the efficiency of
proposed fuzzy controller, two PI controllers (KEL for elevation
channel and KAZ for azimuth one) have been utilized for compar-
ison

KELðsÞ ¼ 0:09þ12:5
s

; KAZðsÞ ¼ 0:5þ12:5
s

ð19Þ

Any servo motion control system should have an actuator
module that makes the system to actually perform its function.
The most common actuator used to perform this task is the DC
servomotor. DC motor is one of the simplest motor types. It is
widely preferred for high performance systems requiring mini-
mum torque ripple, rapid dynamic torque, speed responses, high
efficiency and good inertia [30]. These motors speedily respond to
a command signal by means of a suitable controller. In this kind of
motors, the speed control is carried out by changing the supply

voltage of the motor [31]. DC motor from NORTHROP GRUMMAN
Company (Table 1) is utilized. The transfer function of DC motor
can be obtained as follows

GmðsÞ ¼
ωmðsÞ
uaðsÞ

¼ KTM

ðLasþRaÞ � ð Jnmsþan
mÞþKeKTM

¼ 24637:68
s2þ1500sþ20942

; an

m ¼ 0 ð20Þ

where ωm is motor's angular velocity, and ua is motor's armature
voltage. Also, Jnm ¼ Jmþ JL and an

m ¼ amþaL where JL is platform's
moment of inertia, and aL is the load's damping ratio. The platform
represents the motor load, which is attached to the output of the
gears or directly to the shaft motor. The platform is modelled
based on its moment of inertia JL that depends on its dimensions
and its position respect to the axis of rotation. In this paper,
a discus is proposed to represent the platform where its mass
M¼1 kg and radius r¼14 cm, so JL¼9.8�10�3 kg�m2. In this
paper, the 475 T rate gyroscope from the US Dynamics company
(Table 2) is considered. The rate gyro can be modelled in the
second order system typically [33]. For the gyro of natural
frequency ωn¼50 Hz, and damping ratio ζ¼0.7 the gyro transfer
function is

GGyroðsÞ ¼
ω2

n

ðs2þ2ζωnsþω2
nÞ
¼ 2500
ðs2þ70sþ2500Þ ð21Þ

5. Proposed controller design

The drawback of the conventional PID appears when the
control system works under variable conditions. Therefore, in
systems such as proposed inertia stabilization system, PID con-
troller cannot maintain the good performance unless the control-
ler parameters are retuned. The progress report [34] pointed out
that the adaptive control technique is the future development
direction of LOS inertia stabilization systems. In such environ-
ments, the overshoot in gimbal system response is inevitable
challenge that must be solved because it degrades the control
system performance. The solution difficulty results from the fact
that the overshoot and rise time usually conflict each other and
they cannot be reduced simultaneously. The conventional PID
controller and its different structures have been widely used for
the speed control of DC motor drives and gimbal systems

Table 1
DC motor specifications [32].

Parameter Value

Nominal voltage ua 27 V
No load speed ωnL 303 rpm
Terminal resistance Ra 4.5 Ω
Terminal inductance La 0.003 H
Torque constant KTM 0.85 Nm/A
Back EMF Ke 0.85 V/rad/s
Rotor inertia Jm 0.0017 kg�m2

Damping ratio am 0

Table 2
Gyroscope characteristics [32].

Input rate From 740 to 71000 deg/s

Output AC or DC
Scale factor Customer specification
Natural frequency 20 to 140 Hz
Damping ratio 0.4 to 1.0

M.M. Abdo et al. / ISA Transactions 53 (2014) 591–602 595



(especially PI controller). Although PI controller keeps a zero
steady-state error to a step change in reference, but it also has
undesirable speed overshoot (high starting overshoot), slow
response due to sudden change in load torque, and sensitivity to
controller gains [19]. Thus, utilizing conventional control
approaches like classical PID (PI) can solve this problem approxi-
mately and slightly decrease the overshoot but absolutely at the
expense of increasing the rise time value. Therefore, the need to
improve PID (PI) performance has insistently appeared. In this
paper, the gimbal system control loops will be developed using
adaptive PID-type fuzzy controller. Fuzzy logic controller belongs
to intelligent control system which combines the technique from
the field of artificial intelligent with those of control engineering
to design autonomous system that can sense, reason and plan,
learn and act in intelligent manner [35]. Basically, fuzzy controller
comprises of four main components, fuzzification interface,
knowledge base, inference mechanism and defuzzification inter-
face [35]. Fig. 6 shows components of fuzzy logic controller.
Fuzzification converts input data into suitable linguistic values,
while defuzzification yields a non fuzzy control action from
inferred fuzzy control action. The rule base is a decision making
logic, which is simulating a human decision process, inters fuzzy
control action from the knowledge of the control rules and
linguistic variable definitions. The fuzzified input variables are
used by the inference mechanism to evaluate control rules stored
in the fuzzy rule-base. The result of this evaluation is a single fuzzy
set or several fuzzy sets. In literature, various structures of fuzzy
PID (including PI and PD) controllers and fuzzy non-PID control-
lers have been proposed. The conventional fuzzy PID controller
needs three inputs and the rule base has three dimensions, it is
more difficult to design the rule-base. On the other hand, the fuzzy
PD type controller difficultly eliminates the steady state error
which can be completely removed using fuzzy PI type controller.
The fuzzy PI type controller, however, achieves poor performance
in transient response especially when it is used for higher order
process [36]. In order to obtain the advantages of these two
controllers, it is useful to combine them in what can be named
fuzzy PID type controller that has just two inputs and two
dimensions rule base. Fig. 7 shows the construction of the
proposed fuzzy PID type controller which will be utilized in this
paper instead of the conventional PID. Where Ke,Kd are the input
scaling factors of error and change of error, and β, α are the output
scaling factors. Based on what has been made in [37], the relation

between input and output variables of fuzzy parameters is

U ¼ AþPEþD _E ; E¼ Kee; _E¼ Kd _e ð22Þ

The output of fuzzy PID type controller is

uc ¼ αUþβ
Z

Udt ¼ αAþβAtþαKePeþβKdDe þβKeP
Z

edtþαKdD_e

ð23Þ

These control components can be divided into proportional
αKePþβKdD, integral βKeP, and derivative αKdD. The design para-
meters of the fuzzy PID controllers can be summarized within two
groups [38]: Structural parameters, and tuning parameters. Struc-
tural parameters, which are usually determined during off-line
design, include input/output variables to fuzzy inference, fuzzy
linguistic sets, membership functions, fuzzy rules, inference
mechanism and defuzzification mechanism. Tuning parameters
include scaling factors and parameters of membership functions.
The selection of tuning parameters is a critical task, which is
usually carried out through trail and error or using some training
data. Also, these parameters can be calculated during on-line
adjustments of the controller to enhance the process performance,
as well as to accommodate the adaptive capability to system
uncertainty and process disturbance [36]. The fuzzy controller is
regarded adaptive if any one of its tuneable parameters (scaling
factors, membership functions, and rules) changes when the
controller is being used; otherwise it is conventional fuzzy con-
troller. An adaptive fuzzy controller that fine tunes an already
working controller by modifying either its scaling factors or
membership functions or, both of them is called a self-tuning
fuzzy controller. On the other hand, when a fuzzy controller is
tuned by automatically changing its rules then it is called a self-
organizing fuzzy controller [39]. Of the various tuning parameters,
scaling factors have the highest priority due to their global effect
on the control performance [39]. Therefore, the proposed con-
troller is designed as self-tuning fuzzy controller which is tuned by
modifying its input scaling factors. Seven triangular membership
functions indicated in Fig. 8 are used for the fuzzification of the
inputs ðe ; _eÞ and output (Us) variables. For the membership
functions used, NL, NM, NS, ZR, PS, PM, PL denotes negative large,
negative medium, negative small, zero, positive small, positive
medium, and positive large, respectively. All membership

Fig. 6. Components of fuzzy logic controller.

1
S

Fig. 7. Simulink model of fuzzy PID type controller.

Fig. 8. Membership functions of e, _e and U.

Table 3
Fuzzy PID type rule base.

e=_e NL NM NS ZR PS PM PL

NL LN LN LN LN MN SN ZE
NM LN LN LN MN SN ZE SP
NS LN LN MN SN ZE SP MP
ZR LN MN SN ZE SP MP LP
PS MN SN ZE SP MP LP LP
PM SN ZE SP MP LP LP LP
PL ZE SP MP LP LP LP LP
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functions are defined on the [�1,1] closed interval. All the scaling
factors (Ke,Kd,β,α) are used to map the related crisp values to their
fuzzy universe of discourse. The control output U can be deter-
mined from the center of gravity method. The rules of the
proposed controller are expressed as follows: If {e is ZR and _e
is ZR}, then {U is ZR}. The rule base is constructed based on the
following approach: when the system output is far from the
desired output i.e. e is PL and _e is ZR then U is selected to be PL
in order to decrease the error value and bring the system state to
the desired value rapidly. If the error e is ZR and it tends to
increase due to the nonzero _e thus, U should not be zero (for
example, if e is ZR and _e is NM then U is NM). When both e and _e
are zero which is the desired case and the system does not need
any control input therefore, U is selected to be ZR. The fuzzy PID
type control rules are shown in Table 3. In general, the inertial
stabilization systems work under variable conditions especially
the base angular velocities. The most dominant parameters in
elevation and azimuth channels are ωpj,ωpk, respectively. It is
realized that whenever ωpj,ωpk increase, the system response
overshoot unacceptably increases. It is known that the integral
and proportional parameters have a great influence on the stable
and dynamic performance of control system which is usually
evaluated using the concepts of maximum overshoot, rise time,
settling time, and steady state error. It is noted that the input
scaling factor Ke exists in both integral and proportional terms, and
it is therefore selected to be tuned on-line based on the values
of ωpj,ωpk, while the other tuning parameters α,β,Kd are adjusted

off-line based on the knowledge about the process to be controlled
and sometimes through trial and error to achieve the best possible
control performance. Table 4 indicates the values of these off-line
adjusted parameters. This on-line tuning operation improves
further the performance of the transient and steady states of the
two axes gimbal system using the proposed fuzzy PID type
controller. In order to establish the on-line tuning of Ke,
a parametric study is applied to obtain the most suitable value
of Ke against every value of the angular velocities ωpj,ωpk along the
interval [0–15] deg/s. As a result of this parametric study, two
relationships Ke(ωPj) and Ke(ωPk) can be obtained for elevation and
azimuth channels, respectively

KeðωPjÞ ¼ �0:0093ω2
Pjþ0:0371ωPjþ0:7933;

KeðωPkÞ ¼ �0:0013ω2
Pk�0:0057ωPkþ0:6293 ð24Þ

From (24), it is noted that unlike to most of adaptive controllers
which are often built using complex tuning algorithms, the
proposed fuzzy controller simply achieves self tuning operation
based on the base rate values which can be measured by inertial
measurement unit (IMU). Therefore, the proposed self-tuning
fuzzy PID type controller is completely applicable. Although many
control approaches have been widely used to improve the control
system performance, the proposed fuzzy PID controller aims to
considerably reduce the overshoot of two axes gimbal system
response without significant increase in the rise time unlike to
most of controllers which usually reduce the overshoot at the
expense of the rise time value.

6. Simulation results

Based on what has been carried out above, the control system
of the two axes gimbal assembly can be accomplished using two
stabilization loops with a cross coupling unit between them. The
overall simulation model of the gimbal system has been prepared

Table 4
Off-line adjusted parameters.

Parameter Kd α β

Elevation 0.01 0.08 13
Azimuth 0.02 0.25 25

Fig. 9. Two axes stabilization loops.
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in MATLAB/Simulink environment utilizing the proposed self-
tuning fuzzy PID type controller as depicted in Fig. 9.

6.1. Validation test and disturbance analysis

The two axes gimbal system is validated using SimMechanics
model shown in Fig. 10. Responses obtained using both Simulink

and SimMechanics for azimuth and elevation channels are dis-
played in Figs. 11 and 12, respectively. It is clear that the two
responses of elevation and azimuth channels are completely
identical. Therefore, this conformity ensures the validity and
correction of the gimbal system introduced in this research. The
torque disturbance affect in the elevation and azimuth channels
have been obtained in details and indicated by Eqs. (B.4) and (A.9),
respectively. It is clear that the base angular motions (ωPi,ωPj,ωPk)
represent the most important source of torque disturbances TD�EL,
TD�AZ which have been added with elevation and azimuth loops
respectively as shown in the overall simulink model indicated in
Fig. 9. The interested torques in elevation and azimuth channels
can be obtained as shown in Fig. 13 which shows that the closed
control loop in elevation channel (and azimuth channel) generates
a control torque (motor torque) TEL (and TAZ) which tries to
eliminate the effect of disturbance torque TD�EL (and TD�AZ) so
that the total torque applied on the elevation gimbal (and azimuth
gimbal) is close to zero as much as possible in order to prevent the
object (sensor) from rotating with respect to the inertial space or
in other words to provide stability to the sensor and this is exactly
what has been previously accomplished according to Newton's
laws.

6.2. Performance comparison of fuzzy PID type and conventional
PI controllers

Having designed a fuzzy PID type controller, it is important to
validate its performance and compare it with conventional
PI controller. Actually, the transient response is considered one
of the most important characteristics of control systems. There-
fore, in this paper, the transient response of gimbal system has
been used to analyze the performance of the conventional PI and
proposed fuzzy controllers. This analysis has been made based on
three transient response specifications; the rise time tr (10 to 90%)
that indicates the swiftness of response, the settling time ts
(within 2%) and the maximum percent overshoot (ov) that
describe the closeness of response. Also, the overshoot directly
indicates the relative stability of the system. The transient
response analysis has been carried out using a rate input com-
mands in elevation and azimuth channels equal to ωEL ¼
ωAz ¼ 10 deg=s, while the base angular velocities can be changed
along the interval ωPj ¼ωPk ¼ 0�14½ � deg=s. Based on the analysis
results indicated in Table 5, it can be noted that rise times of both
conventional PI and fuzzy PID type controllers are kept almost at
the same value but with a considerably reduced overshoot and
much improved overall performance in case of fuzzy PID type
controller. Further more, in some cases the proposed fuzzy con-
troller could mainly decrease the response overshoot with

Fig. 10. Block diagram of SimMechanics model.
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maintaining the same rise time value as compared with PI
controller. For example, Table 5 indicates that for ωPj ¼ 12 deg=s
the overshoot of elevation response has been reduced from 64.6%
(utilizing PI controller) to 16% (utilizing fuzzy PID controller) while
the rise time for both controllers was the same tr ¼ 0:012 s. The
same case can be noted in Table 5 for ωPj ¼ 14 deg=s. As an
example, one system response is displayed in Fig. 14 to reflect
clearly and visually the efficiency of the fuzzy PID type controller
as compared to the conventional PI. On the other hand, in order to
support the performance analysis made by means of transient
response specifications as mentioned above, a quantitative study

of error analysis has been achieved utilizing three frequently used
error integral criteria; integral square error (ISE), integral absolute
error (IAE), and integral of time-multiplied absolute error (ITAE)
which they are

ISE¼
Z t

0
jeðtÞj 2dt; AE¼

Z t

0
jeðtÞjdt; ITAE¼

Z t

0
t jeðtÞjdt ð25Þ

where e(t) is the measured error. The errors at the beginning of
response can be sufficiently indicated by IAE and with less
efficiency for the steady state duration. While ITAE keeps account
of errors at the beginning and emphasizes the steady state.
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Table 5
Transient response analysis results of elevation and azimuth channels.

ωPj

ðdeg=sÞ
Elevation channel Azimuth channel

Conventional PI controller Fuzzy PID type controller Conventional PI controller Fuzzy PID type controller

ov (%) ts ðsÞ tr ðsÞ ov (%) ts ðsÞ tr ðsÞ ov (%) ts ðsÞ tr ðsÞ ov (%) ts ðsÞ tr ðsÞ

2 9.7 0.19 0.059 0 0.13 0.086 6.7 0.16 0.052 0 0.13 0.081
4 15.1 0.17 0.042 0 0.1 0.064 15.2 0.17 0.041 0 0.11 0.072
6 24.3 0.16 0.031 0 0.07 0.046 25.1 0.18 0.035 0 0.08 0.059
8 36.2 0.16 0.023 2 0.05 0.034 35.8 0.19 0.029 2.8 0.06 0.049

10 50 0.15 0.016 2.3 0.03 0.025 47.1 0.2 0.024 6.6 0.11 0.041
12 64.6 0.16 0.014 16 0.127 0.014 58.8 0.21 0.021 10.8 0.12 0.034
14 80 0.15 0.012 18.6 0.125 0.012 70.7 0.22 0.019 6.2 0.16 0.031
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Fig. 14. Step response for ωPj ¼ωPk ¼ 10 deg=s in elevation channel (left), and azimuth channel (right).
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Therefore, integral criteria IAE and ITAE are considered because
they respectively reflect the transient and steady state character-
istics of the control system, The values of error integral criteria
obtained for elevation and azimuth channels are provided in
Table 6 which indicates that the error in fuzzy PID controller is
minimum as compared to PI controller which shows the super-
iority of the proposed fuzzy controller.

7. Conclusion

A two axes gimbal system was proposed and its mathematical
model derived utilizing Lagrange equation considering the base
angular rates, the dynamic mass unbalance, and the cross coupling
between elevation and azimuth channels. Then, the stabilization
loop was introduced and a self-tuning fuzzy PID type controller
was designed. The overall control system has been created and
simulated using MATLAB/Simulink and SimMechanics tools to
confirm the validity and correction of the proposed system. The
torque disturbance has been analysed, then the performance of
fuzzy PID type controller has been tested using transient response
analysis and a quantitative study of error analysis. Based on the
results obtained, the following observations can be remarked.
First, the proposed self tuning operation provides good adaptivity
to the gimbal systemwhich offers high performance despite of the
torque disturbances so that it can be utilized more efficiently in
dynamical environment that usually imposes large variable base
rates. Then, the proposed fuzzy controller can reduce the response
settling time as compared with the conventional PI controller.
Finally, the proposed fuzzy controller improves the closeness of
system response and support the system relative stability by
reducing the response overshoot considerably without increasing
the response rise time dramatically i.e. without largely abaisse-
ment or weakening the swiftness of system response like to what
usually take place when the conventional PID is used.

Appendix A. Azimuth channel torque relationships

Utilizing Eqs. (5) and (7) gives

∂ωBn

∂ _ψ
¼ 0;

∂ωBe

∂ _ψ
¼ 0;

∂ωBk

∂ _ψ
¼ 1;

∂ωBn

∂ψ
¼ωBe;

∂ωBe

∂ψ
¼ �ωBn;

∂ωBk

∂ψ
¼ 0

∂ωAr

∂ _ψ
¼ � sin ε;

∂ωAe

∂ _ψ
¼ 0;

∂ωAd

∂ _ψ
¼ cos ε;

∂ωAr

∂ψ
¼ωBe cos ε;

∂ωAe

∂ψ

¼ �ωBn;
∂ωAd

∂ψ
¼ωBe sin ε ðA:1Þ

Using (A.1), the two terms in Eq. (8) left side are converted into

∂T
∂ _ψ

¼ �ðArωArþAreωAeþArdωAdÞ sin ε

þðArdωArþAdeωAeþAdωAdÞ cos εþBnkωBnþBkeωBeþBkωBk

ðA:2Þ

∂T
∂ψ

¼ �ωBnðBneωBnþBeωBeþBkeωBkþAreωArþAeωAeþAdeωAdÞ
þωBeðBnωBnþBneωBeþBnkωBkÞ
þωBeðArωArþAreωAeþArdωAdÞ cos ε
þωBeðArdωArþAdeωAeþAdωAdÞ sin ε ðA:3Þ

Based on Eqs. (A.2), (A.3), and (5) the equation of azimuth
gimbal motion can be derived as follows

Jeq _ωBk ¼ TAzþTd1þTd2þTd3 ðA:4Þ
where Td¼Td1þTd2þTd3 represents different azimuth gimbal inertia
disturbances, Jeq is the instantaneous moment of inertia about the
k-axis. All components are defined as follows

Jeq ¼ BkþAr sin
2εþAd cos 2ε �Ard sin ð2εÞ ðA:5Þ

Td1 ¼ ½BnþAr cos 2εþAd sin
2εþArd sin ð2εÞ�ðBeþAeÞ�ωBnωBe

ðA:6Þ

Td2 ¼ �½BnkþðAd�ArÞ sin ε cos εþArd cos ð2εÞ�ð _ωBn�ωBeωBkÞ
�ðBkeþAdecosε�Are sin εÞð _ωBeþωBnωBkÞ
�ðBneþArecosεþAde sin εÞðω2

Bn�ω2
BeÞ ðA:7Þ

Td3 ¼ €εðAre sin ε�Ade cos εÞþ _ε½ðAr�AdÞðωBn cos ð2εÞ�ωBk

sin ð2εÞÞ�þ _ε½2AreðωBn sin ð2εÞþωBk cos ð2εÞÞ�
þ _ε½ðAde sin εþAre cos εÞðωAeþωBeÞ�AeωBn� ðA:8Þ

Inserting _ωBk obtained from (5c) in (A.4) converts it into
a differential equation for the elevation rate ωAd as

Jeq _ωAd ¼ TAz cos εþTd cos εþT 0
d;

T 0
d ¼ Jeq½ _ωBn sin εþωArðωAe�ωBeÞ�;

TD�AZ ¼ ðTd1þTd2þTd3Þ cos εþT 0
d ðA:9Þ

where TD�AZ represents the disturbances affected on azimuth
gimbal. The term Td1 well be denoted as TD�AZ1. Then, using _ωBn

from (4a), ωBk from (5c), _ωBefrom (4b), and (5b) the terms Td2 and
Td3 are respectively denoted by

TD�AZ2 ¼ ½BnkþðAd�ArÞ sin ε cos εþArdð2 cos 2ε�1Þ�
�ð� _ωpj sin η� _ωpi cos ηþωBeωpk Þ
�ðBneþArecosεþAde sin εÞðω2

Bn�ω2
BeÞ

�ðBkeþAdecosε�Are sin εÞð _ωpj cos η� _ωpi sin ηþωBnωpk Þ
ðA:10Þ

TD�AZ3 ¼ _ωAeðAre sin ε�Ade cos εÞ
þðAde cos ε�Are sin εÞð _ωpj cos η� _ωpi sin ηÞ
þωAdωBnðAde�AretgεÞþω2

BnðAretgε�AdeÞ sin ε

Table 6
Error analysis results of elevation and azimuth channels.

ωPj

ðdeg=sÞ
Elevation channel Azimuth channel

Conventional PI controller Fuzzy PID type controller Conventional PI controller Fuzzy PID type controller

IAE ISE ITEA IAE ISE ITEA IAE ISE ITEA IAE ISE ITEA

2 0.01237 0.00147 0.00068 0.01253 0.001588 0.00057 0.00113 0.0014 0.00052 0.01318 0.0017 0.00061
4 0.01157 0.00127 0.00068 0.01046 0.00133 0.0004 0.0115 0.0013 0.00062 0.0119 0.0015 0.00051
6 0.0118 0.00119 0.00078 0.0092 0.001165 0.00033 0.0122 0.00129 0.00076 0.0109 0.00141 0.00044
8 0.0128 0.00123 0.00095 0.00846 0.001 0.0003 0.01334 0.00135 0.00094 0.0102 0.00131 0.0004

10 0.01425 0.00137 0.00116 0.00816 0.0001 0.00035 0.01472 0.00148 0.00115 0.0098 0.00122 0.00038
12 0.01606 0.00162 0.0014 0.00736 0.00086 0.00028 0.0163 0.00168 0.00136 0.00972 0.00116 0.00042
14 0.0181 0.00198 0.0016 0.00747 0.00084 0.00043 0.018 0.00195 0.0016 0.00912 0.0011 0.0004
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þ2AreðωAe�ωBeÞωBntgεþ2ωAdωBeðAr�AdÞ sin ε

þ2AreωAdðωAe�ωBeÞ 2 cos ε� 1
cos ε

� �
þðωAe�ωBeÞ½ðAde sin εþAre cos εÞðωAeþωBeÞ
�AeωBn�þωAeωBnðAr�AdÞ ðA:11Þ
From (5a) we have ωAr ¼ �ωAdtgεþðωBn= cos εÞ, then using

ωBk from (5c), and _ωBn from (4a), the term T0d denoted by

TD�AZ4 ¼ Jeq

"
�ωBeωBn

1þ sin 2ε
cos ε

 !
�ωAdωAetgε

þð _ωpi cos ηþ _ωpj sin ηÞ sin ε�ωBeωpk sin ε

þωAeωBn

cos ε
þ2ωAdωBetgε

#
ðA:12Þ

Appendix B. Elevation channel torque relationships

From Eq. (5) we have

∂ωAr

∂ _ε
¼ 0;

∂ωAe

∂ _ε
¼ 1;

∂ωAd

∂ _ε
¼ 0;

∂ωAr

∂ε
¼ �ωAd;

∂ωAe

∂ε
¼ 0;

∂ωAd

∂ε
¼ωAr

ðB:1Þ
Using (B.1) in the kinetic energy for elevation gimbal

T ¼ ðω� ðH=2ÞÞA, the two terms in Eq. (12) left side are

∂T
∂ _ε

¼ AeωAeþAreωArþAdeωAd;

∂T
∂ε

¼ωArωAdðAd�ArÞ�AreωAdωAe�Ardðω2
Ar�ω2

AdÞþAdeωArωAe

ðB:2Þ
Using (B.2) in (12) gives the elevation gimbal motion equation

as a differential equation for ωAe as follows

Ae _ωAe ¼ TELþðAd�ArÞωArωAdþArdðω2
Ar�ω2

AdÞ�Adeð _ωAd�ωAeωArÞ
�Areð _ωArþωAeωAdÞ; TD�EL ¼ ðAd�ArÞωArωAd

þArdðω2
Ar�ω2

AdÞ�Adeð _ωAd�ωAeωArÞ�Areð _ωArþωAeωAdÞ
ðB:3Þ

The elements of inertia matrix form the disturbance term
TD�EL. Using _ωBn from (4a), _ωBkfrom (5c), and (5) converts the
disturbance term TD�EL into the following form

TD�EL ¼ TD�EL1þTD�EL2þTD�EL3þTD�EL4þTD�EL5

þTD�EL6þTD�EL7þTD�EL8þTD�EL9þTD�EL10 ðB:4Þ

TD�EL1 ¼ ðAde sin εþAre cos εÞ
"
�2ωBeωAd�2ωBeωBn sin ε

cos ε

þωBeωpk � _ωpi cos ηþ _ωpj sin η

#
ðB:5Þ

TD�EL2 ¼ωBeωBnðAde cos ε�Are sin εÞ ðB:6Þ

TD�EL3 ¼ ðAd�ArÞ 2 cos ε� 1
cos ε

� �
½ωBnωAd�ω2

Bn sin ε� ðB:7Þ

TD�EL4 ¼ �4ArdωBnωAd sin ε ðB:8Þ

TD�EL5 ¼ 2ArdωBnωAdtg
2ε ðB:9Þ

TD�EL6 ¼ Ardω2
Ad

1
cos 2ε

�2
� �

ðB:10Þ

TD�EL7 ¼ ð _ωpk þ €ηÞ½Are sin ε�Ade cos ε� ðB:11Þ

TD�EL8 ¼ Ardω2
Bn½�2 sin 2εþtg2ε� ðB:12Þ

TD�EL9 ¼ ðAd�ArÞ sin ε cos εþ2Ardω2
Bn ðB:13Þ

TD�EL10 ¼ ðAd�ArÞtgε½2ωAdωBn sin ε�ω2
Ad�ω2

Bn sin
2ε� ðB:14Þ
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