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We develop an exact solution framework for the Consistent Traveling Salesman Problem. This problem calls

for identifying the minimum-cost set of routes that a single vehicle should follow during the multiple time

periods of a planning horizon, in order to provide consistent service to a given set of customers. Each cus-

tomer may require service in one or multiple time periods and the requirement for consistent service applies

at each customer location that requires service in more than one time period. This requirement corresponds

to restricting the difference between the earliest and latest vehicle arrival-times, across the multiple periods,

to not exceed some given allowable limit. We present three mixed-integer linear programming formula-

tions for this problem and introduce a new class of valid inequalities to strengthen these formulations. The

new inequalities are used in conjunction with traditional traveling salesman inequalities in a branch-and-cut

framework. We test our framework on a comprehensive set of benchmark instances, which we compiled by

extending traveling salesman instances from the well-known TSPLIB library into multiple periods, and show

that instances with up to 50 customers, requiring service over a 5-period horizon, can be solved to guaranteed

optimality. Our computational experience suggests that enforcing arrival-time consistency in a multi-period

setting can be achieved with merely a small increase in total routing costs.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

Vehicle routing problems with explicit focus on service quality

and customer satisfaction have seen a recent surge in popularity and

applicability. A key characteristic of high-quality customer service is

its consistency over time, and this is particularly important when

companies are faced with routing decisions spanning over multi-

ple time periods. In such cases, it is generally desirable to provide

consistent service to regular customers, i.e., customers who require

frequent service across the different periods. Kovacs, Golden, Hartl,

and Parragh (2014a) provide a review of routing problems in which

explicit considerations of service consistency have been addressed.

They define and classify service consistency as any of the require-

ments for arrival-time consistency, for which a customer should be

visited at roughly the same time during the day, person-oriented con-

sistency, for which a customer should always be visited by the same

driver, and delivery consistency, for which a customer should be re-

ceiving roughly the same quantity of goods each time service is pro-

vided. Applications in which such consistent service considerations
∗ Corresponding author. Tel.: +1 412 268 6974.

E-mail addresses: asubramanyam@cmu.edu (A. Subramanyam), gounaris@cmu.edu

(C.E. Gounaris).
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re particularly relevant include small package shipping services

Groër, Golden, & Wasil, 2009), transportation of people with dis-

bilities (Feillet, Garaix, Lehuédé, Péton, & Quadri, 2014) and Vendor-

anaged Inventory distribution (Coelho, Cordeau, & Laporte, 2012).

This paper focuses on the aspect of arrival-time consistency. In

his context, the supplier aims to reduce the variability in the actual

imes during the routing horizon at which a customer is served, since

oing so generally increases the value of service for the customer. For

xample, in the context of VMI distribution, arrival-time consistency

educes the need for the customer to commit loading-dock resources

hroughout the day. In the home-care industry, the elderly and dis-

bled are sensitive to changes in their daily routines and developing

onsistent schedules is of particular importance. Moreover, from the

ervice provider’s point of view, reducing the variability across repet-

tive deliveries over multiple time periods can expose efficiencies that

dd up to significant cost savings.

The Consistent Traveling Salesman Problem (ConTSP) is a variant

f the well-known Traveling Salesman Problem (TSP) that attempts

o address the issue of arrival-time consistency in multi-period rout-

ng applications. In the ConTSP, we aim to design minimum-cost (or,

inimum-makespan) routes over a finite, multi-period horizon so as

o serve a set of customers with known demands and service dura-

ions using a single (uncapacitated) vehicle. In general, a customer
EURO) within the International Federation of Operational Research Societies (IFORS).
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1 For example, if the assignment of customers to vehicles/drivers is fixed, then the

ConVRP decomposes into several ConTSPs, i.e., one for each vehicle/driver.
ay or may not require service in a given time period and, thus, only a

ubset of customers need to be visited in each period. The consistency

equirement applies to every customer who requires service in more

han one time period, meaning that every such customer must be vis-

ted at roughly the same time in each period for which service is re-

uired. The exact time of service remains a decision variable, but the

rrival times across the multiple periods at each customer site must

ot differ by more than some prespecified, constant bound, which we

all the maximum allowable arrival-time differential. In practice, this

ound may be set by either the customer or by the service provider.

ote that, if the maximum allowable arrival-time differential is cho-

en to be equal to infinity, then the ConTSP reduces to a set of separa-

le TSPs (one for each time period); hence, the ConTSP is NP–hard,

ust like the TSP (Karp, 1972).

Kovacs et al. (2014a) remark that the problem of visiting cus-

omers at consistent times over the different periods in a planning

orizon is similar to single-period, multi-vehicle routing problems

ith temporal synchronization of vehicles (Drexl, 2012). In par-

icular, consistent routes in a multi-period setting can be viewed

s equivalent to several synchronized vehicles that must arrive to

ustomer sites almost simultaneously during a single-period; the

olution of the latter problem can be recovered as the union of all

ingle-vehicle routes in the former problem. Another related problem

hat addresses periodicity in routing is the Periodic Vehicle Routing

roblem (Campbell & Wilson, 2014), wherein each customer requires

ne or more visits over a planning horizon and the decision-maker

ust select in which time periods to provide these visits, while

inimizing the total distance traveled over the planning horizon.

We highlight that the ConTSP constitutes a special, single-vehicle

ase of the Consistent Vehicle Routing Problem (ConVRP), originally

ntroduced by Groër et al. (2009). The ConVRP utilizes multiple ca-

acitated vehicles in order to provide consistent service to a set of

ustomers over multiple periods while minimizing total transporta-

ion cost. In addition to considering arrival-time consistency, the Con-

RP also requires driver consistency, for which each customer must

e visited by the same driver in all periods of the planning horizon. A

umber of metaheuristic approaches to solve the ConVRP have been

roposed in the literature. Groër et al. (2009) present an algorithm

hat is based on generating a “template” route by following a prece-

ence principle: if customer a is visited before customer b in a time

eriod, then a should be visited before b in every time period. The

emplate route is built by considering only customers that require

ervice in more than one time period. The individual routes in each

ime period are then generated by deleting those customers in the

emplate who do not require service in that period, while those cus-

omers that require service in this period but are not part of the tem-

late route are inserted into the solution at the best position. Kovacs,

arragh, and Hartl (2014c) build upon this algorithm by allowing de-

iations from the precedence template using an adaptive large neigh-

orhood search procedure; Tarantilis, Stavropoulou, and Repoussis

2012) modify both the template route and the actual single period

outes using tabu search. Note that, in all of the above approaches,

aiting is not allowed; that is, the vehicle is not allowed to wait at

customer location before providing service. Moreover, in the pa-

ers by Groër et al. (2009) and Tarantilis et al. (2012), the departure

imes of the vehicles from the depot are fixed: vehicles must depart

rom the depot at time zero in each period. Kovacs et al. (2014c) re-

ax the latter requirement by allowing the vehicle to delay its de-

arture from the depot and demonstrate that service quality can be

mproved without increasing driver working time. In a more recent

aper, Kovacs, Golden, Hartl, and Parragh (2014b) consider a gen-

ralization of the ConVRP in which a limited number of different

rivers may visit a customer, the maximum difference in the earliest

nd latest arrival times is penalized in the objective (i.e., arrival-time

onsistency is treated as a soft requirement), and each customer is

ssociated with either of two available time windows (e.g., AM or
M). Finally, Luo, Qin, Che, and Lim (2015) study a multi-period vari-

nt of the Vehicle Routing Problem with Time Windows, wherein

ach customer may be visited by only a limited number of drivers

ver the routing horizon, in addition to being serviced within a given

ime window.

In this work, we present a new, branch-and-cut-based algorithm

o address the ConTSP, which to the best of our knowledge is the first

ttempt in the open literature to address a routing problem with con-

istency requirements in an exact framework. Our motivation to ad-

ress the special, single-vehicle case of the ConVRP is three-fold: (i)

n exact approach, even if only applicable to single-vehicle instances,

as the potential to provide higher quality solutions with provable

uarantee of optimality for those instances, (ii) an efficient solution

cheme for the ConTSP could serve as a component of a hybrid meta-

euristic approach, or even a decomposition-based1 exact approach,

or the ConVRP, and (iii) our contribution can influence the develop-

ent of new exact algorithms to address more complex problem set-

ings for consistent routing. We note that branch-and-cut approaches

ave, in fact, been employed successfully in the past to address the

basic” TSP (Applegate, Bixby, Chvatal, & Cook, 2007; Fischetti, Lodi,

Toth, 2007) and many of its variants and extensions, including

mong others the TSP with Time Windows (Ascheuer, Fischetti, &

rötschel, 2001), the TSP with Pickups and Deliveries (Dumitrescu,

opke, Cordeau, & Laporte, 2010), the Prize-collecting TSP (Bérubé,

endreau, & Potvin, 2009) and the Capacitated Vehicle Routing Prob-

em (Lysgaard, Letchford, & Eglese, 2004). The development of these

pproaches has largely contributed towards extending the results of

olyhedral combinatorics developed for the TSP by Grötschel and

adberg (1979).

We present three alternative mixed-integer linear programming

ormulations for the ConTSP and compare their performance when

erving as the basis of our branch-and-cut scheme. In order to

trengthen these formulations, we separate valid single-period TSP

utting planes. More specifically, in our implementation we use Sub-

our Elimination Constraints and 2-matching Constraints. We further

erive a new class of valid inequalities for the ConTSP, which we re-

er to as Inconsistent Path Elimination Constraints, and present an

fficient heuristic to separate them. These new inequalities are cross-

eriod cutting planes which forbid the simultaneous occurrence of

wo paths that, if allowed to co-exist in the solution, would violate

he arrival-time consistency requirement for one or more customers

here, a “path” is a sequence of customers appearing consecutively

n a tour). Our algorithm is able to address instances containing up

o 50 customers that require service over a 5-period horizon. In the

nstances we considered, we observed that increasing the quality of

rovided service by visiting each customer at consistent times does

ot have to come at a high price. In fact, the average routing cost in-

rease was a modest 1.3 percent of the costs that would have been

ncurred if consistency considerations were not taken into account.

We can synopsize the contributions of this paper as follows:

• We develop a branch-and-cut-based solution framework that can

solve instances of the ConTSP to guaranteed optimality.
• We propose the novel class of Inconsistent Path Elimination

Constraints, which are valid for the ConTSP, and we present a

polynomial-time algorithm to separate these cuts in the context

of the above solution framework.
• We show that, unlike the case of the TSP, the Subtour Elimination

Constraints and the 2-matching Constraints are not, in general,

facet-defining for the ConTSP polytope.
• We compile a comprehensive database of benchmark instances

for the ConTSP by extending single-period TSP instances from the

TSPLIB library.
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• We calculate, for the above database, the additional cost that

a distributor must incur, on average, in order to implement

consistent delivery schedules; that is, we quantify the “price of

consistency.”

The remainder of the paper is structured as follows. In Section 2,

we formally define the problem and introduce necessary notation. In

Section 3, we present three formulations of the ConTSP and discuss

some empirical dominance relationships. In Section 4, we present a

number of valid inequalities for the above formulations and we dis-

cuss their lack of the facet-inducing property. In Section 5, we discuss

the implementation of our branch-and-cut algorithm, including sep-

aration routines for each of the valid inequalities. Finally, in Section 6,

we present computational results on a set of ConTSP benchmark

problems, elucidating the cost of providing consistent service.

2. Problem definition and notation

Let G = (V, A) be the complete directed graph on n + 1 nodes,

where V := {0, 1, . . . , n} is the node set and A := {(i, j) ∈ V × V: i �= j}

is the arc set. Node 0 represents the depot, while the node subset

c = V \ {0} represents the set of customers. Associated with every

arc (i, j) ∈ A is a travel cost cij ≥ 0 and a travel duration tij ≥ 0. Service

(a.k.a., processing) times can be easily incorporated into the travel

durations via the operation ti j ← ti j + si, where si ≥ 0 is the service

time of each customer i ∈ Vc and s0 = 0. We remark that we do not

require symmetric costs or travel times; that is, we allow cij �= cji or

tij �= tji for any (i, j) ∈ A. In either case, since in general service times

differ among nodes, the ConTSP constitutes an asymmetric problem

even if the costs and travel times are themselves symmetric.

Let also P={1, . . . , h} denote the set of time periods such that

h ≥ 2. For each period p ∈ P, we define the node subset Vp ⊆ Vc to

be the set of customers requiring service in this period, and we

define the associated subset of arcs to be Ap := {(i, j) ∈ (Vp ∪ {0})

× (Vp ∪ {0}): i �= j}. W.l.o.g, we assume for each period p ∈ P that

p ∩ [∪q∈P:q �=pVq] �= ∅; that is, each set Vp is non-empty2 and it in fact

includes at least one customer requiring service in some additional

period.3

A tour in period p is a Hamiltonian cycle in Gp := (Vp ∪ {0}, Ap). We

refer to such a tour via notation Tp =
〈
0, v1, v2, . . . , v|Vp|, 0

〉p
, where it

is implied that each customer vk is unique. Given a tour Tp, we de-

fine its cost as c(Tp) := ∑|Vp|
k=1

cvk−1vk
+ cv|Vp|0. We also define the ar-

rival time at the ith node, vi ∈ Vp, as a
p
vi

= ∑i
i′=1 tv

i′−1
v

i′ , where v0 = 0

is introduced for notational convenience. We assume that no wait-

ing is allowed; that is, the vehicle departs in each period at time 0

and does not wait at customer locations before starting service. The

above definition of arrival time reflects this assumption.

A ConTSP solution is a collection of tours {T1, T2, . . . , Th}, i.e.,

one tour for each period p ∈ P . Given such a collection, we define

�amax
i

:= maxp∈P:i∈Vp
a

p
i

− minp∈P:i∈Vp
a

p
i

to be the arrival-time differ-

ential for a customer i. In the ConTSP, we want to enforce that this

arrival-time differential does not exceed a maximum allowable value

L > 0 for all customers i ∈ Vc; that is, a ConTSP solution is feasible if

and only if maxi∈Vc
�amax

i
≤ L. A collection of tours is said to be con-

sistent if they induce a feasible ConTSP solution. The objective of the

ConTSP is then to determine the collection of consistent tours with

the minimum sum of costs,
∑

p∈Pc(Tp).
2 If the input data provides for a period in which no customers require service, then

that period can be removed from consideration.
3 If the input data provides for a time period p in which every customer that requires

service in that period does not require service in any additional period q �= p, then

we can independently address period p by solving its corresponding TSP instance and

appending its solution to the solution of the ConTSP instance induced by the remaining

periods.

x

t

b

c

t

D

a

s

Throughout the paper, we use the following notation. For each

ustomer i ∈ Vp ∪ {0}, let N+
p (i) denote the set of nodes j for

hich there is an arc from i to j in the graph Gp, i.e., N+
p (i) :=

j ∈ V : (i, j) ∈ Ap}. Similarly, let N−
p (i) := { j ∈ V : ( j, i) ∈ Ap}. Finally,

iven a subset of nodes S ⊆ Vp ∪ {0}, let A(S) be the set of arcs with

oth end points in S, i.e., A(S) := {(i, j) ∈ S × S: i �= j}, and let δ(S) be

he set of arcs with exactly one end point in S, i.e., δ(S) := {(i, j) ∈ S ×
c} ∪ {(i, j) ∈ Sc × S}, where Sc = (Vp ∪ {0}) \ S.

. Formulations

We now present three alternative mixed-integer linear program-

ing formulations that can serve as the basis for a branch-and-cut

pproach. These formulations differ in how they encode the various

seful quantities (e.g., the arrival times at customer locations) and

ow they enforce the ConTSP’s requirements, namely the require-

ent that each period’s tour corresponds to a Hamiltonian tour (i.e.,

ach node is incident to one outgoing and one incoming arc and there

re no subtours) as well as that the tours across all periods are consis-

ent (in the sense described in Section 2). Sometimes, a requirement

s described via a superpolynomial set of constraints, which will have

o be added dynamically in the context of a branch-and-cut frame-

ork. In the following, we will discuss the various strategies that can

e followed in each case with regards to which constraints are to be

tilized as cutting planes.

Let binary variables xijp be defined as follows:

i jp =
{

1, if arc (i, j) ∈ Ap is used in the tour of period p
0, otherwise

sing these variables, the ConTSP can be cast with the following con-

eptual formulation:

min
∑
p∈P

∑
(i, j)∈Ap

ci jxi jp (1)

.t.xi jp ∈ {0, 1} ∀ (i, j) ∈ Ap, ∀ p ∈ P (2)

∑
j∈N+

p (i)

xi jp = 1 ∀ i ∈ Vp ∪ {0}, ∀ p ∈ P (3)

∑
j∈N−

p (i)

x jip = 1 ∀ i ∈ Vp ∪ {0}, ∀ p ∈ P (4)

(i, j) ∈ Ap : xi jp = 1
}

= Tp ∀ p ∈ P (5)

Tp, Tq} is consistent ∀ (p, q) ∈ P × P : p < q (6)

In this formulation, the assignment (degree) constraints (3) and

4) ensure that each node is incident to one outgoing and one in-

oming arc in each period where it appears. Constraints (5) eliminate

ubtours by imposing that only Hamiltonian circuits be considered in

ach time period. Finally, constraints (6) ensure that the tours across

ll periods are consistent (in the sense described in Section 2).

The formulations we are about to present below differ in the way

hey achieve the requirements of constraints (5) and (6). The first

ormulation involves only the binary arc variables xijp defined above

nd utilizes a superpolynomial number of constraints to eliminate

ubtours and enforce consistency. In addition to binary arc variables

ijp, the second formulation utilizes continuous node variables αip

o represent the arrival time at customer i in period p, and employs

ig-M constraints to appropriately encode them. The use of big-M

onstraints is a common way to encode arrival times in formula-

ions for the Vehicle Routing Problem with Time Windows (see,

esrochers & Laporte, 1991). The third formulation uses continuous

rc variables yijp in addition to binary variables xijp and is based on a

ingle-commodity flow representation of travel time.
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4 In the typical setting, MTZ expressions are cast in terms of order of customer visits

or cumulative demand served (see, e.g., Desrochers & Laporte, 1991).
.1. Formulation 1

This model does not utilize any additional variables beyond the

inary variables xijp defined above. Constraints (5) are modeled via

q. (7), which constitute the standard Subtour Elimination Con-

traints (SEC) originally proposed by Dantzig, Fulkerson, and Johnson

1954).∑
i, j)∈A(S)

xi jp ≤ |S| − 1 ∀ S ⊆ Vp ∪ {0} : 2 ≤ |S| ≤ |Vp| − 1,

∀ p ∈ P (7)

The consistency constraints (6) are modeled using a new class

f infeasible path elimination constraints (see, Ascheuer, Fischetti, &

rötschel, 2000), which we introduce in this work and refer to as In-

onsistent Path Elimination Constraints (IPEC). Note that two paths in

wo different periods are said to be “inconsistent” if their simultane-

us occurrence as sub-paths in the tours of their respective time peri-

ds renders the ConTSP solution infeasible, and each IPEC will forbid

uch an occurrence for a pair of inconsistent paths.

Let P = (v1, . . . , vk)
p denote a non-empty path in period p that

s formed by the arcs in the set {(vi, vi+1) : i = 1, . . . , k − 1}, where

vi, vi+1) ⊆ Ap for all i = 1, . . . , k − 1. We assume this path to be open

nd simple, i.e., k > 1 and vi �= vj for i �= j, and we use |P| = k − 1 to

enote the path length, which is equal to the cardinality of the above

rc set. Let also τ(P) = ∑k−1
i=1 tvivi+1

denote the time spent traveling

n this path and processing all its nodes except the last one, vk. Given

hese definition, sufficient conditions for inconsistency of a pair of

aths are given in Lemma 1.

emma 1. A pair of paths {P, Q}, where P = (v1, . . . , vs)
p
, Q =

w1, . . . , wt)
q and p �= q, is inconsistent, if any of the following condi-

ions holds:

(i) w1 = v1 = 0, wt = vs and |τ(P) − τ(Q)| > L

(ii) w1 = v1 �= 0, wt = vs �= 0 and |τ(P) − τ(Q)| > 2L

(iii) w1 = vs �= 0, wt = v1 �= 0 and τ(P) + τ(Q) > 2L

roof. Consider a ConTSP solution in which P and Q appear as sub-

aths in time periods p and q respectively. Denote by a
p
c the arrival

ime at customer c in period p. It holds from their definitions that

(P) = a
p
vs

− a
p
v1

and τ(Q) = a
q
wt

− a
q
w1

. Let us take into account these

elationships in the context described by each of the three conditions:

(i) Since wt = vs, we have a
q
wt

= a
q
vs

. Furthermore, since the ve-

hicle always departs from the depot at time 0, we have a
p
v1

=
a

q
w1

= 0. Therefore, the condition |τ (P) − τ(Q)| > L implies

that |ap
vs

− a
q
vs
| > L; that is, customer vs violates the maximum

allowable arrival-time differential, rendering the pair of paths

{P, Q} to be inconsistent.

(ii) Since w1 = v1 and wt = vs, we have a
q
w1

= a
q
v1

and a
q
wt

= a
q
vs

.

Therefore, the condition |τ(P) − τ(Q)| > 2L implies that |ap
vs

−
a

p
v1

− a
q
vs

+ a
q
v1

| > 2L, which in turn implies that either |aq
v1

−
a

p
v1

| > L or |ap
vs

− a
q
vs
| > L (or both); that is, at least one of

the two customers v1 and vs violates the maximum allowable

arrival-time differential, rendering the pair of paths {P, Q} to

be inconsistent.

(iii) Since w1 = vs and wt = v1, we have a
q
w1

= a
q
vs

and a
q
wt

=
a

q
v1

. Therefore, the condition τ(P) + τ(Q) > 2L implies that(
a

p
vs

− a
p
v1

+ a
q
v1

− a
q
vs

)
> 2L, which in turn implies that |ap

vs
−

a
p
v1

+ a
q
v1

− a
q
vs
| > 2L; that is, the same conclusion as in case (ii)

above can be reached. �

Lemma 1 states that if P and Q have common end nodes and if one

f them, say v1, is to be visited at consistent times in periods p and q,

hen the other common end node, vs, cannot be visited at consistent

imes in those time periods, if the travel times to vs along paths P and

are sufficiently different.
The basic form of the inequality that forbids the simultaneous oc-

urrence of P and Q in a solution is presented in Eq. (8).∑
i, j)∈P

xi jp +
∑

(i, j)∈Q

xi jq ≤ |P| + |Q| − 1 (8)

Every feasible ConTSP solution must satisfy constraints (8) for ev-

ry inconsistent pair of paths {P, Q}. Moreover, every solution to the

et of constraints (2)–(4) and (7) (i.e., a set of tours) that violates the

rrival-time consistency requirement for at least one customer must

atisfy condition (i) of Lemma 1 for at least one pair of paths. There-

ore, every solution that satisfies the set of constraints (2)–(4), (7)

nd (8), where the latter is imposed for all possible pairs of paths

hat meet the conditions of Lemma 1, constitutes a feasible ConTSP

olution. As a result, the model consisting of Eqs. (1)–(4), (7) and (8)

s a complete and valid ConTSP formulation. Note that this formu-

ation is similar to the TSP with Time Windows (TSPTW) formula-

ion of Ascheuer et al. (2001), which also consisted of only binary arc

ariables.

We remark that the number of distinct SEC is O(2nh). Similarly,

he number of distinct IPEC in the worst case, when every possible

air of paths is inconsistent, is O
(
n!2h2

)
. Therefore, since the num-

er of these constraints grows very fast (exponentially and factorially,

espectively) with the size of the instance, we treat these inequalities

s cutting planes and add them dynamically in a branch-and-cut so-

ution framework. In practice, the number of such inequalities added

s relatively small. Our separation procedures and associated separa-

ion protocols are discussed in detail in Section 5. Note that, although

t may be more challenging in the case of a fractional solution, one

an immediately and exactly (i.e., with guarantees to identify a vio-

ation, if one exists) separate these inequalities in the context of an

ntegral solution (see Section 5 for details). To that end, the branch-

nd-cut framework is guaranteed to locate the optimal solution, as

ong as it is afforded enough computational resources. We discuss our

omputational experience in Section 6.

.2. Formulation 2

This formulation explicitly encodes the arrival times at customers.

o that purpose, we introduce continuous variables αip ≥ 0 to capture

he arrival time at each customer i ∈ Vp in each period p ∈ P . These

ariables attain appropriate values via their participation in Miller–

ucker–Zemlin (MTZ) expressions (Miller, Tucker, & Zemlin, 1960),

hich are cast here in terms of travel time.4 For each p ∈ P, let us

efine parameters fip := mink∈N+
p (i) tik, rip := mink∈N−

p (i) tki, for all i ∈
p and f0p := 0, r0p := 0; also define ξip := max j∈N+

p (i)

{
ti j + f jp

}
, for

ll i ∈ Vp. Constraints (9) apply.

ip − α jp + ti jxi jp − t jix jip ≤
(
Mp − fip − r jp

)(
1 − xi jp − x jip

)
(i, j) ∈ A(Vp), ∀ p ∈ P (9a)

ip ≥
∑

j∈N−
p (i)

(
r jp + t ji

)
x jip ∀ i ∈ Vp, ∀ p ∈ P (9b)

ip +
∑

j∈N+
p (i)

(
ti j + f jp

)
xi jp ≤ Mp

(
1 − x0ip

)
+

(
t0i + ξip

)
x0ip

i ∈ Vp, ∀ p ∈ P (9c)

ip ≤
(
Mp − fip

)(
1 − x0ip

)
+ t0ix0ip ∀ i ∈ Vp, ∀ p ∈ P (9d)

The parameters Mp are big-M coefficients that must be large

nough so as not to exclude the optimal solution. If zUB is the ob-

ective value of a known feasible solution, obtained via a heuristic
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Table 1

Sizes of ConTSP formulations.

Formulation # of Variables # of Constraints

Binary Continuous

1 O(n2h) – O(n!2h2)

2 O(n2h) O(nh) O(n2h + nh2)

3 O(n2h) O(n2h) O(n2h + nh2)
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D

l

t
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c
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3

t
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t

f

l

D

(

v

b

A

a

A

j

C

l

p

(

m

(

t

or otherwise, and if ζ ∗
p is the optimal objective of the TSP in period

p, then the value Mp = zUB − ∑
q∈P:q �=pζ

∗
q suffices.5 This also implies

that the value of the parameter Mp can be dynamically tightened dur-

ing the search as new incumbent solutions are identified.

We remark that the MTZ expressions as presented in Eq. (9) incor-

porate several applicable liftings, which we have proposed here for

the first time. We further remark that, if the triangle inequality on

the travel time vector t is satisfied, namely if

i j + t jk ≥ tik ∀ i, j, k ∈ V (10)

then one may further lift the formulation by updating the defini-

tions of its parameters as follows: fip := ti0, rip := t0i, and ξip :=
max j∈N+

p (i)

{
ti j + t j0

}
.

Constraints (9) suffice to exclude subtours.6 Furthermore, the

introduction of variables αip enables the explicit enforcement of

arrival-time consistency via constraints (11), achieving the arrival-

time consistency requirement (6).

αip − αiq ≤ L ∀ i ∈ Vp ∩ Vq, ∀ (p, q) ∈ P × P : p �= q (11)

Therefore, the model consisting of Eqs. (1)–(4), (9) and (11) is a

complete and valid ConTSP formulation.

3.3. Formulation 3

This is a single-commodity flow formulation, where the cumu-

lative travel time is represented as a commodity, originating at the

depot and flowing through the arcs. The single-commodity flow for-

mulation for the TSP was originally proposed by Gavish and Graves

(1978), where one unit of commodity was picked up along each trav-

eled arc. A similar model was proposed by Maffioli and Sciomachen

(1997) for the sequential ordering problem with time windows; the

version presented here can be obtained from the latter by ignor-

ing the precedence constraints. After introducing a set of continuous

variables yijp ≥ 0 to capture the commodity flow on each arc (i, j) ∈ Ap

in each period p ∈ P, the following constraints apply.∑
k∈N+

p ( j)

yjkp =
∑

i∈N−
p ( j)

(
yi jp + ti jxi jp

) ∀ j ∈ Vp, ∀ p ∈ P (12a)

∑
j∈N+

p (0)

y0 jp = 0 ∀ p ∈ P (12b)

0 ≤ yi jp ≤
(
Mp − ti j − f jp

)
xi jp ∀ (i, j) ∈ Ap, ∀ p ∈ P (12c)

The parameters Mp and fjp are as described in Section 3.2. The

implications of the triangle inequality (10) on the definitions of fjp

also carry over from the discussion there.

Constraints (12a) represent commodity-flow balances and enforce

that the arrival time at node j equals the arrival time at its predecessor

node plus the time it takes to travel from that predecessor to node j.

Constraints (12b) simply require the vehicle to start from the depot at

time 0 in each period. These constraints lead the commodity variables

yijp to attain the value of the arrival time at node i, whenever (i, j) ∈
Ap is part of the tour in period p, i.e., whenever xi jp = 1. At the same

time, constraints (12c) will ensure that yi jp = 0, whenever xi jp = 0.

The commodity-flow constraints (12) suffice to eliminate sub-

tours.7 Furthermore, the presence of commodity variables yijp en-

ables us to explicitly enforce arrival-time consistency via constraints
5 If no feasible solution to the problem is known, one may replace zUB with the sum

of the maximal traveling salesman tours across all periods.
6 On a rather technical remark, note that MTZ constraints suffice to exclude a po-

tential subtour only when the total travel time along this subtour is strictly positive

(which is the typical case). For data sets that involve arcs of zero travel time, which

may give rise to subtours of zero total travel time, one should pay attention to consider

the relevant SEC explicitly (e.g., by adding them as a lazy cut).
7 The remark of the previous footnote applies also for the case of commodity-flow

constraints.

i

i

i

t

i

a

l

t

a

13), achieving the arrival-time consistency requirement (6).

∑
j∈N+

p (i)

yi jp −
∑

j∈N+
q (i)

yi jq ≤ L ∀ i ∈ Vp ∩ Vq, ∀ (p, q) ∈ P × P : p �= q

(13)

herefore, the model consisting of Eqs. (1)–(4), (12) and (13) is a com-

lete and valid ConTSP formulation.

Finally, we remark that an alternative formulation results by

tilizing commodity-flow constraints merely to eliminate subtours

hile using the IPEC (8), instead of constraints (13), to enforce arrival-

ime consistency. In such a case, one could apply projection tech-

iques as in (Gouveia, 1995) to obtain a formulation in the space of

he binary arc variables xijp only. Conversely, we also note that it is

ossible to model the ConTSP without introducing binary arc vari-

bles at all. This technique, which was used by Langevin, Desrochers,

esrosiers, Gélinas, and Soumis (1993) to model the TSPTW, uti-

izes a two-commodity flow representation of the cumulative travel

ime that is subsequently exploited in a branch-and-bound solution

ramework. The lower bound given by the linear programming re-

axation of the two-commodity flow formulation would be identi-

al to that of the single-commodity flow formulation (Desrochers &

aporte, 1991).

.4. Sizes and strength of proposed formulations

Formulation 1 utilizes only the binary variables xijp, but fea-

ures a factorially-large set of constraints. In contrast, Formulations

and 3 feature a polynomial number of constraints, but utilize addi-

ional variables. Table 1 provides a synopsis of the sizes of the three

ormulations.

Formulation 1 can be viewed as an example of a ConTSP formu-

ation where an asymmetric TSP formulation (the one introduced by

antzig et al. (1954), in this case) is utilized to achieve requirement

5), while the arrival-time consistency requirement (6) is enforced

ia Eq. (8). In principle, any valid asymmetric TSP formulation can

e used to model (5), and we refer the interested reader to Öncan,

ltınel, and Laporte (2009), Godinho, Gouveia, and Pesneau (2011)

nd Roberti and Toth (2012) for recent surveys of such formulations.

s long as binary arc variables are encoded explicitly, one can in con-

unction use Eq. (8) to enforce requirement (6) for a comprehensive

onTSP formulation. Consequently, known tightness results and re-

ationships between the utilized asymmetric TSP formulations will

ersist in their ConTSP counterparts. On that note, Roberti and Toth

2012) conducted a comparison of exact algorithms for the asym-

etric TSP and found the branch-and-cut algorithm of Fischetti et al.

2007), which is based on the TSP formulation by Dantzig et al. (1954),

o be the most efficient computationally; hence, our Formulation 1

s expected to also be the most efficient among the formulations in

ts class. Formulations 2 and 3, however, follow a different model-

ng paradigm. These formulations encode travel times explicitly, and

hey use this information to enforce requirement (6) without hav-

ng to introduce the IPEC (8). While this precludes a straightforward

nalysis of tightness relationships among our three ConTSP formu-

ations, we present in Section 6.1 empirical evidence indicating that

he dual bound obtained using the LP relaxation of Formulation 1 is

lways stronger than the bounds obtained using the LP relaxations of
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ormulations 2 and 3, while no empirical dominance relationship can

e inferred between the latter two formulations.

. Valid inequalities

Let us define the ConTSP polytope, PCONTSP, to be the convex hull

f all integer feasible solutions of Formulation 1,

CONTSP = conv
{

x ∈ R

∑
p∈P |Ap| : x satisfies (2), (3), (4), (7), (8)

}
.

Several families of inequalities are valid for PCONTSP. These include

ll inequalities that are valid for the asymmetric TSP. Note that an

nequality that is valid for any of the asymmetric TSP instance asso-

iated with a period p ∈ P can be directly applied on the ConTSP in-

tance. In our study, we consider Subtour Elimination and 2-matching

onstraints. In addition, we consider the cross-period Inconsistent

ath Elimination Constraints introduced earlier in Section 3.1. As dis-

ussed, the inclusion of SEC and IPEC is necessary for Formulation 1,

hich relies on these inequalities to eliminate subtours and enforce

rrival-time consistency, respectively. The inequalities are redundant

or Formulations 2 and 3, as long as the integrality restrictions (2)

n the variables xijp are retained; however, they are still capable of

trengthening the linear relaxation and should, thus, be used in con-

unction with these formulations as well. In fact, the use of these

nequalities as cutting planes is of fundamental importance from a

ractical point of view. For the instances we considered in our com-

utational study (see Section 6), adding the cutting planes was very

elpful in expediting the proof of optimality.

.1. Subtour elimination constraints

These inequalities, which were introduced as constraints (7), for-

id the occurrence of subtours and enforce the overall connectivity

f the tour. Note however that, because of the degree constraints (3)

nd (4), the SEC defined by a vertex set S ⊂ Vp ∪ {0} and its comple-

ent Sc = (Vp ∪ {0}) \ S (see Eq. 14 below) are equivalent. To that end,

ne may use form (14) as an alternate to form (7). Numerical criteria,

uch as constraint sparsity (which depends on the size of set S), can

e used to decide which of the two forms to utilize as a cutting plane

n each case.∑
i, j)∈A(Sc)

xi jp ≤ |Sc| − 1 ∀ S ⊆ Vp ∪ {0} : 2 ≤ |S| ≤ |Vp| − 1,

∀ p ∈ P (14)

.2. 2-matching constraints

The 2-matching Constraints (also known as Blossom Inequalities)

re particular cases of a more general class of inequalities that is

eferred to as Comb Inequalities (Fischetti, 1991). For a given pe-

iod p ∈ P and given vertex sets H, T1, T2, . . . , Tk ⊂ Vp, where k ≥ 3

nd odd, satisfying (i) |H ∩ Ti| = 1 for i = 1, . . . , k, (ii) |Ti \ H| = 1

or i = 1, . . . , k, (iii) Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k, the corresponding

-matching Constraint (2MC) is presented in Eq. (15).

∑
i, j)∈A(H)

xi jp +
k∑

i=1

∑
(i, j)∈A(Ti)

xi jp ≤ |H| + k − 1

2
(15)

Such constraints are obtained by adding the degree constraints (3)

nd (4) for all i ∈ H, adding the subtour elimination constraints (7)

efined by the vertex sets S = Ti for all i ∈ {1, . . . , k}, dividing by 2,

nd rounding down the right hand side to the nearest integer. More

eneral Comb Inequalities may be obtained by relaxing conditions (i)

nd (ii) above as follows: |H ∩ Ti| ≥ 1 and |Ti�H| ≥ 1 for i = 1, . . . , k.

onstraint (15) may be equivalently cast in the form (16). As before,
onstraint sparsity can be used in each case to decide whether a cut-

ing plane should be represented in form (15) or form (16).

∑
i, j)∈δ(H)\(⋃k

i=1 A(Ti))

xi jp −
k∑

i=1

∑
(i, j)∈A(Ti)

xi jp ≥ 1 − k. (16)

.3. Inconsistent path elimination constraints

These inequalities, which were introduced in Section 3.1, are

ross-period constraints that forbid pairs of paths belonging to dif-

erent periods that are inconsistent to simultaneously appear in the

olution. Given a pair of paths {P, Q}, where P = (v1, . . . , vs)
p and

= (w1, . . . , wt)
q
, the basic form of the inequality that forbids their

imultaneous occurrence is presented in Eq. (17).

s−1

i=1

xvivi+1 p +
t−1∑
i=1

xwiwi+1q ≤ s + t − 3 (17)

owever, it is possible to strengthen this basic form (see also

scheuer et al. (2000) for how to strengthen the infeasible path

limination constraints they proposed in the context of the TSPTW).

n particular, it can be strengthened into the so-called Tournament

onstraint (18).

s−1

i=1

s∑
j=i+1

xviv j p +
t−1∑
i=1

t∑
j=i+1

xwiwjq ≤ s + t − 3 (18)

Furthermore, for a given inconsistent pair of paths {P, Q} as de-

cribed above, let the paths obtained by reversing paths P and Q be

enoted as P′ = (vs, . . . , v1)
p and Q ′ = (wt , . . . , w1)

q
, respectively. If

ll three pairs of paths {P, Q′}, {P′, Q} and {P′, Q′} are also inconsistent,

hen the symmetric inequality (19), which corresponds to a lifting of

nequality (17), is also valid and can be used instead of the latter.

s−1

i=1

(
xvivi+1 p + xvi+1vi p

)
+

t−1∑
i=1

(
xwiwi+1q + xwi+1wiq

)
≤ s + t − 3 (19)

Finally, if {P1, Q1} and {P2, Q2} are two inconsistent pairs of paths

n periods p and q, such that P1 is contained in P2 and Q1 is contained

n Q2, then the IPEC defined by {P2, Q2} is dominated by the one de-

ned by {P1, Q1}.

.4. Polyhedral analysis

A polyhedral analysis to determine whether the inequalities con-

idered above are facet-defining for PCONTSP is typically a difficult task.

or a fixed graph size, |Vp|, and for fixed L, small changes in the travel

imes tij can change the dimension of PCONTSP or even make the en-

ire instance infeasible. Although there may exist specific instances in

hich individual inequalities coincide with facets of PCONTSP, in gen-

ral none of the three families of inequalities induces facets of the

olytope, even if the instance is feasible. This observation is interest-

ng inasmuch it implies that known polyhedral results for asymmet-

ic TSP do not carry over to the case of ConTSP. For example, all SEC are

nown to induce facets of the asymmetric TSP polytope for the case of

≥ 4 (Grötschel & Padberg, 1985), while all 2MC are known to be

acet-defining for the asymmetric TSP polytope for the case of n ≥ 6

Fischetti, 1991). However, as Proposition 1 shows, this is not true for

he ConTSP.

roposition 1. The Subtour Elimination, 2-matching and Inconsistent

ath Elimination Constraints do not induce facets of PCONTSP, in general.

roof. Consider a ConTSP instance with n = 7, h = 2, V1 =
1, 2, 3, 4, 5, 6} and V2 = {1, 7}. The arrival-time consistency re-

uirement applies only to node 1, since node 1 is the only cus-

omer node common to both periods 1 and 2. Assume that the
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Fig. 1. Travel times for the ConTSP instance considered in the proof of Proposition 1.
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travel times are symmetric and are as depicted in Fig. 1. For a

maximum allowable arrival-time differential of L = 1, it is straight-

forward to see that all feasible ConTSP solutions are of the form{〈0, 1, i2, . . . , i6〉1
, 〈0, 1, 7〉2

}
, where i2, . . . , i6 is some permutation

of nodes 2 through 6. In this case, one may verify that the rank of the

set of feasible solutions is 20 and that 0 does not participate in the

affine hull of this set.8 Therefore, the affine rank of PCONTSP is 20 and

dim (PCONTSP) = 19.

By a similar reasoning as above, it can be verified that the face in-

duced by the SEC of the form (7), where p = 1 and S = {0, 2, 3}, is of

dimension equal to 8 and, therefore, this inequality does not induce a

facet of PCONTSP. The face induced by the 2MC of the form (15), where

p = 1, k = 3, H = {0, 1, 2}, T1 = {0, 3}, T2 = {1, 4} and T3 = {2, 5}, is

of dimension equal to 7 and, therefore, this inequality does not in-

duce a facet of PCONTSP. In fact, it can be verified that none of the

Comb Inequalities that are possible in period 1 (which include, as

a special case, all 2-matching Constraints), induce facets of PCONTSP.

Finally, consider the IPEC of the form (8), where P = (0, 2, 1)1 and

Q = (0, 7, 1)2. It can be verified that this inequality does not induce

a face of PCONTSP, i.e., there is no integral point in PCONTSP that satis-

fies this inequality as an equality; therefore, it is not facet-defining

for PCONTSP. �

5. Branch-and-cut framework

We implemented three separate branch-and-cut algorithms, one

based on each of the formulations presented in Sections 3.1, 3.2

and 3.3. At the interest of working with sufficiently tractable linear

programming (LP) relaxations, a subset of applicable constraints

are initially ignored and added later as cutting planes, if necessary.

More specifically, in the case of Formulation 1, the initial LP relax-

ation consisted only of the degree constraints (3) and (4), along with

continuous bounds on the x variables (relaxation of the integrality re-

strictions (2)). In the case of Formulation 2, constraints (9)–(11) were

considered, along with the degree constraints and variable bounds,

while in the case of Formulation 3, the initial LP relaxation consisted

of constraints (12) and (13), in addition to the degree constraints

and variable bounds.

The SEC, 2MC and IPEC were considered in all cases as cutting

planes and dynamically added back to the applicable model, when

found to be violated, at each node of the search tree. At the root node,

if we are unable to generate any additional violated inequalities, we

permanently fix nonbasic x variables to their current values using

reduced cost information. Let UB be the current (incumbent) upper

bound (obtained through a heuristic or otherwise) and let LB be

the global (root-node) lower bound obtained from the applicable LP

relaxation. Let c̄i jp be the reduced cost of each nonbasic variable xijp

in the root-node LP solution. Then, if xi jp = 0 and LB + c̄i jp > UB, we

can fix this variable to zero. Conversely, if xi jp = 1 and LB − c̄i jp > UB,

then we can fix this variable to one. In a similar manner, using a

local lower bound, one may set non-basic x variables to their current

values in the sub-tree associated with each node of the search
8 This may be verified numerically by showing the following linear system (in vari-

ables λi ∈ R) to be infeasible:
∑

i∈F xiλi = 0,
∑

i∈F λi = 1. Here, {xi}i ∈ F is the set of fea-

sible ConTSP solutions.

l

v

o

c

rocess. These fixings ensure that the variables are never branched

pon in the corresponding sub-trees. The remainder of this section

laborates on our separation routines and associated protocols.

.1. Separation routines

.1.1. Subtour elimination constraints

In our implementation, we utilize both heuristic procedures and

n exact scheme to separate violated SEC. In particular, we first

ttempt to separate these cuts using the separation heuristics de-

cribed in Applegate et al. (2007, chap. 6). The advantage of these

outines is that they often lead to the identification of several vio-

ated inequalities, as opposed to the one most violated inequality,

nd we have found it beneficial to be adding all such identified in-

qualities in a single cutting-plane iteration. When the heuristic rou-

ines do not identify any violations, we employ the exact separation

cheme that was introduced by Padberg and Rinaldi (1990). This is a

olynomial-time routine that is based on a minimum-cut algorithm.

he overall running time of our separation routine is dominated by

he maximum-flow computations in the exact scheme, for which we

se the Boost graph library (Siek, Lee, & Lumsdaine, 2000).

.1.2. 2-matching constraints

In our implementation, we utilize both heuristic procedures and

n exact scheme to separate violated 2MC. More specifically, we first

ttempt to separate these cuts using the so-called odd-component,

rötschel-Holland and block heuristic routines described in Applegate

t al. (2007, chap. 7). Note that the latter heuristic also identifies vi-

lated general Comb Inequalities. As before, each of these heuristics

ay identify several violated inequalities, and we have found it ben-

ficial to be adding all of them in a single cutting-plane iteration. If

one of the heuristic routines succeeds in generating a violated cut,

e employ the polynomial-time exact routine proposed by Letchford,

einelt, and Theis (2004). The running time of this routine is domi-

ated by the constructor of the Gomory-Hu cut-tree and, in our im-

lementation, we utilize a code written by Skorobohatyj (2004) for

his purpose. Given its computational burden, we only employ the

xact routine during cutting-plane iterations at the root node. Alter-

atively, one may use the polynomial-time exact algorithm proposed

y Padberg and Rao (1982) to separate violated 2MC.

.1.3. Inconsistent path elimination constraints

Our separation routines to identify violated IPEC is guided by

emma 1. We use the following polynomial-time enumerative proce-

ure to identify inconsistent pairs of paths. Given a (fractional) solu-

ion x∗, consider the support graph in each time period p. This support

raph has the same node set as Gp and involves those arcs (i, j) ∈ Ap

or which x∗
i jp

> 0. By considering every node in each period’s support

raph as a start node, elementary paths are grown in a depth-first

ashion by moving along the incident outgoing arcs of strictly positive

ow. Each path P = (v1, . . . , vs)
p is extended as long as the following

wo conditions hold: (i) the total flow on the path,
∑s−1

i=1 x∗
vivi+1 p, is

trictly greater than |P| − 1
2 = (s − 1) − 1

2 , and (ii) vs �= 0, i.e., the path

as not reached the depot. Because of the first condition, an arc (i, j) ∈
p is added to the path only if x∗

i jp
> 0.5, while the path-growing pro-

edure stops as soon as all incident outgoing arcs have weight strictly

ess than 0.5. The degree constraint
∑

j∈N+
p (i) x∗

i jp
= 1 ensures that, for

ach node i, there is at most one incident outgoing arc with x∗
i jp

> 0.5.

ence, there is at most one (unique) path extending out of each node

nd the path-growing procedure terminates in polynomial time.

After all such paths have been identified in all time periods, vio-

ated inequalities (17) are identified as follows: for each pair of nodes

1, vs ∈ (Vp ∪ {0}) ∩ (Vq ∪ {0}), we consider all pairs of paths in peri-

ds p and q such that each path contains both v1 and vs. If any of the

onditions (i)–(iii) in Lemma 1 are satisfied for the pair of sub-paths
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9 As per the TSPLIB standard, all distances were rounded down to the nearest integer.

Note, however, that this assumption is not restrictive and does not invalidate any of the

theoretical results presented in this paper.
10 We computed the optimal tours of these TSP instances with an in-house exact TSP

solver implementation. We found this to be a rather trivial task, as each single period

of a ConTSP instance involved no more than 50 customers.
11 Assuming the optimal traveling salesman tours are to be traversed along an 8-hour

shift of driving, a value of L = 10% corresponds to a maximum arrival time-difference

of 48 minutes (i.e., a guaranteed arrival time within 24 minutes of some nominal time),

while L = 20% corresponds to double that amount. To further put this into perspective,

it should be remarked that, for the benchmark problems we considered, the maximum

arrival-time difference (across all customers) of the multi-period solution that consists

of the optimal traveling salesman tours in each period (whereby no consistency is en-

forced) is approximately 68% of the maximum vehicle travel-time across periods, i.e., a

5 hours and 26 minutes window within the 8-hour shift, on average. Therefore, arrival-

time consistency at reasonable levels would not be enforced using a purely cost-based

routing approach, further motivating the need for considering the ConTSP.
12 Optimality gaps in this study are defined as UB−LB

UB
× 100% percent, where UB is

the global upper bound and LB is the global lower bound of the branch-and-cut tree.

Root-node gaps correspond to optimality gaps after processing the root of the search

tree.
orresponding to v1 and vs as terminal nodes, then we have identified

violated inequality.

For every pair of paths that satisfy either condition (ii) or (iii) in

emma 1, we check whether the corresponding IPEC of the form (17)

an be lifted to the symmetric inequality (19) (see Section 4.3). If such

lifting is not possible, we add the corresponding Tournament Con-

traint (Eq. 18), because any pair of paths which violates inequality

17) also violates (18), and we have found it computationally benefi-

ial to enforce the IPEC via the latter, stronger form. We remark that,

f the solution x∗ is integral and does not contain any subtours, then

ondition (i) of Lemma 1 is sufficient to guarantee the exactness of

he separation procedure.

Our computational experiments indicated that the number of vi-

lated IPEC identified during a given cutting-plane iteration at a node

f the branch-and-cut tree may be very large, especially for Formu-

ation 1. For this reason, we attempt to reduce the number of con-

traints added to the constraint matrix in the following two ways:

i) we remove any dominated inequalities (see Section 4.3), and (ii)

henever the number of violated inequalities exceeds 2|V|, we calcu-

ate for each cut (considered here as being of form 18) the ratio be-

ween its absolute violation at the current solution and the number

f non-zero coefficients in the cut, namely

s−1∑
i=1

s∑
j=i+1

x∗
viv j p +

t−1∑
i=1

t∑
j=i+1

x∗
wiwjq

− (s + t − 3)

1
2

s(s − 1) + 1
2

t(t − 1)
,

nd we only add to the constraint matrix the 2|V| cuts with the

ighest such ratio.

.2. Separation protocol

We attempt to separate violated inequalities at each node of the

ranch-and-cut tree in the following sequence: (i) SEC for each time

eriod p ∈ P, (ii) 2MC for each time period p ∈ P, and (iii) IPEC for

ach pair of time periods p, q ∈ P : p < q. When we identify violated

embers of any of the above families of cuts in a given time period,

hen no attempt is made to separate members of other families of

uts that appear further in the separation sequence and that involve

ariables from that time period. At any given node other than the root

ode, whenever new cuts are added but the objective function value

id not improve by at least 0.1 percent in the last 20 cutting-plane

terations, we exit the separation sequence and resort to branch-

ng. At the root node, we have found it beneficial to keep separat-

ng as many cuts as possible before branching, even if the lower

ound does not show significant improvement at that moment. Fi-

ally, we remark that, since all inequalities considered are valid glob-

lly (i.e., throughout the branch-and-cut tree), any violated inequality

dentified is added as a global cut.

. Computational results

Since no benchmark data sets are currently available for the Con-

SP in the open literature, we compiled a set of benchmark prob-

ems by extending symmetric and asymmetric TSP instances from

he well-known TSPLIB library (Reinelt, 1991) into 3- and 5-period

onTSP instances. In particular, we considered all 23 instances that

nvolve up to 50 customers (i.e., 51 nodes). For each TSPLIB instance,

e constructed 3- and 5-period ConTSP instances in a manner sim-

lar to that proposed by Groër et al. (2009) for the ConVRP. More

pecifically, we considered each of the n customers to have a prob-

bility f of requiring service in each period, where f ∈ {0.5, 0.7, 0.9}.

ote that, in general, this results in instances in which a different

umber of customers require service in each time period; however,

he average number of customers (across periods) is approximately
n. The distances acquired from the TSPLIB data9 were interpreted

s being both travel costs (cij) and travel times (tij), while we as-

umed all service times (si) to be zero. The first node in each of

hese data sets was arbitrarily regarded to be the depot. For every

esulting multi-period instance, we selected the maximum allow-

ble arrival-time differential, L, to be 10, 15 or 20 percent of the

aximum (across periods) travel time of the corresponding optimal

single-period) traveling salesman tours,10 which correspond to prac-

ically reasonable selections for a required level of consistency.11 The

verall process resulted in nine 3-period and nine 5-period instances

or each of the original TSPLIB problems, for a total of 414 ConTSP

enchmark instances. These instances are available for download at

ttp://gounaris.cheme.cmu.edu/datasets/contsp/.

In order to fairly compare among the different formulations we

onsider in this study, we explicitly supplied in each case the best

vailable solution as an initial incumbent and we disabled any heuris-

ic effort by the solver to obtain a better incumbent. By doing so,

e eliminate the effect of the solver’s (heuristic) primal bounding

ffort, and we can better appreciate the performance of our (exact)

ranch-and-cut framework in terms of its ability to generate dual

ounds and prove optimality. All implementations were developed

n the C++ programming language using the C API of ILOG CPLEX 12.6

nd compiled using the GCC 4.8.2 compiler with optimization level

O2. We used the default CPLEX strong branching and best-bound

ode selection strategies. Moreover, unless otherwise mentioned, all

PLEX-generated cuts were disabled because we observed that using

hese general-purpose cuts increased overall computation times. All

omputations were conducted on a single-core (non hyper-threaded)

f an Intel Xeon 2.8 GHz processor with a software-imposed mem-

ry limit of 3 GB RAM. Computational times reported correspond to

ctual “wall-clock” times.

.1. Tightness of alternative formulations and effect of valid inequalities

In order to gain some insight about the tightness of the three for-

ulations proposed in Section 3, we compare in Table 2 the corre-

ponding root-node gaps.12 The reported gap values constitute an

verage across all nine 3-period and nine 5-period ConTSP instances

onstructed from the TSPLIB data indicated in the first column. Fur-

hermore, we report in each case, four characteristic root-node gap

uantities, as follows: (C0) the gap obtained using the initial LP re-

axation (as described in the preamble of Section 5), before any cut

eparation; (C1) the gap obtained after separation of SEC; (C2) the

ap obtained after separation of SEC and 2MC; (C3) the gap obtained

fter separation of SEC, 2MC and IPEC. This analysis helps us appreci-

te the effect that each of the three families of cuts we consider in this

http://gounaris.cheme.cmu.edu/datasets/contsp/
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Table 2

Root-node gaps (%) obtained using each of the proposed formulations after various levels of separation of valid inequalities.

Formulation 1 Formulation 2 Formulation 3

Instance C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

burma14 19.96 0.84 0.84 0.47 12.05 0.84 0.84 0.84 9.21 0.84 0.84 0.84

ulysses16 17.24 0.91 0.91 0.42 11.91 0.91 0.91 0.91 8.45 0.91 0.91 0.86

br17 59.85 0.00 0.00 0.00 32.83 0.00 0.00 0.00 49.20 0.00 0.00 0.00

gr17 22.13 0.73 0.73 0.60 10.98 0.73 0.73 0.73 15.50 0.73 0.73 0.73

gr21 13.24 0.31 0.28 0.21 1.47 0.31 0.28 0.28 7.41 0.31 0.28 0.28

ulysses22 22.41 0.12 0.12 0.04 13.45 0.11 0.11 0.11 12.93 0.12 0.12 0.12

gr24 16.62 0.96 0.91 0.84 5.24 0.96 0.91 0.90 12.37 0.96 0.91 0.90

fri26 20.29 1.58 1.39 1.32 7.71 1.58 1.39 1.39 16.67 1.58 1.39 1.38

bayg29 11.23 1.15 1.12 0.89 5.21 1.15 1.12 1.12 8.06 1.15 1.12 1.12

bays29 14.42 0.56 0.49 0.40 4.64 0.56 0.49 0.49 11.71 0.56 0.49 0.48

ftv33 13.38 4.02 3.81 3.66 8.37 4.00 3.79 3.70 12.10 3.78 3.60 3.60

ftv35 10.94 3.81 3.56 3.50 6.91 3.79 3.55 3.52 9.32 3.74 3.56 3.54

ftv38 8.80 3.84 3.74 3.66 6.10 3.83 3.73 3.66 7.83 3.74 3.63 3.59

dantzig42 24.70 1.35 1.22 1.06 12.11 1.35 1.22 1.22 16.43 1.35 1.22 1.22

swiss42 21.57 1.58 1.33 1.13 6.98 1.58 1.33 1.33 18.80 1.58 1.33 1.32

p43 76.90 0.11 0.11 0.10 52.87 0.11 0.10 0.10 72.70 0.10 0.10 0.10

ftv44 10.69 4.24 3.79 3.79 6.79 4.24 3.80 3.80 9.78 4.23 3.78 3.78

ftv47 8.87 3.19 3.14 3.14 5.03 3.19 3.14 3.14 7.99 3.15 3.11 3.11

att48 22.20 1.42 1.37 1.25 10.79 1.42 1.37 1.37 18.19 1.42 1.37 1.37

gr48 16.58 1.29 0.94 0.88 6.12 1.29 0.95 0.95 13.56 1.29 0.94 0.94

hk48 17.59 1.51 1.39 1.33 5.75 1.51 1.39 1.39 14.37 1.51 1.39 1.39

ry48p 14.86 1.76 1.63 1.63 8.78 1.76 1.63 1.63 12.55 1.67 1.55 1.55

eil51 15.36 2.50 1.66 1.59 4.78 2.50 1.66 1.66 13.55 2.50 1.65 1.65

Avg. (sym.) 18.37 1.12 0.98 0.83 7.95 1.12 0.98 0.98 13.15 1.12 0.98 0.97

Avg. (asym.) 25.54 2.62 2.47 2.43 15.96 2.61 2.47 2.45 22.69 2.55 2.42 2.41

Avg. (all) 20.86 1.64 1.50 1.39 10.73 1.64 1.50 1.49 16.47 1.62 1.48 1.47
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study has on each formulation’s tightness. Note that, in order to en-

sure a fair comparison, we had disabled all CPLEX options pertaining

to performing any possible MIP-based bound strengthening.

We observe that the initial LP bounds (gaps C0) are generally

weak, in the order of 10 to 20 percent, but these bounds get signif-

icantly reduced, down to roughly 1.6 percent, when violated SEC are

added as cutting planes (gaps C1). The additional separation of 2MC

further reduces the gaps by 0.14 percent, on average. The gaps C2 are

indicative of the strength of the lower bounds possible after sepa-

rating over all the structural, TSP-related cuts. Finally, the separation

of IPEC further improves the bounds, on average, by 0.11 percent for

Formulation 1 and by 0.01 percent for Formulations 2 and 3 (gaps C3).

Note that the gaps C3 constitute the effective “root-node gaps” of our

branch-and-cut framework.

Comparing across formulations, Formulation 1 has the weakest

initial LP bound, while the strongest initial LP bound is featured by

Formulation 2. However, Formulation 1 appears to be more amenable

for bound improvement after separation of valid inequalities. More

specifically, after the separation of all three families of cuts consid-

ered in this study (gaps C3), the lower bounds of Formulation 1 be-

come stronger and are higher by 0.10 and 0.08 percent, on average,

compared to the respective bounds of Formulations 2 and 3. In 81 out

of the 414 instances considered, the final root-node gaps (C3) were

equal in all three formulations. In the remaining 333 instances, the

root node bound of Formulation 1 was strongest in 215 instances,

while those of Formulations 2 and 3 were strongest in 9 and 93 in-

stances, respectively. Table 2 also shows the averages across the sym-

metric and asymmetric instances separately. It is interesting to note

that Formulation 3 provided the strongest bound in most of the asym-

metric instances, while Formulation 1 gave the strongest bound in

most of the symmetric instances. This can be attributed to the fact

that, while Formulation 3 is inherently asymmetric, Formulation 1

takes into account any asymmetry only through the IPEC. It remains

to be investigated whether the addition of any cuts specific to the

asymmetric TSP polytope (see, e.g., Fischetti & Toth, 1997) can signif-

icantly improve our lower bounds.

s

Table 3 presents the time spent and the number of cuts added at

he root node during the runs that resulted in gaps C3; that is, af-

er separation of all three families of cuts (SEC, 2MC and IPEC). Each

eported value is averaged across 18 instances (similarly to Table 2).

he average time spent at the root node is lowest in Formulation 1

nd highest in Formulation 3. Thus, Formulation 1 is able to provide

stronger bound in a smaller amount of time, on average. We fur-

her observe that, at the root node, the number of IPEC added in the

ases of Formulations 2 and 3 is negligible. This is probably because

he explicit arrival-time consistency constraints (11) and (13) in these

ormulations prevent the frequent occurrence of (fractional) incon-

istent paths for us to separate.

.2. Performance of branch-and-cut framework

We attempted to solve all of our 414 benchmark problems using

ach of the branch-and-cut algorithms under a time limit of 2 hours.

he goal of this study was to determine if there is a clear “winner”

mongst the formulations. In Table 4, we report for each formulation

he number of instances (out of 18) for which optimality was proved

s well as the total number of branch-and-cut nodes explored and

ime required (averaged across all instances for which optimality was

roved). For those instances which could not be solved in 2 hours, the

esidual gap (i.e., optimality gap at the time limit) is reported as an

verage. The three formulations are also compared in Fig. 2, in which

e plot performance profiles (Dolan & Moré, 2002) across the totality

f our data set.

Within the imposed time limit of 2 hours, Formulations 1, 2 and

were able to prove the optimality of 308, 291 and 297 instances

espectively. Out of the 414 instances, the optimality of 96 instances

ould not be proved by any of the 3 formulations within the time

imit. In the remaining 318 instances, the branch-and-cut framework

ased on Formulation 1 was fastest in 90 percent (285) of the in-

tances, the one based on Formulation 2 in 2 percent (7), while the

ne based on Formulation 3 was fastest in 8 percent (26) of the in-

tances. For the 96 instances in which none of the algorithms could
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Table 3

Time spent and number of cuts added at the root node.

Formulation 1 Formulation 2 Formulation 3

Instance t (sec) SEC 2MC IPEC t (sec) SEC 2MC IPEC t (sec) SEC 2MC IPEC

burma14 0.01 32.6 0.7 39.9 0.03 14.0 0.0 0.8 0.06 29.9 0.0 0.8

ulysses16 0.01 45.1 2.6 46.3 0.04 21.0 0.3 0.3 0.10 39.3 0.3 0.5

br17 0.00 40.6 0.2 1.3 0.02 30.2 0.1 0.1 0.04 47.4 0.0 0.0

gr17 0.01 51.0 0.0 38.3 0.05 23.6 0.0 0.4 0.15 49.0 0.0 1.3

gr21 0.01 37.7 0.3 48.3 0.06 6.6 0.3 0.3 0.29 37.5 0.3 0.2

ulysses22 0.02 67.2 1.3 42.6 0.09 35.2 0.0 0.1 0.37 63.7 0.0 0.1

gr24 0.03 47.9 3.6 52.4 0.14 15.4 2.2 1.5 0.51 45.9 2.2 2.8

fri26 0.03 61.9 4.4 43.4 0.13 31.4 4.0 0.3 0.67 69.7 4.4 0.6

bayg29 0.05 72.1 4.5 72.4 0.19 25.7 2.3 0.2 0.95 65.6 2.3 0.3

bays29 0.04 68.0 8.3 57.9 0.30 27.9 4.7 0.2 1.21 66.3 4.5 1.1

ftv33 0.05 67.9 27.7 22.3 0.27 50.0 22.8 3.6 1.63 76.8 33.6 0.0

ftv35 0.04 69.4 22.5 14.1 0.20 51.0 22.8 2.1 1.77 76.4 22.8 0.2

ftv38 0.04 62.7 22.7 1.2 0.26 51.4 23.7 0.3 2.94 76.0 39.9 0.6

dantzig42 0.10 113.4 5.2 56.1 0.72 49.2 3.9 0.0 5.61 105.8 3.8 0.0

swiss42 0.17 101.7 17.4 116.6 1.33 43.8 10.8 0.1 6.46 113.8 11.8 0.2

p43 0.51 134.7 46.3 41.7 2.08 89.7 49.4 0.3 80.49 189.9 63.6 0.1

ftv44 0.06 83.7 60.3 0.0 0.43 59.7 63.7 0.0 8.90 87.1 63.0 0.0

att48 0.17 164.1 7.3 73.2 1.45 79.4 4.3 0.0 11.47 161.1 4.6 0.0

ftv47 0.09 70.9 33.4 7.7 0.54 55.1 35.7 3.2 12.71 78.9 35.7 0.0

gr48 0.16 125.9 27.1 54.8 2.52 53.3 24.1 0.1 23.19 137.4 24.3 0.2

hk48 0.11 113.9 17.6 44.7 1.49 49.7 9.4 0.2 13.77 137.6 13.7 0.4

ry48p 0.08 161.9 29.8 0.3 0.60 110.2 28.6 0.1 11.83 174.7 32.9 0.1

eil51 0.40 131.4 72.9 168.5 3.21 53.1 46.9 0.0 29.07 137.9 51.6 0.1

Avg. (sym.) 0.09 82.2 11.5 63.7 0.78 35.3 7.6 0.3 6.26 84.0 8.3 0.6

Avg. (asym.) 0.11 86.5 30.4 11.1 0.55 62.2 30.9 1.2 15.04 100.9 36.4 0.1

Avg. (all) 0.10 83.7 18.1 45.4 0.70 44.6 15.7 0.6 9.31 89.9 18.1 0.4

Table 4

Computational comparison of branch-and-cut algorithms.

Formulation 1 Formulation 2 Formulation 3

Proven optimal Residual gap Proven optimal Residual gap Proven optimal Residual gap

Instance # Nodes t (sec) # (%) # Nodes t (sec) # (%) # Nodes t (seconds) # (%)

burma14 18 30.2 0.1 0 – 18 15.2 0.4 0 – 18 19.2 1.3 0 –

ulysses16 18 23.5 0.1 0 – 18 15.7 0.5 0 – 18 19.9 2.8 0 –

br17 18 0.0 0.0 0 – 18 0.0 0.1 0 – 18 0.0 0.1 0 –

gr17 18 171.3 1.8 0 – 18 91.8 2.9 0 – 18 32.6 7.0 0 –

gr21 18 12.6 0.1 0 – 18 11.3 0.3 0 – 18 7.3 0.7 0 –

ulysses22 18 2.7 0.1 0 – 18 2.7 0.5 0 – 18 3.3 2.5 0 –

gr24 18 1,025.7 88.7 0 – 18 714.9 183.3 0 – 18 646.2 398.6 0 –

fri26 18 6,656.2 513.4 0 – 16 4,985.2 860.8 2 0.20 17 1,742.4 518.1 1 0.20

bayg29 17 3,489.2 416.9 1 1.77 17 1,243.9 190.3 1 1.25 17 239.9 95.2 1 1.25

bays29 18 240.9 5.1 0 – 18 170.4 36.0 0 – 18 105.8 47.5 0 –

ftv33 11 186.7 3.3 7 1.69 11 263.5 66.8 7 2.41 11 111.3 220.6 7 2.41

ftv35 10 10,955.2 1,267.8 8 1.05 9 5,341.9 1,374.0 9 1.34 8 3,058.3 1,986.7 10 1.34

ftv38 8 3,623.3 323.9 10 1.61 7 3,073.4 477.1 11 2.00 7 1,401.9 547.1 11 2.00

dantzig42 16 1,497.2 78.9 2 0.41 16 2,051.7 618.7 2 0.49 15 432.5 720.1 3 0.49

swiss42 16 3,584.1 518.8 2 0.49 16 2,316.6 928.3 2 0.68 15 1,753.3 1,285.6 3 0.68

p43 0 – – 18 0.05 1 12,286.0 3,242.7 17 0.04 3 1,415.3 2,311.1 15 0.04

ftv44 6 21,588.7 2,496.7 12 1.81 4 14,962.5 2,607.4 14 2.01 2 8,205.5 4,755.0 16 2.01

att48 13 8,073.8 1,091.4 5 0.74 10 3,498.7 1,718.0 8 0.80 10 1,755.1 1,931.9 8 0.80

ftv47 6 6,104.0 891.8 12 1.25 5 913.8 243.8 13 1.72 5 370.0 346.6 13 1.72

gr48 13 3,406.9 353.5 5 0.39 12 1,949.4 1,221.2 6 0.74 13 1,026.4 1,426.4 5 0.74

hk48 11 6,580.9 743.3 7 0.90 8 3,631.5 853.1 10 0.52 11 1,173.5 1,299.8 7 0.52

ry48p 13 12,969.0 866.3 5 0.38 10 5,490.6 1,709.1 8 0.78 12 1,133.1 1,532.2 6 0.78

eil51 6 8,924.5 1,324.7 12 1.08 5 3,505.6 1,935.7 13 1.24 7 1,329.9 1,702.3 11 1.24

Low L 98 3,533.2 378.2 40 1.17 92 1,860.4 478.6 46 1.20 90 548.6 546.0 48 1.38

Med. L 104 2,958.3 267.0 34 0.94 99 1,537.6 456.8 39 1.01 103 750.4 625.6 35 1.27

High L 106 3,624.2 420.7 32 0.80 100 1,748.8 533.0 38 0.83 104 764.9 557.8 34 0.99

3-period 179 2,949.4 332.1 28 0.79 172 1,638.6 427.5 35 0.83 177 767.2 586.8 30 1.07

5-period 129 3,954.6 387.5 78 1.05 119 1,818.7 580.0 88 1.10 120 586.9 564.4 87 1.29

Sym. 236 2,384.5 264.9 34 0.84 226 1,301.6 416.5 44 0.80 231 582.7 488.6 39 0.83

Asym. 72 6,602.0 651.4 72 1.05 65 3,140.0 745.0 79 1.15 66 1,085.0 889.6 78 1.44

All 308 3,370.4 355.3 106 0.98 291 1,712.2 489.9 123 1.03 297 694.3 577.7 117 1.24
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Table 5

Time spent in separation routines and number of cuts added (averaged across all 414 ConTSP instances).

Formulation Sep. time (%) Cuts SEC (%) 2MC (%) IPEC (%)

1 8.42 3,689 27.6 7.8 64.6

2 1.43 1,378 41.0 15.8 43.2

3 0.73 563 61.2 17.6 21.3
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Fig. 2. Log-scaled performance profiles across all 414 ConTSP benchmark instances.

Table 6

Cost of providing consistent service (aver-

aged across all instances).

Low L Med. L High L

f = 50% 1.85 1.32 1.09

f = 70% 2.10 1.64 1.37

f = 90% 0.99 0.75 0.67

h = 3 1.52 1.18 1.03

h = 5 1.77 1.30 1.06

1.65 1.24 1.05
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prove optimality after 2 hours, the final optimality gap featured by

Formulation 1 was tightest in 71 instances and was second best in

13 instances; Formulation 2 was best in 9 instances and second best

in 72 instances, while Formulation 3 was best in 16 instances and

second best in 11 instances. Although there does not appear to be

any one formulation that performs best across the whole range of

instances, Formulation 1 clearly dominates in terms of number of in-

stances solved, quality of lower bounds obtained and solution times.

Table 4 also summarizes separately the computational performance

on instances with low, medium and high levels of the maximum

allowable arrival-time differential (L), on 3-period and 5-period in-

stances, as well as on symmetric and asymmetric instances. We ob-

serve that, on average, the instances with lower values of L (higher

service quality), higher number of periods and asymmetric travel

costs are harder to solve than their counterparts with higher values

of L (lower service quality), lower number of periods and symmetric

costs, respectively.

To better demonstrate the usefulness of the proposed branch-and-

cut framework, we also attempted to solve all of the 414 instances

with CPLEX in its default setting; that is, with a branch-and-cut im-

plementation that uses general-purpose cuts only, and without sep-

aration of the valid inequalities described in Section 4. We utilized

Formulations 2 and 3, which are our two formulations that are poly-

nomial in size (as opposed to Formulation 1, which is not), and can

thus serve as the basis for this experiment. As before, the best avail-

able solution was provided from the beginning as the upper bound

in each case, and a time limit of 2 CPU hours was imposed. The per-

formance of default CPLEX is also compared in Fig. 2. In summary,

using Formulations 2 and 3, default CPLEX was able to prove the opti-

mality of 182 and 246 instances, respectively. The average times were

845.9 and 664.8 seconds, the average numbers of nodes were 284,085

and 35,819, while the average optimality gaps for the unsolved in-

stances were 6.46 and 5.13 percent, respectively. We observe that

the computational performance of these formulations with default

CPLEX branch-and-cut is significantly worse than the performance

of the same formulations in the context of our proposed framework,
oth in terms of number of instances solved and in terms of residual

ptimality gaps. This observation eludes to the fact that a custom-

uilt algorithm, such as the one developed in this study, is necessary

o efficiently address the ConTSP instances we considered.

Table 5 reports, for each of the formulations, the time spent in

eparation routines as a percentage of the total computation time

subject to a time limit of 2 CPU hours, as in Table 4) as well as the

umber of different families of violated cuts identified during the

ourse of the search process. It is evident that separation time is not

major part of the total computing time, especially in the case of For-

ulations 2 and 3. The majority of the time is instead spent towards

he solution of the LP relaxations. On average, more cuts are added in

he case of Formulation 1 (predominantly IPEC), while fewer cuts are

dded in the case of Formulation 3. Comparing with the data reported

n Table 3, it is interesting to note that, although SEC are the majority

f cuts violated early in the solution process, IPEC violations become

ore common, raising the relative percentage of separated IPEC. This

an be attributed to the fact that, at deeper levels of the search-tree,

he tours are refined enough to not admit any more subtour or

-matching violations, leading to more cut separation effort towards

PEC.

To conclude, we highlight that the size of an instance does not

ecessarily correlate with solution tractability. Sometimes, instances

f larger size may solve significantly faster than some of their smaller

ounterparts. For example, the 3-period 34 node instance ftv33, at

he service frequency f = 0.7 and medium consistency level, is very

ifficult to solve with any of the 3 formulations. After 2 hours of com-

utation time, the branch-and-cut algorithm based on Formulation

was only able to close the gap down to 2.17 percent. To that end,

9,408 nodes were opened and 10,034 cuts were added. On the other

and, the 3-period 48 node instance gr48, at the same service fre-

uency and consistency levels, can be solved to optimality in under a

econd, requiring only 66 nodes and generating 286 cuts in the pro-

ess. The largest instance solved to guaranteed optimality features

1 nodes and 5 time periods. However, a number of smaller instances

ould not be solved by the framework. The smallest unsolved instance

eatures 34 nodes and 3 time periods.

.3. The price of consistency

In this section, we aim to estimate the additional cost that one

ust incur, on average, in order to provide consistent service. To that

urpose, we report in Table 6 the difference between the optimal

onTSP cost and the sum across all time periods of the costs of the op-

imal traveling salesman tours (without consistency), as a percentage

f the latter. This quantity is reported separately for each different
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evel of service frequency (f ), length of the planning horizon (h) and

aximum allowable arrival-time differential (L) considered in this

tudy, in order to also investigate the effect of these parameters on

he overall cost increase.

Our study shows that an arguably small cost increase, 1.31 per-

ent, must be incurred, on average, in order to provide consistent ser-

ice. Across all instances we considered, the required additional cost

aries between 0 and 8.25 percent, with four out of five instances

ommanding less than 2 percent of a cost increase. For low values

f the maximum allowable arrival-time differential, i.e., high levels of

ervice consistency, the additional cost that must be incurred reaches

.65 percent, on average, and this number decreases to 1.05 percent

hen consistency levels are reduced (high L). Moreover, it is interest-

ng to observe that a relatively higher cost must be incurred when the

ervice frequency is 70 percent, as opposed to when it is 50 or 90 per-

ent, and when the number of time periods is 5, as opposed to when

t is 3. We also remark that the price of consistency is, on average,

igher for asymmetric instances.

. Conclusions

Multi-period routing problems with consistency requirements

epresent a practically relevant class of problems, as distributors

an gain significant competitive advantages by providing consistent

ervice to their customers. Arrival-time consistency, i.e., the require-

ent to visit customers at approximately the same time during the

outing horizon, has been identified as one plausible avenue to add

uch value. In this paper, we introduced three mixed-integer linear

rogramming formulations for the Consistent Traveling Salesman

roblem and analyzed their potential worthiness in a branch-and-cut

ramework. This constitutes the first exact approach in the open liter-

ture that addresses a routing problem with consistency constraints.

he effectiveness of the branch-and-cut algorithm was tested on

set of benchmark problems that was compiled by extending the

ell-known TSPLIB database. Instances with up to 50 customers that

equire service over a 5-period planning horizon were solved to guar-

nteed optimality. A formulation that uses only binary variables and

hat relies on cutting planes to enforce all consistency requirements

as shown to be the most attractive from a computational viewpoint.

inally, our study suggests that a modest routing cost increase of the

rder of 1–2 percent would typically suffice so as to provide consis-

ent service. Expected benefits for the distributor, however, may well

ake up for this small cost increase. Evidently, consistency of service

onstitutes a value proposition that distributors should consider

urther.
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