CherryPick: Tracing Packet Trajectory in Software-Defined
Datacenter Networks

Praveen Tammana
University of Edinburgh

ABSTRACT

SDN-enabled datacenter network management and debugging
can benefit by the ability to trace packet trajectories. For ex-
ample, such a functionality allows measuring traffic matrix, de-
tecting traffic anomalies, localizing network faults, etc. Exist-
ing techniques for tracing packet trajectories require either large
data collection overhead or large amount of data plane resources
such as switch flow rules and packet header space. We present
CherryPick, a scalable, yet simple technique for tracing packet
trajectories. The core idea of our technique is to cherry-pick the
links that are key to representing an end-to-end path of a packet,
and to embed them into its header on its way to destination. Pre-
liminary evaluation on a fat-tree topology shows that CherryPick
requires minimal switch flow rules, while using header space
close to state-of-the-art techniques.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Oper-
ations

Keywords

Network monitoring; software-defined network

1. INTRODUCTION

Software-Defined Networking (SDN) has emerged as a key
technology to make datacenter network management easier and
more fine-grained. SDN allows network operators to express the
desired functionality using high-level abstractions at the control
plane, that are automatically translated into low-level function-
ality at the data plane. However, debugging SDN-enabled net-
works is challenging. In addition to network misconfiguration
errors and failures [10, 13, 16], network operators need to en-
sure that operations at the data plane conform to the high-level
policies expressed at the control plane. Noting that traditional
tools (e.g., NetFlow, sFlow, SNME traceroute) are simply insuf-
ficient to debug SDN-enabled networks, a number of tools have
been developed recently [1, 11, 12, 14, 17, 26, 27].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SOSR2015, June 17 - 18, 2015, Santa Clara, CA, USA

Copyright 2015 ACM. ISBN 978-1-4503-3451-8/15/06...$15.00

DOI: http://dx.doi.org/10.1145/2774993.2775066.

Rachit Agarwal
UC Berkeley

Myungjin Lee
University of Edinburgh

A particularly interesting problem in SDN debugging is to be
able to reason about flow of traffic (e.g., tracing individual packet
trajectories) through the network [11, 13, 14, 16, 17, 27]. Such
a functionality enables measuring network traffic matrix [28],
detecting traffic anomalies caused by congestion [9], localizing
network failures [13, 14, 16], or simply ensuring that forward-
ing behavior at the data plane matches the policies at the con-
trol plane [11]. We discuss related work in depth in §5, but
note that existing tools for tracing packet trajectories can use
one of the two broad approaches. On the one hand, tools like
NetSight [11] support a wide range of queries using after-the-
fact analysis, but also incur large “out-of-band” data collection
overhead. In contrast, “in-band” tools (e.g., PathQuery [17] and
PathletTracer [27]) significantly reduce data collection overhead
at the cost of supporting a narrower range of queries.

We present CherryPick, a scalable, yet simple “in-band” tech-
nique for tracing packet trajectories in SDN-enabled datacenter
networks. CherryPick is designed with the goal of minimizing
two data plane resources: the number of switch flow rules and
the packet header space. Indeed, existing approaches to trac-
ing packet trajectories in SDN trade off one of these resources to
minimize the other. At one end of the spectrum is the most naive
approach of assigning each network link a unique identifier and
switches embedding the identifier into the packet header during
the forwarding process. This minimizes the number of switch
flow rules required, but has high packet header space overhead
especially when the packets traverse along non-shortest paths
(e.g., due to failures along the shortest path). At the other end
are techniques like PathletTracer [27] that aim to minimize the
packet header space, but end up requiring a large number of
switch flow rules (§3); PathQuery [17] acknowledges a similar
limitation in terms of switch resources.

CherryPick minimizes the number of switch flow rules required
to trace packet trajectories by building upon the naive approach
— each network link is assigned a unique identifier and switches
simply embed the identifier into the packet header during the
forwarding process. However, in contrast to the naive approach,
CherryPick minimizes the packet header space by selectively pick-
ing a minimum number of essential links to represent an end-to-end
path. By exploiting the fact that datacenter network topologies
are often well-structured, CherryPick requires packet header spa-
ce comparable to state-of-the-art solutions [27], while retaining
the minimal switch flow rule requirement of the naive approach.
For instance, Table 1 compares the number of switch flow rules
and the packet header space required by CherryPick against the
above two approaches for a 48-ary fat-tree topology.

Table 1: CherryPick achieves the best of the two existing
techniques for tracing packet trajectories — the minimal
number of switch flow rules required by the naive approach
and close to the minimal packet header space required by
PathletTracer [27]. These results are for a 48-ary fat-tree
topology; M and B stand for million and billion respectively.
See §3 for details.

CherryPick
Path length 4 6] 4 6 8 4 6 8

#Flowrules 48 48 48 576 1.2M 1.7B 48 48 48
#Header bits 11 22 33 10 21 31 24 36 48

PathletTracer Naive

In summary, we make three contributions:

e We design CherryPick, a simple and scalable packet tra-
jectory tracing technique for SDN-enabled datacenter net-
works. The main idea in CherryPick is to exploit the struc-
ture in datacenter network topologies to minimize number
of switch flow rules and packet header space required to
trace packet trajectories. We apply CherryPick to a fat-tree
topology in this paper to demonstrate the benefits of the
technique (§2).

We show that CherryPick can trace all 4- and 6-hop paths
in an up-to 72-ary fat-tree with no hardware modification
by using IEEE 802.1ad double-tagging (§2).

e We evaluate CherryPick over a 48-ary fat-tree topology.
Our results show that CherryPick requires minimal num-
ber of switch flow rules while using packet header space
close to state-of-the-art techniques (§3).

2. CHERRYPICK

In this section, we describe the CherryPick design in detail
with a focus on enabling L2/13 packet trajectory tracing in a fat-
tree network topology. We discuss, in §4, how this design can be
generalized to other network topologies.

2.1 Preliminaries

The fat-tree topology. A k-ary fat-tree topology contains three
layers of k-port switches: Top-of-Rack (ToR), aggregate (Agg)
and core. A 4-ary fat-tree topology is presented in Figure 1 (ToR
switches are nodes with letter T, Agg with letter A and core with
letter C). The topology consists of k pods, each of which has
a layer of k/2 ToR switches and a layer of k/2 Agg switches.
k/2 ports of each ToR switch are directly connected to servers
and each of remaining k/2 ports connected to k/2 Agg switches.
The remaining k/2 ports of each Agg switch are connected to
k/2 core switches. There are a total of k? /4 core switches where
port i on each core switch is connected to pod i.

To ease the following discussion, we group the links present
in the topology into two categories: i) intra-pod link and ii) pod-
core link. An intra-pod link is one connecting a ToR and an Agg
switch, whereas a pod-core link is one connecting an Agg and a
core switch. Note that there are k?/4 intra-pod links within a
pod and a total of k3/4 pod-core links. In addition, we define
affinity core segment, or affinity segment, to be the group of core
switches that can be directly reached by each Agg switch at a
particular position in each pod. In Figure 1, C1 and C2 in affinity
segment 1 are directly reached by Agg switches at the lefthand
side in each pod (i.e., Al, A3, A5, and A7).

Src Dst
Figure 1: A 4-ary fat-tree topology.

Routing along non-shortest paths. While datacenter networks
typically use shortest path routing, packets can traverse along
non-shortest paths due to several reasons. First, node and/or
link failures can enforce routing of packets along non-shortest
paths [5, 18, 24]. Consider, for instance, the topology in Figure 1
where a packet is being routed between Src and Dst along the
shortest path Src —» T1 — A1 —» C1 — A3 — T3 — Dst. If link
C1 — A3 fails upon the packet arrival, the packet will be forced
to traverse a non-shortest path. Second, recently proposed tech-
niques reroute packets along alternate (potentially non-shortest)
paths [20, 23, 25] to avoid congested links. Finally, misconfigu-
ration may also create similar situations. We use “detour” to col-
lectively refer to situations that force packets to traverse along a
non-shortest path. The ability to be able to trace packet trajecto-
ries in case of packet detours is, thus, important since this may
reveal network failures and/or misconfiguration issues.
However, packet detours complicate trajectory tracing due to
the vastly increased number of possible paths even in a medium-
size datacenter. For instance, given a 48-ary fat-tree topology,
the number of shortest paths (i.e., 4-hop paths) between a host
pair in different pods is just 576. On the other hand, there ex-
ist almost 1.31 million 6-hop paths for the same host pair. As
we show in §3, techniques that work well for tracing shortest
paths [27] do not necessarily scale to the case of packet detours.

Detour model. As we discuss in §4, CherryPick is designed
to work with arbitrary routing schemes. However, to ease the
discussion in this paper, we focus on a simplified detour model
where once the packet is forwarded by the Agg switch in the
source pod, it does not traverse any ToR switch other than the
ones in the destination pod. For instance, in Figure 1, consider
a packet traversing from Src in Pod 1 to Dst in Pod 2. Under this
simplification, the packet visits none of ToR switches T5, T6, T7
and T8 once it leaves T1. Of course, in practice, packets may
visit ToR switches in non-destination pods. We leave a complete
discussion of the general detour model to the full version.

2.2 Overview of CherryPick

We now give a high-level description of CherryPick design.
Consider the naive approach that embeds in the packet header
an identifier (ID) for each link that the packet traverses. For
a 48-port switch, it is easy to see that this approach requires
[log(48)] = 6 bits to represent each link. Indeed, the header
space requirement for this naive approach is far higher than the
theoretical bound, log(P) bits, where P is the number of paths
between any source-destination pair. For tracing 4-hop paths,
the naive scheme requires 24 bits whereas only 10 bits are theo-
retically required since P is 576 (P = k2 /4).

CherryPick builds upon the observation that datacenter net-
work topologies are often well-structured and allow reconstruct-
ing the end-to-end path without actually storing each link as the

packet traverses. CherryPick, thus, cherry-picks a minimum num-
ber of links essential to represent an end-to-end path. For instance,
for the fat-tree topology, it suffices to store the ID of the pod-core
link to reconstruct any 4-hop path. To handle a longer path, in
addition to picking a pod-core link, CherryPick selects one ex-
tra link every additional 2 hops. Hence, tracing any n-hop path
(n> 4) requires only (n—4)/2+1 links worth of header space’.
However, the cherry-picking of links makes it impossible to use
local port IDs as link identifiers and using global link IDs requires
a large number of bits per ID due to the sheer number of links
in the topology. CherryPick, thus, assigns link IDs in a manner
that each link ID requires fewer bits than a global ID and that
the end-to-end path between any source-destination pair can be
reconstructed without any ambiguity. We discuss in §2.3 how
CherryPick reconstructs end-to-end paths using cherry-picking
the links along with a careful assignment of non-global link IDs.

CherryPick leverages VLAN tagging to embed chosen links in
the packet header. While the OpenFlow standard [19] does not
dictate how many VLAN tags can be inserted in the header, typi-
cally commodity SDN switches only support IEEE 802.1ad double-
tagging. With two tags, CherryPick can keep track of all 1.31
million 6-hop paths in the 48-ary fat-tree while keeping switch
flow memory overhead low. As hardware programmability in
SDN switch increases [3, 12], we expect that the issue raised by
the limited number of tags can be mitigated.

2.3 Design

We now discuss CherryPick design in depth. We focus on three
aspects of the design: (1) selectively picking links that allow re-
constructing the end-to-end path and configuring switch rules to
enable link picking; (2) careful assignment of link IDs to further
minimize the packet header space; and (3) the path reconstruc-
tion process using the link IDs embedded in the packet header.

Picking links. Consider a packet arriving at an input port. We
call a link attached to the input port ingress link. For each packet,
every switch has a simple link selection mechanism that can be
easily converted into OpenFlow rules. If the packet matches one
of the rules, the ingress link is picked; and its ID is embedded
into the packet using VLAN tag.

The following describes the link selection mechanism at each
switch level, and Figure 2 shows flow rules derived from the
mechanisms:

e ToR: If a ToR switch receives the packet from an Agg switch
and if the packet’s source belongs to the same pod, the switch
picks the ingress link connected to the Agg switch that for-
warded the packet. However, if both source and destination
are in the same pod, the switch ignores the ingress link (we
use write_metadata command to implement the “do noth-
ing” operation). For all other cases, no link is picked.

o Aggregate: If an Agg switch receives the packet from a ToR
switch and if the packet’s destination is in the same pod, the
ingress link is chosen. Otherwise, no link is picked.

e Core: Core switch always picks the ingress link.

Using the above set of rules, CherryPick selects the minimum
number of links required to reconstruct the end-to-end path of
any packet. For ease of exposition, we present four examples
in Figure 3. First, Figure 3(a) illustrates the baseline 4-hop sce-
nario. In this scenario, core switch C2 only picks an ingress link
and other switches (e.g., Al, A3 and T3) do nothing. In case of

LA 2-hop path is the shortest path between servers in the same
pod, for which CherryPick simply picks one intra-pod link at Agg.

Port IP Src IP Dst Action
3 10.p0d.0.0/16 10.pod.0.0/16 write_metadata: 0x0/0x0
4 10.p0d.0.0/16 10.pod.0.0/16 write_metadata: 0x0/0x0
3 10.pod.0.0/16 * push_vlan_id: linkID(3)
4 10.pod.0.0/16 * push_vlan_id: linkID(4)

(a) ToR switch

Port IP Src IP Dst Action

10.p0d.0.0/16 push_vlan_id: linkID(1)
10.p0d.0.0/16 push_vlan_id: linkID(2)

(b) Aggregate switch

—_

Port IP Src IP Dst Action
1 * * push_vlan_id: linkID(1)
2 * * push_vlan_id: linkID(2)
3 * * push_vlan_id: linkID(3)
4 * * push_vlan_id: linkID(4)

(c) Core switch

Figure 2: OpenFlow table entries at each switch layer for
the 4-ary fat-tree. In this example, the address follows the
form of 10.pod.switch.host, where pod denotes pod number
(where switch is), switch denotes position of switch in the
pod, host denotes the sequential ID of each host. These en-
tries are stored in a separate table which will be placed at
the beginning of a table pipeline. In (a), 3 and 4 are port
numbers connected to Agg layer. In (b), 1 and 2 are port
numbers connected to ToR layer.

one detour at source pod (Figure 3(b)), T2 and C2 will choose
each ingress link of a packet while others not. A similar pick-
ing process is undertaken in case of one detour at destination
pod (Figure 3(c)). When one detour occurs between aggregate
and core switch (Figure 3(d)), only core switches which see the
detoured packet pick the ingress links.

Link ID assignment. CherryPick assigns IDs for intra-pod links
and pod-core links separately.

i) Intra-pod links: Since pods are separated by core switches,
the same set of links IDs is used across all pods. Since each pod
has (k/2)? intra-pod links, we need (k/2)? IDs. Links at the same
position across pods have the same link ID.

i) Pod-core links: Assigning IDs to pod-core links such that the
correct end-to-end path can be reconstructed while minimizing
the number of bits required to represent the ID is non-trivial. In-
deed, one way to assign IDs is to consider all pod-core links, and
assign each link a unique ID. However, there are k/4 pod-core
links and such an approach would require [log(k®/4)] many bits
per link ID. We show that this can be significantly reduced by
viewing the problem as an edge coloring problem of a complete
bipartite graph. In this problem, the goal is to assign colors to the
edges of the graph such that adjacent edges of a vertex have dif-
ferent colors. Edge-coloring a complete bipartite graph requires
a different colors where a is the graph’s maximum degree.

To view a fat-tree as a complete bipartite graph with two dis-
joint sets, we treat pod as a vertex in the first set and an affinity
core segment as a vertex in the second set (compare Figures 4(a)
and 4(b)). We group edges (links) from an Agg switch to an
affinity core segment and supersede them by one edge that we
call cluster edge (Figure 4(b)). Since the maximum degree is k
(i.e., the number of cluster edges at an affinity core segment), we
need k different colors to edge-color this bipartite graph. Note
that one cluster edge is a collection of all k/2 links. Therefore,
we need k different color sets such that each color set has k/2

Packet Trajectory

(b) (6, src pod)

—v/— Picked Link

(c) (6, dst pod)

O Picking Node

(d) (6, core)

Figure 3: An illustration of link cherry-picking in CherryPick. (x, y) means x number of hops and detour at location y.

Affinity Affinity
Segment 1) { Segment 2

(a) 4-ary fat-tree (b) A bipartite graph

(c) Uniquely colored links

Affinity
Segment 1

Affinity
Segment 2

(d) Edge-colored fat-tree

Figure 4: Edge-coloring pod-core links in a 4-ary fat-tree.

different colors and any two color sets are disjoint (Figure 4(c)).
Thus in total k(k/2) different colors are required. The actual
color assignment is done by applying a near-linear time algo-
rithm [6]. Figure 4(d) shows an accurate color allocation.

Putting it together, the number of unique IDs required is 3k%/4
((k/2)? for the intra-pod links and k(k/2) for the pod-core links).
Thus, CherryPick requires a total of [log(3k?/4)] bits to repre-
sent each link. For 48-ary and 72-ary fat-tree, CherryPick re-
quires just 11 and 12 bits respectively to represent each link.
CherryPick can thus support an up-to 72-ary fat-tree topology
using the 12 bits available in VLAN tag.

Path reconstruction. In our scheme, when a packet reaches
its destination, it contains a minimum set of link IDs necessary
to reconstruct a complete path. To keep it simple, suppose that
those link IDs in the header are extracted and stored in the order
that they were selected. At the destination, a network topology
graph is given and each link in the graph is annotated with one
ID. Path reconstruction process begins from source ToR switch in
the graph. Initially, a list S contains the source ToR switch. Until
all the link IDs are consumed, the following steps are executed:
i) take one link ID (say, [) from the ID list and find, from the
topology graph, a link whose ID is [(if [is in the pod ID space,
search for the link in either source or destination pod depending
on whether pod-core link is consumed; otherwise, search for it
in the current affinity segment); ii) identify two switches (say, s,
and sp) that form the link; iii) out of the two, choose one (say, s;)
closer to the switch (say, s,.) that was most recently added to S;
iv) find a shortest path (which is simple because it is either 1-hop
or 2-hop path) between s, and s, and add all intermediate nodes
(those closer to s, first) and s, later to S; v) add the remaining
switch s, to S. After all link IDs are consumed, we add to S the
switches that form a shortest path from the switch included last
in S to the destination ToR switch. Finally, we obtain a complete
path by enumerating switches in S.

3. EVALUATION

In this section, we present preliminary evaluation results for
CherryPick, and compare it against PathletTracer [27] over a 48-
ary fat-tree topology. We evaluate the two schemes in terms of
number of switch flow rules (§3.1), packet header space (§3.2)

and end-host resources (§3.3) required for tracing packet trajec-
tories. While preliminary, our evaluation suggests that:

o CherryPick requires minimal number of switch flow rules
to trace packet trajectories. In particular, CherryPick re-
quires as many rules as the number of ports per switch.
In contrast, PathletTracer requires number of switch flow
rules linear in the number of paths that the switch belongs
to. For tracing 6-hop paths in a 48-ary fat-tree topology,
for instance, CherryPick requires three orders of magni-
tude fewer switch rules than PathletTracer while support-
ing similar functionality.

e CherryPick requires packet header space close to state-of-
the-art techniques. Compared to PathletTracer, CherryPick
trades off slightly higher packet header space requirements
for significantly improved scalability in terms of number of
switch flow rules required to trace packet trajectories.

o CherryPick requires minimal resources at the end hosts
for tracing packet trajectories. In particular, CherryPick
requires as much as three orders of magnitude fewer en-
tries at the destination when compared to PathletTracer for
tracing 6-hop paths on a 48-ary fat-tree topology.

3.1 Switch flow rules

CherryPick, for any given switch, requires as many flow rules
as the number of ports at that switch. In contrast, for any given
switch, PathletTracer requires as many switch flow rules as the
number of paths that contain that switch. Since the latter de-
pends on the layer at which the switch resides, we plot the num-
ber of switch flow rules for CherryPick and PathletTracer across
each layer separately (see Figure 5).

We observe that for tracing shortest paths only, the number
of switch flow rules required by PathletTracer is comparable to
those required by CherryPick. However, if one desires to trace
non-shortest paths (e.g., in case of failures), the number of switch
flow requirement of PathletTracer grows super-linearly with the
number of hops constituting the paths?. For tracing 6-hop paths,

2The number of switch flow rules required by PathletTracer could
be reduced by tracing “pathlets” (a sub-path of an end-to-end
path) at the cost of coarser tracing compared to CherryPick.

1010 | -I CherryPi<':k b 1010 |

. 1010 » .

é 108 F mm PathletTracer 108 |
3100 108 | .
% 10 104} No flow rule
2 102
100
4 6 8 4 6 8
No. of hops No. of hops No. of hops
(a) ToR (b) Aggregate (c) Core

Figure 5: CherryPick requires number of switch flow rules comparable to PathletTracer for tracing shortest paths. However, for
tracing non-shortest paths (e.g., packets may traverse such paths in case of failures), the number of switch flow rules required
by PathletTracer increases super-linearly. In contrast, the number of switch flow rules required by CherryPick remains constant.

60

—_ ICherryPic:'k
--o-- PathletTracer

A O
o O
T

No. of header bits
N W
o O

—_
o o
a.

N
[e)]
o0}

10 12
No. of hops

Figure 6: CherryPick requires packet header space compa-
rable to PathletTracer for tracing packet trajectories. In par-
ticular, for tracing 6-hop paths in a 48-ary fat-tree topology,
CherryPick requires 22 bits while PathletTracer requires 21
bits worth of header space.

for instance, PathletTracer requires over a million rules on ToR
switch, tens of thousands of rules on Aggregate switch, and thou-
sands of rules on Core switch. This means that PathletTracer
would not scale well for path tracing at L3 layer because packets
may follow non-shortest paths. In contrast, CherryPick requires
a small number of switch flow rules independent of path length.

3.2 Packet header space

We now evaluate the number of bits in the packet header re-
quired to trace packet trajectories (see Figure 6). Recall from
§2 that to enable tracing of any n-hop path in a fat-tree topol-
ogy, CherryPick requires embedding (n—4)/2+1 links in the
packet header. The number of bits required to uniquely rep-
resent each link increases logarithmically with number of ports
per switch; for a 48-ary fat-tree topology, each link requires 11
bits worth of space. PathletTracer requires log(P) bits worth
of header space, where P is the number of paths between the
source and the destination. We observe that CherryPick requires
slightly higher packet header space than PathletTracer (espe-
cially for longer paths); however, as discussed earlier, CherryPick
trades off slightly higher header space requirement with signifi-
cantly improved scalability in terms of switch flow rules.

3.3 End host resources

Finally, we compare the performance of CherryPick against
PathletTracer in terms of the resource requirements at the end
host. Each of the two schemes stores certain entries at the end
host to trace the packet trajectory using the information carried

res

1012 | - Cherry'Pick j—
mm PathletTracer

No. of decoding ent
—h

S o o 2

> [+>] @ o

4 6 8
No. of hops

Figure 7: CherryPick requires significantly fewer entries
than PathletTracer at each end host compared to trace packet
trajectories. In particular, for tracing 6-hop paths in a 48-ary
fat-tree topology, CherryPick requires less than 1MB worth
of entries while PathletTracer requires approximately 12GB
worth of entries at each end host.

in the packet header. Processing the packet header requires rel-
atively simple lookups into the stored entries for both schemes,
which is a lightweight operation. We hence only quantify the
number of entries required for both schemes.

CherryPick stores, at each destination, the entire set of net-
work links, each annotated with a unique identifier. Pathlet-
Tracer requires storing a “codebook”, where each entry is a code
assigned to each of the unique path. For fair comparison, we as-
sume that individual hosts in PathletTracer store an equal-sized
subset of the codebook that is only relevant to them.

Figure 7 shows that PathletTracer needs to store non-trivial
number of entries if non-shortest paths need to be traced. For
instance, PathletTracer requires more than 10° entries at each
end host to trace 6-hop paths, which translates to approximately
12GB worth of entries as each entry is about 12 bytes long. As
discussed earlier, this overhead for PathletTracer could be re-
duced at the cost of tracing at coarser granularities. In contrast,
since CherryPick stores only the set of links constituting the net-
work, it requires a small, fixed number of entries (~56K entries
per host for a 48-ary fat-tree topology).

4. DISCUSSION

Preliminary evaluation (§3) suggests that CherryPick can en-
able packet trajectory tracing functionality in SDN-enabled dat-
acenter networks while efficiently utilizing data plane resources.
In this section, we discuss a number of research challenges for
CherryPick that constitute the ongoing work.

Generalization to other network topologies. In this paper, we
focused on the CherryPick design for fat-tree topology. A natural
question here is whether it is possible to generalize CherryPick
to other datacenter network topologies (e.g., VL2, DCell, BCube,
HyperX, etc.). While these topologies differ, we observe that they
share a common structure: these topologies can be broken down
into bipartite-like graphs. Intuitively, CherryPick may be able
to exploit this property to cherry-pick a subset of links in the
path. Generalizing CherryPick to these topologies and devising
techniques to automatically produce corresponding flow rules
constitutes our main ongoing work.

Impact of routing schemes and link failures. The current de-
sign of CherryPick is agnostic to the routing protocol used in
the network. In particular, the design does not assume that the
packets are routed along shortest paths (e.g., 6-hop paths in eval-
uation results from §3). In fact, since each packet carries all
the information required to trace its own trajectory, CherryPick
works even in case where packets within a single flow traverse
along different paths [8, 21]. The design also works when pack-
ets encounter link failures on their way to the destination — such
packets may traverse along a non-shortest path; CherryPick will
still pick the necessary links and be able to reconstruct the end-
to-end trajectory.

Impact of packet drops. One of the assumptions made in de-
sign of CherryPick is that the packet trajectory is traced when
the packet reaches the destination. However, a packet may not
reach the destination for a multitude of reasons, including packet
drops due to network congestion, routing loops®, or switch mis-
configuration (e.g., race condition [11]). Note that this problem
is fundamental to most techniques that reconstruct packet trajec-
tory at the destination [27]. Prior work suggests to partially mit-
igate this issue by forwarding the packet header of the dropped
packet to the controller and/or the designated server for analy-
sis. The challenge for CherryPick here is that due to selectively
picking links that represent an end-to-end path, it may be chal-
lenging to identify the precise location of packet drop. We are
currently investigating this issue.

Impact of controller and switch misconfiguration. At a mini-
mum, the flow rules of CherryPick must be correctly pre-installed
at switches and the switches must insert correct link identifiers
into packet headers. However, if the SDN controller and switches
behave erratically with respect to inserting correct link identi-
fiers into packet headers, it may not be possible for CherryPick
to trace the correct packet trajectory. Note that both of these
issues are related to the correctness of the SDN control plane.
Indeed, there has been significant work recently [2, 4, 15] in
ensuring correctness of control plane behavior in SDN-enabled
networks. In contrast, CherryPick focuses on debugging the SDN
data plane by enabling packet trajectory tracing as the packets
traverse through the network data plane.

Packet marking. Similar to other schemes that rely on packet
marking, CherryPick faces the challenge of having limited packet
header space. CherryPick currently relies on multiple VLAN tag-
ging capability specified in the SDN standard [19] to partially
mitigate this issue. Indeed, adding more than two tags is pos-
sible in commodity OpenFlow switches (e.g., Pica8 switch), but
their ASIC understands two VLAN tags only. In the current im-
plementation of the commodity OpenFlow switches, more than

3In OpenFlow switch, “Decrement IP TTL” action is supported,
but not enabled by default. If enabled, routing loops may result
in packet drops.

two tags disrupt other rules that match against fields in IP and
TCP layers. We believe that this limitation may become less se-
vere as SDN switch hardware becomes more reconfigurable, as
proposed in several other research works [3, 12].

S. RELATED WORK

We now compare and contrast CherryPick against the key re-
lated works [1, 11, 13, 14, 16, 17, 26, 27].

PathQuery [17] and PathletTracer [27], similar to CherryPick,
enable tracing of packet trajectories by embedding the required
information into the packet header. While these approaches are
agnostic to the underlying network topology, they require large
number of switch flow rules even in moderate size datacenter
networks. In contrast, CherryPick aggressively exploits the struc-
ture in datacenter network topologies to enable similar function-
ality while requiring significantly fewer switch flow rules and
comparable packet header space.

Several other techniques attempt to minimize data plane re-
sources to trace packet trajectories. In particular, approaches
like [7, 22] propose to keep track of trajectories on a per-flow ba-
sis by partially marking path information across multiple packets
belonging to the same flow. However, these techniques do not
work for short (mice) flows or when packets in a flow are split
over multiple paths. Data plane resources for tracing packet tra-
jectories can also be minimized by injecting test packets [1, 26]
and using the paths taken by these packets as a proxy for the
path taken by the user traffic. However, short-term network dy-
namics may result in test packets and user traffic being routed
along different paths and these techniques may result in impre-
cise inferences.

NetSight [11] is an “out-of-band” approach in that it traces
packet trajectories by collecting logs at switches along the packet
trajectory. In contrast, CherryPick is an “in-band” approach as
packets themselves carry path information. CherryPick is also
different from approaches like VeriFlow [14], Anteater [16] and
Header Space Analysis [13]. In particular, these approaches rely
either on flow rules installed at switches [14] or on data plane
configuration information [13, 16] to perform data plane debug-
ging (e.g., loops, reachability). In contrast, CherryPick traces
trajectories of real traffic directly on data plane with no reliance
on such information.

Recent advances in data plane programmability [3, 12] make
it easy to enable numerous network debugging functionalities
including packet trajectory tracing. CherryPick can efficiently
implement the path tracing functionality on top of those flexible
platforms. Thus, our approach is complementary to them.

6. CONCLUSION

We have presented CherryPick, a simple yet scalable technique
for tracing packet trajectories in SDN-enabled datacenter net-
works. The core idea in CherryPick is that structure in datacenter
network topologies enable reconstructing end-to-end paths us-
ing a few essential links. To that end, CherryPick “cherry-picks”
a subset of links along the packet trajectory and embeds them
into the packet header. We applied CherryPick to a fattree topol-
ogy in this paper and showed that it requires minimal switch
flow rules to enable tracing packet trajectories, while requiring
packet header space close to state-of-the-art techniques.

Acknowledgments

We thank the anonymous reviewers for their insightful comments.
This work was supported by EPSRC grant EP/L02277X/1.

7.
(1]

(2]

(3]

[4

—_

[5

—_

(6]

(7]

[8

—

[9

—

[10

—

[11

—

[12

—

[13]

REFERENCES

K. Agarwal, E. Rozner, C. Dixon, and J. Carter. SDN
Traceroute: Tracing SDN Forwarding Without Changing
Network Behavior. In ACM HotSDN, 2014.

T. Ball, N. Bjgrner, A. Gember, S. Itzhaky, A. Karbyshev,
M. Sagiv, M. Schapira, and A. Valadarsky. VeriCon:
Towards Verifying Controller Programs in
Software-defined Networks. In ACM PLDI, 2014.

P Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, E Mujica, and M. Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-action
Processing in Hardware for SDN. In ACM SIGCOMM,
2013.

M. Canini, D. Venzano, P Peresini, D. Kostié¢, and

J. Rexford. A NICE Way to Test OpenFlow Applications. In
USENIX NSDI, 2012.

M. Chiesa, I. Nikolaevskiy, A. Panda, A. Gurtov,

M. Schapira, and S. Shenker. Exploring the Limits of
Static Failover Routing. CoRR, abs/1409.0034, 2014.

R. Cole, K. Ost, and S. Schirra. Edge-Coloring Bipartite
Multigraphs in O(E log D) Time. Combinatorica, 21(1),
2001.

D. Dean, M. Franklin, and A. Stubblefield. An algebraic
approach to IP traceback. ACM Transactions on
Information and System Security, 5(2):119-137, 2002.

A. Dixit, P Prakash, Y. C. Hu, and R. R. Kompella. On the
Impact of Packet Spraying in Data Center Networks. In
IEEE INFOCOM, 2013.

N. G. Duffield and M. Grossglauser. Trajectory Sampling
for Direct Traffic Observation. IEEE/ACM ToN, 9(3), 2001.
P Gill, N. Jain, and N. Nagappan. Understanding Network
Failures in Data Centers: Measurement, Analysis, and
Implications. In ACM SIGCOMM, 2011.

N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and

N. McKeown. I Know What Your Packet Did Last Hop:
Using Packet Histories to Troubleshoot Networks. In
USENIX NSDI, 2014.

V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and

D. Maziéres. Millions of Little Minions: Using Packets for
Low Latency Network Programming and Visibility. In
ACM SIGCOMM, 2014.

P Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: Static Checking for Networks. In USENIX NSDI,
2012.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P B.
Godfrey. VeriFlow: Verifying Network-Wide Invariants in
Real Time. In USENIX NSDI, 2013.

M. Kuzniar, P Peresini, M. Canini, D. Venzano, and

D. Kostic. A SOFT Way for Openflow Switch
Interoperability Testing. In ACM CoNEXT, 2012.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P B. Godfrey,
and S. T. King. Debugging the data plane with anteater. In
ACM SIGCOMM, 2011.

S. Narayana, J. Rexford, and D. Walker. Compiling Path
Queries in Software-defined Networks. In ACM HotSDN,
2014.

S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah.
Fast local rerouting for handling transient link failures. In
IEEE/ACM ToN, 2007.

Open Networking Foundation. OpenFlow Switch
Specification Version 1.4.0.
http://tinyurl.com/kh6ef6s, 2013.

P Prakash, A. Dixit, Y. C. Hu, and R. Kompella. The TCP
Outcast Problem: Exposing Unfairness in Data Center
Networks. In USENIX NSDI, 2012.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In ACM SIGCOMM, 2011.
S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical Network Support for IP Traceback. In ACM
SIGCOMM, 2000.

E P Tso, G. Hamilton, R. Weber, C. S. Perkins, and D. P
Pezaros. Longer is better: exploiting path diversity in data
center networks. In IEEE ICDCS, 2013.

B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng. Keep
forwarding: Towards k-link failure resilient routing. In
IEEE INFOCOM, 2014.

K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and
J. Padhye. DIBS: Just-in-time Congestion Mitigation for
Data Centers. In ACM EuroSys, 2014.

H. Zeng, P Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. IEEE/ACM ToN,
22(2):554-566, 2014.

H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu, and

G. Jiang. Enabling Layer 2 Pathlet Tracing Through
Context Encoding in Software-defined Networking. In
ACM HotSDN, 2014.

Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
Accurate Computation of Large-scale IP Traffic Matrices
from Link Loads. In ACM SIGMETRICS, 2003.

http://tinyurl.com/kh6ef6s

	Introduction
	CherryPick
	Preliminaries
	Overview of CherryPick
	Design

	Evaluation
	Switch flow rules
	Packet header space
	End host resources

	Discussion
	Related Work
	Conclusion
	References

