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Abstract 

 

In this paper, we present a new layout framework, called S-shaped layout, for the layout of cellular 

manufacturing systems. Based on the proposed S-shaped layout, we formulate an integrated bi-objective cell 

formation and layout problem, considering parameters such as part demands, operation sequences, machine 

dimensions and aisle widths. The first objective is to minimize the total inter- and intra-cell material handling 

costs. Also, the second objective is to maximize the total similarity between machines. A normalized weighted 

sum method is suggested  to unify these objectives. As the problem is NP-hard, an efficient hybrid solution 

method combining simulated annealing and dynamic programming is developed to solve large-sized problems 

in a reasonable computational time. Finally, by solving numerical examples from the literature the suggested 

approach is compared with two recently developed approaches. 

 

Keywords: Cellular manufacturing, cell formation, bi-objective optimization, layout problem, dynamic 

programming, simulated annealing 

 

 

1. Introduction 

 

In the last two decades, Cellular Manufacturing system (CMS) has emerged as an innovative and successful 

strategy in manufacturing systems producing a medium-volume and medium-variety productions. It derives 

from group technology concept and joins together the advantages of both flexible and mass production 

approaches. The main advantages of production using CMS are: reduction in setup times, work-in-process 

inventories, lead times, tool requirements and material handling costs. It could also cause remarkable 

improvement in product quality, productivity and production control (Wemmerlöv & Hyer, 1986; Mungwattana, 

2000; Solimanpur et al., 2004). One of the crucial steps in the CMS design process is the cell formation (CF) 

problem, which has been extensively studied in the literature. It involves grouping parts with similar design 

features or processing requirements into part families and grouping machines into machine cells on the basis of 

operations required by the part families. The material flow between manufacturing cells as a result of 

exceptional elements (EEs) is a major obstacle in achieving the benefits of CMS (Arıkan & Güngör, 2009). An 

EE is a part that needs to be processed in more than one cell. So, in the CF problem, one common objective is to 

minimize the number of EEs. Other common objectives include minimization of inter-cell movement costs, 

minimization of number of inter-cell material flows, maximization of grouping efficiency, and maximization of 

grouping efficacy. 

 

Facilities layout is a key factor in manufacturing systems and has a direct impact on the operational 

performance, as measured by manufacturing lead time, throughput rate and work-in-process (Benjaafar, 2002). 

Tompkins et al. (2003) estimated that 20–50% of manufacturing costs is related to the handling of parts. They 

also stated that an efficient facility layout may reduce them for 10–30%. Although minimizing the number of 

EEs or optimizing other common objectives mentioned above may reduce the flows between the cells, they do 

not necessarily lead to a minimum material handling cost. Because, the parameters related to the facility layout 

problem are ignored in the calculation of these objectives. This brings the attention towards the need for 
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incorporating the facility layout problem into the CMS design process. In a CMS, the material handling cost 

usually consists of two cost components, inter- and intra-cell material handling costs. The inter-cell material 

handling arises from the movements of parts between the cells, and the intra-cell material handling cost arises 

from the movements of parts within the cells. Therefore, the inter-cell layout involves the placement of the cells 

on the shop floor, and the intra-cell layout involves the arrangement of machines within the cells. 

 

Most approaches in the area of facility layout and CF problems, usually consider one of the inter- and intra-cell 

layouts in the CMS design problem. For simplicity, these approaches aim at minimizing the number of inter-cell 

movements or intra-cell movements or both, instead of minimizing the material handling cost. Moreover, those 

approaches that aim at minimizing the material handling cost usually apply unrealistic assumptions such as fixed 

cell locations and equal-sized machines in the layout problem. Consequently, the resulting layout may be 

inefficient. To overcome these drawbacks, this paper presents a new layout framework, called S-shaped layout, 

for designing CMS layout. Based on this S-shaped layout, we formulate an integrated bi-objective CF and 

layout problem, considering parameters such as part demands, operation sequences, machine dimensions and 

aisle widths. The first objective is to minimize the total inter- and intra-cell material handling costs, and the 

second one is to maximize the total similarity between machines. A normalized weighted sum method is 

proposed to unify these objectives. Due to computational complexity of the problem, a hybrid solution method 

combining Simulated Annealing (SA) and Dynamic Programming (DP) is developed to solve large-sized 

problems in a reasonable computational time. Finally, by solving numerical examples from the literature the 

suggested approach is compared with two recently developed approaches. 

 

The remainder of this paper is organized as follows: Section 2 reviews relevant literature, Section 3 presents the 

description of the problem and Section 4 presents the hybrid method. Computational experiments and 

comparisons are carried out in Section 5. Finally, conclusions and directions for future research are given in 

Section 6. 

 

2. Literature review 

 

In recent years, there have been some studies that have applied simultaneous or sequential approaches to solve 

the CF and layout problems. As both of these problems are NP-hard (Garey & Johnson, 1979; Papaioannou & 

Wilson, 2010), using heuristic and meta-heuristic algorithms is very popular among researchers. 

 

In the context of sequential approaches, Heragu and Kakuturi (1997) attempted to integrate the machine 

grouping problem with the layout problem. The machine cells were first formed by a heuristic algorithm, and 

then a hybrid SA algorithm was employed to construct near-optimal inter- and intra-cell layouts. Chan et al. 

(2006) proposed a two-stage solution approach based on Genetic Algorithm (GA) for solving the CF problem as 

well as the cell layout problem. The first stage was to identify machine cells and part families. Also, the second 

stage was to obtain the layout sequence of machine cells (linear inter-cell layout) such that the total inter-cell 

material handling cost is minimized. In their approach, the Quadratic Assignment Problem (QAP) was used to 

represent the inter-cell layout. Leung et al. (2008) first attempted to find the number of each machine type by 

knowing part demands, the processing times and machine capacities. Then, they applied various space filling 

curves to create initial layouts (it was assumed that each machine occupies almost the same area, i.e., one unit 

block of floor). In the next step, each of these initial layouts was improved by the CRAFT software. Finally, the 

layout design with the lowest cost was selected. Krishnan et al. (2012) developed a method based on the flow 

between machines to obtain machine cells. A modified grouping efficiency measure was used to determine the 

efficiency of grouping. They employed a GA-based machine placement procedure for the placement of 

machines in a facility layout matrix (grid) as a QAP. Chang et al. (2013) formulated a two-stage mathematical 

programming model to integrate the CF and layout problems. They employed a Tabu Search (TS) algorithm to 

solve the problem. In their approach, the CF and inter-cell layout problems were simultaneously solved in the 

first stage. Then, the intra-cell machine sequence was determined on the basis of the solution obtained in the 

first stage. In their research, the linear single- and double-row layouts were considered as two alternatives for 

the inter-cell layout. Javadi et al. (2014) presented a mathematical model for the inter- and intra-cell layout 
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problems in a dynamic environment. The objective was to minimize the total costs of rearrangement as well as 

the total inter- and intra-cell material flows. They assumed that the CF phase has been already done and the 

locations for placing machines and cells are known in advance. A hybrid algorithm combining 

electromagnetism-like algorithm and GA was used to solve the problem. Ghosh et al. (2015) used the QAP to 

represent the cell layout problem, and developed an Immune GA to solve it. 

 

In connection with simultaneous approaches, Aktürk and Turkcan (2000) proposed a solution methodology to 

simultaneously solve the CF and intra-cell layout problems. A holistic approach was used to maximize the profit 

of not only the overall system but also individual cells. Lee and Chiang (2001) addressed the joint problem of 

CF and its layout assignment to minimize the inter-cell material flow cost. It was assumed that the cell locations 

are approximately equally spaced, and the machine cells are located along a bi-directional linear layout. They 

proposed a new graphic approach based on a multi-terminal cut tree network model to form machine cells. A 

partition procedure was developed to separate the cut tree into a number of sub-graphs (cells) and assigns the 

location sequence of each cell by comparing the cut capacities. Chiang and Lee (2004) employed a SA 

algorithm combined with DP for solving the same problem presented in (Lee and Chiang, 2001). In their 

approach, the configuration of a solution is comprised of a string of integer values, where each value is 

associated with a machine. The DP algorithm is applied to partition each string into several segments (cells) 

such that the total inter-cell flow cost is minimized. Yin et al. (2005) incorporated part demands, sequence data 

and alternative process routings into a nonlinear mathematical model. They aimed to minimize a weighted sum 

of both inter-cell and intra-cell movements in which the weights are based on the actual unit costs of inter- and 

intra-cell movements. A heuristic methodology was also developed for solving such a nonlinear problem. Wu et 

al. (2007) developed a GA for solving an integrated CF and layout problem considering sequence data, work 

load, machine capacities, part demands, batch sizes, and layout type. Mahdavi et al. (2008) presented a heuristic 

approach based on a modified flow matrix for solving an integrated CF and intra-cell layout problem. The 

objective was to minimize the number of inter- and intra-cell movements as well as EEs and voids. Paydar et al. 

(2010) formulated the integrated CF and intra-cell layout problem as a multiple departures single destination 

multiple traveling salesman problem, and proposed a SA algorithm to solve it. Jolai et al. (2011) proposed a 

mathematical model for the inter- and intra-cell layout problem in CMS. They assumed that both machines and 

cells are assigned to pre-specified locations. A binary particle swarm optimization algorithm was implemented 

to minimize the total material handling cost. Jolai et al. (2012) presented a modified version of the proposed 

model by Wu et al. (2007) considering parameters such as forward and backward transportation, different batch 

sizes for parts and sequence data. They developed an Electromagnetism-like algorithm with a heuristic local 

search to minimize the total material handling cost and the number of EEs. Mohammadi and Forghani (2014) 

developed a GA for solving an integrated CF and layout problem. To increase the accuracy of the inter- and 

intra-cell layouts, they calculated the material handling cost on the basis of the actual location of machines on 

the shop floor and regarding machine dimensions and aisle widths. In their approach, machines assigned to a 

same cell are arranged along a line. Also, the machine cells are placed on the shop floor from bottom to top as a 

multi-row layout. Forghani et al. (2014) combined the QAP with the two-dimensional facility layout problem, 

and formulated an integrated CF and layout problem. The QAP was used to represent the intra-cell layout, and 

the inter-cell layout was represented by the continuous layout problem. It was assumed that cells are rectangular 

in shape and machines are equal in size. They employed a GA to solve the formulated problem. 

 

3. Problem description and mathematical model 

 

In this section, we present an integrated bi-objective problem to solve the CF, intra- and inter- cell layout 

problems, simultaneously. Different parameters such as part demands, operation sequences, machine 

dimensions, and aisle widths are taken into consideration. The first objective is to minimize the total material 

handling cost (including the inter- and intra-cell material handling costs), and the second one is to maximize the 

total similarity between machines. A new framework, called S-shaped layout, is developed for the layout of 

CMS. This layout framework is a modified version of the multi-row layout proposed by Mohammadi and 

Forghani (2014). In their approach, once the allocation of machines to the cells is specified, machines assigned 

to a same cell are arranged along a line, from left to right, by considering their length and the horizontal aisle 
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width. The machine cells are also placed on the shop floor from bottom to top by taking into account the width 

of the cells and the vertical aisle width. In their approach, the maximum width of the shop floor was not taken 

into consideration. To address this parameter in the CMS layout problem and also to increase the flexibility of 

the multi-row layout, we present a new framework based on an S-shaped layout. It is assumed that the width of 

the shop floor is known in advance. Machines are laid out in an S-shaped form according to their assignment to 

the cells and by considering their dimensions, the width of the shop floor, the horizontal and vertical aisle 

widths. To do so, we start placing machines on the shop floor from the bottom-left corner to the bottom-right 

corner as far as possible (i.e., the constraint on the width of the shop floor is not violated). Once the first row is 

completed, this process is repeated on the second row (above the first row) from right to left. Again in the third 

row, machines are placed from left to right. This procedure is repeated until all machines are placed on the shop 

floor. It should be noted that in each row the entire layout is horizontally aligned to the middle of the shop floor. 

Also, in each row, machines are vertically aligned to the center of the row. The width of each row is equal to the 

maximum width of machines in that row. The proposed S-shaped layout has been illustrated in Fig. 1. 

According to Fig. 1(a), the sequence of machines to be placed on the shop floor is (7, 10, 6, 12, 9, 3, 2, 4, 8, 11, 

5). Let’s assume that machines 7, 10 and 6 form cell 1, machines 12, 9 and 3 form cell 2, machines 2, 4, 8 and 

11 form cell 3, and machines 1 and 5 form cell 4. The width of the shop floor is 7.8 units. The horizontal and 

vertical aisle widths are also 0.6 and 1 units, respectively. The dimension of each machine is shown in the 

parenthesis in Fig. 1(b). For instance, the length and the width of machine 6 are 1.6 and 1.4 units, respectively. 

Based on the given layout sequence (permutation), machines 7, 10, 6 and 12 are placed in the first row from left 

to right. Machine 9 cannot be placed at the end of the first row, because the width of the shop floor is limited. 

So, it is placed in the second row. In the second row, we start placing machines 9, 3, 2 and 4 from right to left. 

Finally, in the third row machines 8, 11, 1 and 5 are placed from left to right. In the first row, machines 6 and 7 

have the maximum width (1.4 units), so the width of the first row is 1.4 units. Similarly, the width of the second 

and third rows is obtained as 1.6 and 1.4 units, respectively. 

 

Based on this S-shaped layout, we can calculate the coordinates of machines. For instance, in Fig. 1(b), the 

horizontal and vertical coordinates of machine 3 is 4.8 and 3.2, respectively. Once the coordinates of machines 

is determined, the material handling cost can be calculated according to the center-to-center distance between 

machines. 

 

[Please insert Fig.1 here] 

 

3.1. Notations 

 

To formulate the problem the following notations are defined. 

 

Indices 

i index of parts (i = 1, …, P) where P is the number of parts 

k, k′
 

index of machines (k, k′ = 1, …, M) where M is the number of machines 

l index of cells (l = 1, …, L) where L is the number of cells to be formed (L is a decision variable) 

 

Parameters 

Di
 

demand of part i 

, ,

A

i k kc   unit intra-cell material handling cost for transporting part i from machine k to machine k′ per unit 

distance 

, ,

E

i k kc    unit inter-cell material handling cost for transporting part i from machine k to machine k′ per unit 

distance 

wk
 

width of machine k 

hk
 

length of machine k 

,k kS    
similarity coefficient between machines k and k′ 

LX horizontal aisle width 

LY vertical aisle width 
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W width of the shop floor  

, ,i k kf   number of times that an operation at machine k immediately follows an operation at machine k′ or vice 

versa for part i 

NM maximum number of machines permissible in a cell 

Cmax maximum number of cells allowed 

Π set of possible permutation of machines 

π sequence (permutation) of machines to be laid out in the S-shaped layout π = {π(1),π(2), …,π(M)}, 

where π(k) represents the machine index placed in kth order 

xk(π) horizontal coordinate of the centroid of machine k in permutation π 

yk(π) vertical coordinate of the centroid of machine k in permutation π 

,l lb b  index of breaking node for cell l, where π(bl) is the last machine on the sequence to be included in cell l 

 

Note that the coordinates of machines, (xk(π), yk(π)), for a given permutation π can be calculated by the 

procedure given in Appendix A.  

 

In relation to the similarity coefficient between machines, Yin and Yasuda (2005) carried out a comparative 

study to evaluate the performance of twenty well-known similarity coefficients in the literature. These similarity 

coefficients are given in Table 1. They concluded that three similarity coefficients: Jaccard, Sorenson, and Sokal 

and Sneath 2 perform best among the tested similarity coefficients. They also did not recommend four similarity 

coefficients: Hamann, Simple matching, Rogers and Tanimoto, and Sokal and Sneath for CF applications due to 

their inefficient performance in test problems. Minimization of the total material handling cost may result in 

poor independence in the clustered cells. To overcome this difficulty, a similarity coefficient that covers 

negative values can be applied in the second objective. For this purpose, we apply Yule’s similarity coefficient 

to calculate Sk,k′. 

 

[Please insert Table 1 here] 

 

3.2. Mathematical model 

 

To simplify the formulation of the problem, we first introduce two auxiliary variables ,

A

k kF   and ,

E

k kF  . These 

variables are calculated by Eqs. (1) and (2). 

  

 , , , ,, ,

1

( ) ( ) ( ) ( ) , , ,
P

A A

k k i i k k i k k k k k k

i

F D c f x x y y k k  



     π π π π

 
(1) 

 , , , , ,

1

( ) ( ) ( ) ( ) , , .
P

E E

k k i i k k i k k k k k k

i

F D c f x x y y k k  



     π π π π

 
(2) 

 

Note that in Eqs. (1) and (2) we applied the rectilinear norm to calculate the distance between two machines. 

However, without loss of generality, other norms (e.g., Euclidian norm and square Euclidian norm) can be used 

instead. 

 

Now, the integrated CF and layout problem can be formulated as the following integer programming model: 

 

1

1 1

1

( ), ( ) ( ), ( )

1 1 1 1 1

min ( ) min ,
l l l l

l l

b b b bL
A E

k k k k

l k b k k k b k

TH F F   



 



 
 

        

   
   

   
    

π π
π  

(3) 

1

1

( ), ( )

1 1 1

max ( ) max .
l l

l

b bL

k k

l k b k k

TS S 






 

    

  
  

  
  

π π
π

 (4) 

Subject to:  

0 0b 
 
and

 11 ,Lb b M   

 

(5) 
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1 , 1, ,l lb b NM l L   

 

(6) 

max .L C
 

(7) 

 

Objective function (3) minimizes the total material handling cost. In this function, the first term is associated 

with the intra-cell material handling cost, and the second one corresponds to the inter-cell material handling 

cost. Objective function (4) maximizes the total similarity between machines. Constraint (5) ensures that each 

formed cell includes at least one machine, and also guarantees that all machines are assigned to the cells. 

Constraint (6) represents that each cell can contain at most NM machines. Finally, constraint (7) prevents the 

formation of more than Cmax cells. 

 

To simplify TH(π) in objective function (3), we can rewrite it as follows: 

 

1

1 1 1 1

1 1 1

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )

1 1 1 1 1 1 1 1 1

( ) .
l l l l l l l l

l l l l

b b b b b b b bL
A E E E

k k k k k k k k

l k b k k k b k k b k k k b k k

TH F F F F       



   

  

   

                  

 
     

 
        π  

(8) 

 

Now, Eq. (8) is rearranged as follows: 

 

 
1

1 1

1

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )

1 1 1 1 1 1 1

( ) .
l l l l l

l l

b b b b bL L
E E A E

k k k k k k k k

l k b k k k l k b k k

TH F F F F       



 



   

            

 
    

 
      π  

(9) 

 

Next, we introduce ( )TH π  and TH′(π) to respectively replace the first and second terms of Eq. (9). In the 

following, we show that the first term in Eq. (9), i.e., ( )TH π  is constant. 

 

1

1

1 1 1 1

1 1

( ), ( ) ( ), ( )

1 1 1 1

0

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )

1 1 1 1 1 1 1 1

( ), (

( )
l l l

l

L

L l

b b bL
E E

k k k k

l k b k k k

b b b bM M M
E E E E

k k k k k k k k

k k k k k k b k k b k k

k k

TH F F

F F F F

F

   

       

 







 

 

      

   

              



 
  

 

    



   

      

π

1

)

1 1

.
M M

E

k k k



  

 

 

(10) 

 

As it can be seen in Eq. (10), ( )TH π  is independent of bl. Hence, ( )TH π  is constant and TH′(π) in objective 

function (3) can be expressed as: 

 

 
1

11

( ), ( ) ( ), ( ) ( ), ( )

1 1 1 1 1

( ) ( ) ( )

.
l l

l

b bM M L
E A E

k k k k k k

k k k l k b k k

TH TH TH

F F F     





  

        

 

      

π π π

 

(11) 

 

3.3. Unifying objective functions 

 

In this section, a normalized weighted sum function, TC(π), is suggested to unify objective functions (3) and (4). 

Let Ω denotes the set of constraints (5)–(7). Thus, the problem can be reformulated as follows: 

 

 
( )( )

min ( ) min 1 ,UL

U L U L

TS TSTH TH
TC

TH TH TS TS
 

 
 

     
      

      
π π

ππ
π  

(12) 

 

where α (0 ≤ α ≤ 1) is a weighting factor which presents the relative importance between the corresponding 

normalized objective functions. THL and THU are the lower and upper bounds of the total material handling cost, 
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respectively. Also, TSL and TSU are the lower and upper bounds of the total similarity, respectively. These 

parameters are specified by the designer. To do so, the designer can solve a simple weighted sum problem as 

follows:

 

 min ( ) ( )TH TS



 
π

π π , where ε is a small enough number. By applying this objective function, less 

importance is given to the TS. As a consequence, the resulting solution, let denoted by TH*
1 and TS*

2, will be the 

lower bounds of the objective functions (i.e., THL = TH*
1 and TSL = TS*

1). Similarly, the designer can solve 

problem  min ( ) ( )TH TS



 
π

π π to obtain an upper bound for them. In contrast to previous objective function, 

in this one less importance is paid to the TH. So, the resulting solution, let denoted by TH*
2 and TS*

2, will 

provide an upper bound for the objective functions (i.e., THU = TH*
2 and TSU = TD*

2). 

 

4. Suggested hybrid solution algorithm  

 

There are two difficulties in solving the proposed problem (i.e., Eq. (12)). The first one is that the objective 

function of the problem is a non-linear non-smooth term. The second difficulty is in computational complexity 

of the problem. To overcome these difficulties, a hybrid solution method based on a combination of SA and DP 

is presented to effectively solve the problem. The basic idea of this solution method has been inspired from 

Chiang and Lee (2004). As mentioned earlier, they employed a hybrid SA/DP algorithm for solving the joint 

problem of CF and its layout assignment. In their problem, the objective was to minimize the inter-cell material 

flow cost. In this section, we extend their approach in order to make it capable to solve the proposed bi-objective 

problem. 

 

In the suggested solution method, the SA is used to create feasible permutations of machines (i.e., π) and the DP 

algorithm is implemented to obtain the optimal objective function of these permutations. To do so, we define α1 

= α/(THU – THL) and α2 = (1 – α)/(TSU – TSL). Thus, Eq. (12) is rewritten as follows: 

 

   

    

     

1 2

1 2

1 2 1 2

min ( ) min ( ) ( )

min ( ) ( ) ( )

min ( ) min ( ) ( ) .

L U

L U

L U

TC TH TH TS TS

TH TH TH TS TS

TH TH TS TH TS

 

 

   

 
 




 

   

    

     

π π

π

π

π π π

π π π

π π π

 

(13) 

 

Since min( ) maxz z   , Eq. (13) becomes: 

 

    1 2 1 2min ( ) min ( ) max ( ) ( ) .L UTC TH TH TS TH TS   
  

    
π π

π π π π  
(14) 

 

Finally, Eq. (14) is rewritten in the following form: 

 

1
*

1 ( ), ( ) 2

1 1

min ( ) min ( ) ,
M M

E

k k L U

k k k

TC F TH TS   



 

  

  
     

  
 

π π
π π  

(15) 

 

where Ω is the set of constraints (5)–(7) and Ψ*(π) is the optimum objective function value of the following 

optimization problem: 

 

 
1

1
*

1 ( ), ( ) ( ), ( ) 2 ( ), ( )

1 1 1

( ) max .
l l

l

b bL
E A

k k k k k k

l k b k k

F F S       




  


    

       
  
  π  

(16) 

 

In the next section, we show that Ψ*(π) can be obtained by DP. 
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4.1. Dynamic programming 

 

By using DP, problem (16) can be sequentially solved as a partitioning problem in stages from 1 to Cmax. Let 

gl(b′l,bl) indicates the objective function value at stage l, when at this stage permutation π is partitioned from 

breaking node b′l to breaking node bl. Also, let g*
l(bl) shows the optimum objective function value of breaking 

node bl in stage l. By using forward recursion, the partitioning problem at stage l becomes: 

 

 
1

*

1 1 ( ), ( ) ( ), ( ) 2 ( ), ( )

1 1

( , ) ( ) .
l l

l

b b
E A

l l l l k k k k k k

k b k k

g b b g b F F S      


  
    

     
    

(17) 

Subject to:  
max maxmax{ , ( ) } min{ , }, 1,..., ,ll M C l NM b M l NM l C        (18) 

max maxmax{ 1, ( 1) , } min{ ,( 1) , 1}, 1,..., ,l l ll M C l NM b NM b M l NM b l C             (19) 

 

where  *

0 1 0 0g b    and 
max

*

max{ 1, ( 1) , } min{ ,( 1) , 1}

( ) max { ( , )}
l l l

l l l l l
l M C l NM b NM b M l NM b

g b g b b
         

 . Equation (17) is the 

forward recursive equation. Also, constraints (18) and (19) ensure that the cell size limit and the maximum 

allowable number of cells are not violated within partitioning procedure. 

 

Note that, the DP partitions π into exactly Cmax cells. Therefore, the optimum objective function value of DP, 

Ψ*(π), and the optimum number of cells, L*(π), for permutation π are obtained by Eqs. (20) and (21), 

respectively. 

 
* *

{ }
( ) min { ( )},

l
l l

l b M
g b


π  

(20) 
* *

{ }

( ) arg min{ ( )}.
l

l l
l b M

L g b


π  
(21) 

 

Finally, the objective function value of permutation π, is computed by: 

 

1
*

1 ( ), ( ) 2

1 1

( ) ( ).
M M

E

k k L U

k k k

TC F TH TS   




  

 
    

 
 π π  

(22) 

 

The pseudo code of the DP algorithm is given in Appendix A. In the worst case, when NM = Cmax = M, the time 

complexity of the DP algorithm is O((M3 + 5M)/6). This means that the DP is a polynomial algorithm. For 

instance, if we have 25 machines, the DP requires 2625 computations. 

 

4.2. Simulated annealing 

 

SA is a stochastic search method for solving combinatorial optimization problems which uses the idea of the 

annealing process of solid. It was independently proposed by Kirkpatrick et al. (1983) and Cerny (1985). In the 

annealing process, a solid is heated until it melts. Then, the temperature of the solid is slowly decreased by an 

appropriate annealing schedule until it reaches the lowest energy state or the ground state. As mentioned earlier, 

both the CF and layout problems are NP-hard. Thus, the proposed problem is also NP-hard (because it integrates 

the CF and layout problems). In recent years, the SA algorithm has been successfully applied by researchers for 

solving CF and layout problems (For instance, see (Xambre & Vilarinho, 2003; Chiang & Lee, 2004; Al-

Araidah et al., 2006; Arkat et al., 2007; Wu et al., 2009; Paydar et al., 2010; Şahin et al., 2010; Şahin, 2011). 

The advantages of the SA over other meta-heuristic optimization techniques (such as GA and TS) include its 

ease of implementation, convergence properties, and ability to escape from local optima (Glover & 

Kochenberger, 2002). Also, it is an effective and robust algorithm which can find high-quality solutions that do 

not strongly depend on the choice of the initial solution. Furthermore, it has been proven that the computation 
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time of the SA has a polynomial upper bound (Arats & Korst, 1989). These considerations motivated us to 

employ the SA algorithm to solve the problem. The details of the proposed methodology are explained below. 

 

In Eq. (15), there is a solution space Π which contains every possible permutation of M machines (i.e., M! 

permutations) and a real function TC(π) which is acquired via DP. The purpose is to find a solution π ∈ Π such 

that minimizes TC(π) over Π. For this purpose, the SA can be employed to perform the search process over Π. 

 

The initial solution (permutation) is randomly generated. This solution corresponds to the layout sequence of 

machines in the S-shaped layout, i.e., π. For instance, permutation π = (7, 10, 6, 12, 9, 3, 2, 4, 8, 11, 1, 5) 

corresponds to the layout sequence of machines shown in Fig. 1(b). After obtaining the coordinates of machines 

by using the algorithm presented in Appendix A, the DP algorithm is employed to partition permutation π into 

machine cells and obtain Ψ*(π) (see, Eq. (16)). Then, we can calculate the objective function value of 

permutation π, TC(π), from Eq. (22). 

 

[Please Insert Fig 2 here] 

 

The algorithm starts with an initial temperature T0, then the temperature is gradually reduced by a cooling 

function. The Geometric Decrement function, Tt = θ × Tt - 1, originally suggested by Kirkpatrick et al. (1983) is 

used as the cooling function. In this function, Tt is the temperature at t-th iteration and θ (0 < θ < 1) is the 

cooling rate. 

  

At each temperature (iteration), a generation process called Move is applied to convert the current permutation 

π′, into a neighboring (new) permutation π. To do so, three move operators, namely Swap, Change and Invert 

are applied. The Swap operator swaps the order of two randomly selected machines; the Change operator 

changes the order of a randomly selected machine; and the Invert operator reverses the order of machines 

between two randomly selected points. An example of these operators is given in Fig. 2. 

 

Once a neighboring solution was created, the change in the objective function value is calculated by Δ = TC(π) 

− TC(π′). In minimization problems, if the change in each move leads to an improvement in the objective 

function value (i.e., Δ < 0), the new solution is accepted. Otherwise, the non-improving solution is accepted with 

a specified probability function exp(−Δ⁄Tt). By accepting non-improving solutions, the SA algorithm can escape 

from a local minimum. This process is repeated N times at each iteration, where N is a control parameter and 

called the epoch length. These cooling and transition processes are repeated until the best solution is not 

improved after a specified number of transitions Imax. 

 

5. Computational results 

 

A computer program was developed by Embarcadero® Delphi XE7 for the proposed Hybrid SA (HSA) which 

can be implemented in Microsoft Windows XP operating system or higher versions. In order to show the 

advantage of the S-shaped layout, this approach is compared with two recently developed approaches in the 

literature. However, before performing comparisons, we should tune the parameters of the algorithm.  

 

It should be noted that all experiments are done on a personal computer having Windows 7 operating system, 

with Intel(R) Core(TM)2 Quad Q6600 2.4GHz CPU and 2GB Ram. 

 

5.1. Parameters setting  

 

It is well known that parameter values used in the SA algorithm may have significant influence on solution 

quality. Thus, parameter setting is very important. The parameters of the HSA are as follows: initial temperature 

(T0), cooling rate (θ), epoch length (N) and maximum number of transitions (Imax). The initial temperature can be 

chosen in such a way that the acceptance probability of non-improving transitions in the first iteration of the 

annealing process is 95%. In this relation, 100 pairs of solutions are randomly generated. Then, the value of T0 is 
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calculated by 
100 1 2

0 1
( ) ( ) ( 100 ln(0.95))n nn

T TC TC


    π π , where π1
n and π2

n are two solutions that are 

randomly generated at n-th trial. The value of N can be set proportional to problem size; in this case the number 

of machines. So, we set N = N′ × M, where N′ is a coefficient and M is the number of machines.  

 

Six test problems adopted from Krishnan et al. (2012) were used in the parameter setting of the HSA. Four 

levels were considered for each parameter. These levels include: (0.8, 0.85, 0.9, 0.95) for θ, (30000, 40000, 

50000, 60000) for Imax, and (4, 5, 6, 7) for N′. As SA is a stochastic search method, 10 independent runs were 

performed on each parameter combination (in total 6 × 43 × 10 = 3840 runs were carried out). The computation 

results were analyzed using DOE toolbox in Minitab 16 statistical software. Finally, by considering a trade-off 

between solution quality and computation time, the following values were selected for the HSA parameters: N′ = 

5 (i.e., N = 5M), θ = 0.95 and Imax = 50000. 

 

5.2. Comparison to Krishnan et al. (2012)’s approach 

 

In this section, we compare the S-shaped layout with the layout approach presented by Krishnan et al. (2012). 

They developed a method based on the flow between machines for obtaining machine cells. A GA-based 

machine placement procedure was employed for placing machines in a facility layout matrix (grid) as a QAP. 

They used six numerical examples from the literature in order to benchmark the developed procedure. These 

numerical examples are solved by the HSA and the results are compared with the solutions reported in Krishnan 

et al. (2012). The data sets of these examples are available in the reference paper. According to the solutions 

reported in (Krishnan et al. 2012), all machines are assumed equal-sized, i.e., wk = hk = 1, ∀ k. Both the vertical 

and horizontal aisle widths (LX and LY) are set to 0. For all parts, the unit inter- and intra-cell material handling 

costs per unit distance (i.e., cE
i,k,k′ and cA

i,k,k′) are assumed 2 and 1, respectively. The similarity between machines 

(Sk,k′) is calculated according to Yule’s similarity coefficient (see Table 1). The weighting factor, α, is set to 0.5. 

The other parameters, including the maximum number of cells, Cmax, the maximum number of machines 

allowed in each cell, NM, and the width of the shop floor, W, are set according to the solutions given in 

Krishnan et al. (2012). The lower and upper bounds of objective functions (i.e., THL, THU, TSL and TSU) are 

determined in the same way as explained in Section 3.2. For each problem, the HSA is executed 30 times and 

the best result is considered for comparison. A summary of comparison is provided in Table 2. In this table, the 

values reported in columns ‘Imp1’, ‘Imp2’ and ‘Imp3’ indicate the improvement percent in the TH, TS, and TC, 

respectively. These values are calculated by: Imp1 = (1 − THHSA/THK) × 100, Imp2 = (TSHSA/TSK − 1) × 100, and 

Imp3 = (1 − TCHSA/TCK) × 100. Also, the final solutions of the S-shaped layout as well as the solutions of 

Krishnan et al. (2012) are shown in Appendix C, Figs C.1−C.6. 

 

[Please insert Table 2 here] 

 

As it can be seen in Table 2, in problems 1, 2, 4 and 5, the solution of the proposed approach dominates the 

solution of Krishnan et al. (2012). For problem 6, the total material handling cost in the proposed approach is 

29.16% better than that in Krishnan et al. (2012)’s approach. But, for this problem, the total similarity resulting 

from the proposed approach is 4.37% worse than that in Krishnan et al. (2012)’s approach. However, we can see 

that for this problem, the normalized objective function value of the proposed approach (considering α = 0.5) is 

98.23% better than that of Krishnan et al. (2012)’s approach. So, in problem 6, the solution of the proposed 

approach is preferred. In problem 3, we could not calculate the TC, because the deviations between the lower 

and upper bounds are zero. In this problem, the total similarity in the solution of the proposed approach is equal 

to that of Krishnan et al. (2012)’s approach. However, the material handling cost of proposed approach is 9.79% 

worse than that of Krishnan et al. (2012)’s approach. It should be noted that in these problems the width of the 

shop floor was set according to Krishnan et al. (2012)’s solutions. However, in problem 3, if we set W = 2 and 

add an artificial machine to the problem (in order to fill the empty location within the layout grid), the total 

material handling cost is obtained as 146150 units, which is 5.37% better than that calculated for Krishnan et al. 

(2012)’s solution. Unfortunately, Krishnan et al. (2012) did not mention anything about their computation times. 

However, it can be seen that the HSA is able to solve the largest problem (i.e., problem 6) in an average time of 

6.05 seconds. Based on this comparison, it was shown that a special case of the proposed S-shaped layout is the 
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grid layout (or equivalently the QAP). Also, in most cases it was demonstrated that the proposed bi-objective 

problem with S-shaped layout can produce better solutions than Krishnan et al. (2012)’s approach. 

 

5.3. Comparison to Mohammadi and Forghani (2014)’s approach 

 

The second section of comparison is carried out between the S-shaped layout considered in this study, and the 

multi-row layout proposed by Mohammadi and Forghani (2014). They considered similar parameters such as 

machine dimensions and aisle width in the CMS layout. However, the type of layout is different. In their 

approach, each row represents a machine cell, and the layout of machines within the cells is assumed linear. For 

simplicity, they did not take the width of the shop floor into consideration. It needs to be mentioned that they 

employed a GA for solving their problem. Six numerical examples are used in this section in order to compare 

these approaches. As the data sets of these examples are not available in the reference paper, we present them in 

Appendix B, Tables B.1−B.12. These data sets include the dimension of machines (wk and hk) the operation 

sequences of parts (that are used to calculate fi,k,k′), and the demand of parts (dk). In all problems, the unit inter- 

and intra-cell material handling costs per unit distance (cE
i,k,k′ and cA

i,k,k′) were assumed 0.15 and 0.1, 

respectively. Also, the vertical and horizontal aisle widths (LY and LX) are 3 and 1.5 units, respectively. For each 

problem, the width of the shop floor (W) is set equal to the maximum length of the cells in Mohammadi and 

Forghani (2014)’s solution. The other parameters, including, the maximum number of cells (Cmax) and the 

maximum number of machines allowed in each cell (NM) are taken from the reference paper. The weighting 

factor (α) is assumed 0.5. The similarity between machines (Sk,k′) is calculated according to Yule’s similarity 

coefficient (see Table 1). After obtaining the lower and upper bounds of objective functions (i.e., THL, THU, TSL 

and TSU) using the method explained in Section 3.2, each problem is solved 30 times by the HSA and the best 

result is considered for comparison. A summary of comparison is given in Table 3. In this table, the values 

given in the columns ‘Imp1’, ‘Imp2’ and ‘Imp3’, respectively, indicate the improvement percent in the TH, TS 

and TC when α = 0.5. These values are calculated by: Imp1 = (1 − THHSA/THM&F) × 100, Imp2 = (TSHSA/TSM&F − 

1) × 100 and Imp3 = (1 − TCHSA/TCM&F) × 100. Also, the values given in the column ‘Imp4’ show the 

improvement percent in the total material handling cost when α = 1 (i.e., only the total material handling cost is 

minimized). These values are also calculated by Imp4 = (1 − THL/THM&F) × 100. The final solutions of the S-

shaped layout as well as Mohammadi and Forghani (2014)’s solutions are shown in Appendix C, Figs 

C.7−C.12. 

 

[Please insert Table 3 here] 

 

From Table 3, columns ‘Imp1’ and ‘Imp2’, we can see that except for one case (i.e., problem 8), in the 

remaining problems the HSA solution dominates the solution obtained by Mohammadi and Forghani (2014). 

According to the results, we can see that applying the S-shaped layout on these problems (except for problem 8) 

leads to better material handling cost in comparison with the multi-row layout. When α = 1, (i.e., only the 

material handling cost is minimized), this improvement is even further (see column ‘Imp4’ in Table 3). For 

instance, in problem 10 the total material handling cost for α = 0.5 is 5612.50 units, while this value for α = 1 

(i.e., THL) is 5556.25 units. Also, the total similarity in the solutions of the suggested approach is better than (or 

at least the same as) that of Mohammadi and Forghani (2014)’s approach. In problem 8, the material handling 

cost resulting from the suggested approach is just 0.04% worse than that of Mohammadi and Forghani (2014)’s 

approach, which is negligible. The result of computation times shows that the HSA consumes slightly more 

CPU time than the GA developed by Mohammadi and Forghani (2014). However, the HSA can solve the 

problems in a reasonable amount of time. For instance, in the worst case (i.e., problem 11), the average CPU 

time of the HSA is almost 3.38 seconds. 

 

6. Conclusions and directions for further research 

 

In this research, an integrated bi-objective CF and layout problem considering a new layout framework based on 

S-shaped layout was presented. In this problem, we attempted to minimize the total material handling cost and 

maximize the total similarity between machines. A normalized weighted sum method was proposed to unify 
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these objective functions. Due to computational complexity of the problem, a hybrid solution method combining 

the SA and DP algorithms was developed to solve large-sized problems in a reasonable computational time. In 

the proposed solution method, which is called HSA, partial solutions (permutations) representing the layout of 

machines on the shop floor are created by the SA. Then, each permutation is partitioned into machine cells using 

the DP. After setting the HSA parameters, the suggested approach was compared with two recently developed 

approaches in the literature. In the first section of comparison, we compared the S-shaped layout with the grid 

layout presented by Krishnan et al. (2012). Six numerical examples were solved and the solutions were 

compared with those obtained by Krishnan et al. (2012). In five examples the suggested bi-objective problem 

with S-shaped layout gave better solutions than Krishnan et al. (2012)’s approach. This comparison also 

indicated that a special case of the proposed S-shaped layout is the grid layout (or equivalently QAP). The 

second section of comparison was carried out between the S-shaped layout and the multi-row layout proposed 

by Mohammadi and Forghani (2014). Six numerical examples were solved by the HSA and the solutions were 

compared with Mohammadi and Forghani (2014)’s solutions. The results indicated that in five examples, the 

suggested approach gave better solutions than Mohammadi and Forghani (2014)’s approach. 

 

Although the HSA has good performance in solving the proposed bi-objective problem, it also has some 

potential limitations that should be mentioned. First, as we applied a weighted some method for converting the 

bi-objective problem into a single objective problem, it was easy to solve the partitioning problem using the DP 

(see subsection 4.1). However, if we had more than two objectives, it became difficult to obtain Pareto solutions 

using the DP. Second, the SA algorithm is not efficient in solving problems with continues variables or many 

constraints. In addition, the SA algorithm is not suitable for parallel computing. These limitations of the SA and 

DP algorithms should be taken into consideration in later studies. 

 

The development of the S-shaped layout and the hybrid solution method in this paper also results in some 

directions for future research. First, it would be interesting to extend the proposed problem to include alternative 

process routings and machine capacity constraints. So, the development of an efficient solution method for 

addressing this issue seems necessary. Second, the proposed problem can be investigated in uncertain and 

dynamic situations. In this regard, the demand of parts plays an important role in the problem. To deal with this 

issue, one approach is to develop a dynamic problem in which the demand of parts is known in each period. In 

such circumstances, the objective could be minimization of the total material handling cost plus the 

rearrangement cost of layout (due to the variability of part demands in different periods). The other approach is 

to use two-stage or multi-stage stochastic programming methods to take the uncertainty into consideration. 

Finally, it would be interesting to integrate the proposed problem with scheduling problem. So, other objectives 

like minimization of the total tardiness or minimization of the makespan could be involved in the problem. 
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Appendix A. Pseudo code of the procedures used in the paper. 

 

Pseudo code of the procedure for calculating xk(π) and yk(π). 

Variables 

— k, k′, k″: integer; 

— hcomulative, wcomulative,hmax,wadjust: real; 

— layout_direction ∈ {forward, backward} 

Label next_machine, next_row, stop; 

— layout_direction ← forward; 

— hmax ← 0; 

— hcomulative ← −LY; 

— k′ ← 0; 

— next_row: 

— hcomulative ← hcomulative + hmax + LY; 

— k ← k′ + 1; 

— k′ ← k; 

— hmax ← hπ(k); 

— wcomulative ← wπ(k); 

— next_machine: 

— If (k′ + 1 ≤ M) and (wcomulative + LX + wπ(k′+1) ≤ W) then 

—— k′ ← k′ + 1; 

—— wcomulative ← wcomulative + LX + wπ(k′); 

—— If hmax < hπ(k′) then 

——— hmax ← hπ(k′); 

—— End IF 

—— Goto next_machine 

— Else 

—— If layout_direction = forward then 

——— xπ(k′)(π) ← (W − wcomulative)/2 + wπ(k′); 

——— yπ(k′)(π) ← hcomulative + hmax/2; 

——— For k″ ← k + 1 to k′ do  

———— xπ(k″)(π) ← xπ(k″−1)(π) + (wπ(k″−1) + wπ(k″)) / 2 + LX; 

———— yπ(k″)(π)← hcomulative + hmax / 2; 

——— End For; 

——— layout_direction ← backward 

—— Else 

——— xπ(k′)(π) ← (W − wcomulative)/2 + wπ(k′); 

——— yπ(k′)(π) ← hcomulative + hmax/2; 

——— For k″ ← k′ − 1 downto k do  

———— xπ(k″)(π) ← xπ(k″+1)(π) + (wπ(k″+1) + wπ(k″))/2 + LX; 

———— yπ(k″)(π) ← hcomulative + hmax/2; 

——— End For; 

——— layout_direction ← forward; 

—— End IF; 

—— If k′ = M then 

——— Goto stop 

—— Else 

——— Goto next_row; 

—— End IF; 

— End IF; 
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— Stop: 

End; 

Pseudo code of the DP for Calculating Ψ*(π) and L*(π). 

—
 
Ψ*(π) ← −∞;  

— For l = 1 to Cmax do 

—— For bl = max{l, M – (Cmax − l)NM} to min{M, l × NM} do 

——— g*
l(k) ← −∞; 

——— For b′l = max{l – 1, M – (Cmax – l + l)NM, bl – NM} to min{M, (l – 1)NM, bl – 1} do 

———— If  
1

1 ( ), ( ) ( ), ( ) 2 ( ), ( )1

* *

11( )( )
l l

l

b b E A

l k k k k k kkl l l b k k
g b F F Sb g       



      
   


 

   then 

—————  
1

1 ( ), ( ) ( ), ( ) 2 ( ), ( )1

* *

11( )( )
l l

l

b b E A

l k k k k k kkl l l b k k
g b F F Sb g       



      
   


 

  ; 

———— End If; 

——— End For; 

——— If bl = M and Ψ*(π) < g*
l(bl) then 

————
 
Ψ*(π) ← g*

l(bl); 

———— L
*
(π) ← l; 

——— End If; 

—— End For; 

— End For; 

End; 
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Pseudo code of the HSA for obtaining TC(π*). 

— Set (T0, N, Imax, θ); 

— T ← T0; 

— t ← 1; 

— Generate a random permutation π′; 

—  1 *

1 ( ), ( ) 21 1
( ) ( );

M M E

k k L Uk k k
TC F TH TS   



    
     π π  

— π* ← π′; 

— TC(π*) ← TC(π′); 

— Repeat 

—— n ← 0; 

—— Repeat 

——— m ← m + 1; 

——— Case Random {0, …, 6} of 

———— 0: π ← Swap (π′); 

———— 1: π ← Change (π′); 

———— 2: π ← Invert (π′); 

———— 3: π ← Swap and Change (π′); 

———— 4: π ← Swap and Invert (π′); 

———— 5: π ← Change and Invert (π′); 

———— 6: π ← Swap, Change and Invert (π′); 

——— End Case; 

———  1 *

1 ( ), ( ) 21 1
( ) ( );

M M E

k k L Uk k k
TC F TH TS   



  
    π π  

——— Δ ← TC(π) − TC(π′); 

——— If (Δ < 0) or (Uniform(0, 1) ≤ exp(−Δ⁄T)) then 

———— π′ ← π; 

———— TC(π′) ← TC(π); 

———— n ← n + 1; 

———— If TC(π) < TC(π*) then 

————— t ← 0; 

————— π* ← π; 

————— TC(π*) ← TC(π); 

———— End If; 

——— End If; 

—— Until n = N; 

—— t ← t + 1; 

—— T ← θ × T; 

—Until t ≥ Imax; 

End; 

 

Appendix B. Data set of the numerical examples selected form Mohammadi and Forghani (2014). 

 

[Please insert Tables B.1−B.12 here] 

 

Appendix C. Solutions of the numerical examples selected from Krishnan et al. (2012) & Mohammadi and 

Forghani (2014). 

 

[Please insert Figs. C.1−C.12 here] 
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Table 1. Definitions and ranges of twenty well-known similarity coefficients considered in Yin and Yasuda 

(2005) 
No. Coefficient name Definition, Sk, k′ Range 

1 Jaccard a/(a + b + c) 0–1 
2 Hamann [(a + d) – (b + c)]/[(a + d) + (b + c)] –1 to 1 

3 Yule (ad – bc)/(ad + bc) –1 to 1 
4 Simple matching (a + d)/(a + b + c + d) 0–1 
5 Sorenson 2a/(2a + b + c) 0–1 
6 Rogers and Tanimoto (a + d)/[a + 2(b + c) + d] 0–1 
7 Sokal and Sneath 2(a + d)/[2(a + d) + b + c] 0–1 
8 Rusell and Rao a/(a + b + c + d) 0–1 
9 Baroni-Urbani and Buser [a + (ad)1/2]/[a + b + c + (ad)1/2] 0–1 
10 Phi (ad – bc)/[(a + b)(a + c)(b + d)(c + d)1/2] –1 to 1 

11 Ochiai a/[(a + b)(a + c)1/2] 0–1 
12 PSC a2/[(b + a)(c + a)] 0–1 
13 Dot-product a/(b + c + 2a) 0–1 
14 Kulczynski 1/2[a/(a + b) + a/(a + c)] 0–1 
15 Sokal and Sneath 2 a/[a + 2(b + c)] 0–1 
16 Sokal and Sneath 4 1/4[a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)] 0–1 
17 Relative matching [a + (ad)1/2]/[a + b + c + d + (ad)1/2] 0–1 
18 Chandrasekharan and Rajagopalan a/min[(a + b),(a + c)] 0–1 
19 MaxSC max [a/(a + b),a/(a + c)] 0–1 

20 Baker and Maropoulos a/max[(a + b),(a + c)] 0–1 

a: the number of parts visit both machines; b: the number of parts visit machine k but not k′; c, the number of parts visit 
machine k′ but not k; d, the number of parts visit neither machine. 

 

 

Table 2. Comparison between the S-shaped and Grid layouts 
Problem  Lower and upper bounds  S-shaped layout  Krishnan et al. (2012)’s approach 

(Grid layout) 

    

# Size 

(M × P) 

Cmax
 NM W  THL THU TSL TSU  THHSA

 TSHSA
 TCHSA

 tHSA
 

(s)
*
 

 THK
 TSK

 TCK
  Imp

1
 

(%) 

Imp
 2
 

(%) 

Imp
 3
 

(%) 

1 8 × 10 3 3 3  18890 20215 1.24 4.59  18890 1.24 0.50 0.20  19630 1.24 0.78  3.77 0.00 35.84 

2 13 × 13 3 5 4  27470 31790 17.63 18.41  28570 17.99 0.40 0.68  36240 17.99 1.29  21.16 0.00 69.02 

3 15 × 25 4 4 4  166600 166600 18.06 18.06  166600 18.06 - 0.75  151750 18.06 -  -9.79 0.00 - 

3
†
 15 × 25 4 4 2  146150 146150 18.06 18.06  146150 18.06 - 0.79  151750 18.06 -  5.37 0.00 - 

4 16 × 43 5 6 4  199861 278075 2.50 17.33  210933 11.73 0.26 1.36  283938 7.58 0.87  25.71 54.79 70.05 

5 25 × 40 8 6 5  19340 22840 13.85 27.01  19640 23.70 0.17 4.86  29655 21.62 1.68  33.77 9.62 89.95 

6 30 × 30 8 5 5  112470 113345 38.33 42.62  112920 40.76 0.47 6.05  159395 42.62 26.81  29.16 -4.37 98.23 

* Average CPU time in 30 runs of the HSA 
†
 Alternative solution for problem 3 considering W = 2 

 

 

Table 3 
Comparison between the S-shaped and multi-rows layouts 
Problem     Lower and upper bounds  S-shaped layout  Mohammadi and Forghani (2014)’s 

layout (multi-rows layout) 

     

# Size 

(M × P) 

Cmax NM W  THL THU TSL TSU  THHSA TSHSA TCHSA tHSA 

(s)* 

 THM&F TSM&F TCM&F tGA 

(s)† 

 Imp1 

(%) 

Imp2 

(%) 

Imp3 

(%) 

Imp4 

(%) 

7 8 × 20 3 4 17  3453.75 3691.25 4.36 7.39  3453.75 4.36 0.50 0.24  3461.25 4.36 0.52 0.20  0.22 0.00 3.06 0.22 

8 15 × 30 3 5 21.5  9114.89 9114.89 29.90 29.90  9114.89 29.90 0.00 0.75  9111.29 29.90 0.00 0.65  -0.04 0.00 0.00 -0.04 

9 16 × 30 3 7 22  7230.00 8106.25 1.41 25.50  7316.25 13.89 0.29 1.30  7731.25 2.73 0.76 0.64  5.37 408.89 61.75 6.48 

10 20 × 20 5 5 20.5  5556.25 5882.50 22.02 24.54  5612.50 23.45 0.30 1.75  5825.00 4.83 4.32 0.25  3.65 385.76 93.02 4.61 

11 24 × 40 7 5 22  6825.94 7317.03 28.59 34.19  6851.94 32.59 0.17 3.38  7092.29 25.37 1.06 1.66  3.39 28.47 84.05 3.76 

12 25 × 40 7 4 17.5  10021.25 11543.75 16.76 24.74  10316.25 21.23 0.32 2.30  10455.00 18.75 0.52 1.75  1.33 13.21 38.76 4.15 

* Average CPU time in 30 runs of the HSA 
†  Average CPU time in 30 runs of the GA proposed by Mohammadi and Forghani (2014) 
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Table B.1 

Processing information of parts for problem 7 

Part # Operation sequence  Part # Operation sequence 

1 6 5     11 7 3 1   

2 1 3     12 5 7 6   

3 2 1 7 8 5  13 1 3    

4 2 4 7 8   14 1 2 3   
5 6 5     15 5 6    

6 2 4 7 8 5  16 1 3    

7 8 4 7 2   17 3 5 1   

8 1 3     18 4 2 8 7  

9 1 6 3    19 1 3    

10 5 3 4    20 4 2 6 7 8 

di = 100, cA
i,k,k′ = 0.1 and cE

i,k,k′ = 0.15 for i, k, k′. 

 

 

Table B.2 

Machine dimensions for problem 7 

Machine # 1 2 3 4 5 6 7 8 

width (wk) 4 3.5 2.5 4 2 2 3 4 

length (hk) 2 3 3 2 4 3.5 3 4 

 
 

Table B.3 

Processing information of parts for problem 8 

Part # Operation sequence  Part # Operation sequence  Part # Operation sequence 

1 2 3 7 10 11   11 1 2 3 7 10   21 11 12 13 14  

2 4 5 6 8 9   12 5 6 8 9    22 4 5 6 8 9 

3 1 2 3 7 10 11  13 4 11 12 13 14 15  23 11 12 13 14 15 

4 3 11 12 13 14 15  14 4 5 6 8 9   24 11 12 13 14  

5 4 5 6 8 9   15 4 11 12 13 14 15  25 11 12 13 14 15 

6 1 2 3 7 10   16 3 4 5 6 8 9  26 4 5 6 8 9 

7 1 2 3 7 10   17 1 2 3 7 10   27 4 5 6 8 9 

8 1 2 3 7 10   18 4 5 6 8 9   28 11 12 13 14 15 

9 1 2 3 7 10   19 1 2 3 7 10   29 11 12 13 14 15 

10 1 2 3 7 10   20 4 5 6 8 9   30 11 12 13 14 15 

di = 100, cA
i,k,k′ = 0.1 and cE

i,k,k′ = 0.15 for i, k, k′. 
 

 

Table B.4 

Machine dimensions for problem 8 

Machine # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

width (wk) 3 3 4 3.5 2 2 4 4 3 2.5 4 3 2.5 3 3 

length (hk) 2.5 3 4 2 2.5 2 2.5 2 4 3.5 4 4 2 2 2 
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Table B.5 

Processing information of parts for problem 9 

Part # Operation sequence  Part # Operation sequence  Part # Operation sequence 

1 2        11 5 10 11 14      21 5 10 14    

2 4 7 8 11 12    12 1 7 8 11 12     22 1 4 7 8 12  

3 5 13       13 3 13        23 3 6 9 15   

4 1 2 3 4 7 8 12  14 5 10 14 16      24 5 10 16    
5 1 9 15      15 5 10 14 16      25 3 6 7 9 15  

6 5 10 14 16     16 2         26 5 10 15 16   

7 1 4 7 8 11 12 16  17 14         27 3 6 9 14 15 16 

8 5 10 14 16     18 1 2 4 7 8 10 11 12  28 3 8 9    

9 1 4 8 11     19 9 12        29 3 6 13 15   

10 2 13       20 2 12 13       30 1 4 7 11 13 15 

di = 100, cA
i,k,k′ = 0.1 and cE

i,k,k′ = 0.15 for i, k, k′. 

 

Table B.6 

Machine dimensions for problem 9 

Machine # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

width (wk) 3.5 2 4 3 3.5 2.5 3.5 3 3.5 4 3 2 3.5 3 3 2.5 

length (hk) 2.5 3 2 3.5 2 3 2 2 3.5 3.5 2 2.5 2.5 2 4 3.5 

 

Table B.7 
Processing information of parts for problem 10 

Part # Operation sequence  Part # Operation sequence 

1 12 1 9 18 20  11 11 14 3   

2 11 3 2    12 9 18 5 12 1 

3 8 20 19    13 6 7 15 17  

4 3 11 2 10   14 8 10 1 2  

5 4 15 6 7   15 13 14 16 17  

6 11 14 16 17 5  16 15 7 6 18  

7 5 16 17    17 9 1 12   

8 15 13 7 9 4  18 8 19 20 10  

9 18 9 11 1 12  19 3 2 11 5  

10 19 20 8    20 18 10 1 12  

di = 100, cA
i,k,k′ = 0.1 and cE

i,k,k′ = 0.15 for i, k, k′. 

 

Table B.8 
Machine dimensions for problem 10 

Machine # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

width (wk) 4 2 2.5 2 3.5 4 4 3.5 2.5 4 3 2 3.5 2.5 3 4 3.5 3.5 4 3.5 

length (hk) 2 3.5 3 4 3 4 4 2 3 2 3 3.5 3 2 3.5 4 4 3 2.5 2 
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Table B.9 

Processing information of parts for problem 11 
Part # Demand 

(di) 
Operation sequence  Part # Demand 

(di) 
Operation sequence  Part # Demand 

(di) 
Operation sequence 

1 155 1 13 21 22   15 100 3 20     29 125 9 17    
2 160 3 20 24    16 65 1 13 21 22   30 135 6 8 12 18  
3 135 7 14 23 24   17 85 1 13 21 22   31 65 3 20 17   

4 150 6 8 12 15 18  18 125 6 8 12 15 18  32 90 7 14 23 24 16 
5 210 6 8 12 15 18  19 102 4 16     33 100 1 13 21 22 2 
6 230 9 10 17    20 105 2 5 11 19 21  34 90 3 20    
7 85 9 10 17    21 75 4 16     35 120 5 11 19 21  
8 90 4 16     22 100 2 5 11 19 21  36 130 5 11 19 21  
9 95 1 13 21 22   23 140 3 20     37 145 16 15    
10 86 2 5 11 19 21  24 62 3 20 12    38 250 4 16    
11 55 3 20     25 85 7 14 23    39 60 4 16    
12 120 3 20     26 185 6 8 15 18 10  40 90 9 10 17   

13 142 2 11 19    27 55 6 8 12 15 18         
14 140 2 5 11 19 21  28 130 4             

cA
i,k,k′ = 0.1 and cE

i,k,k′ = 0.15 for i, k, k′. 

 

 

Table B.10 

Machine dimensions for problem 11 

Machine # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

width (wk) 3.5 2 3 4 3.5 3.5 3 2 3 2 2.5 3.5 2 3 2.5 2.5 2 3 2 2.5 3 2 2.5 2 

length (hk) 2 3.5 2 2 4 3.5 3.5 4 2.5 2.5 3.5 4 2 3 2.5 2 2 2 2.5 4 3.5 4 3.5 3 

 

 

Table B.11 

Processing information of parts for problem 12 
Part # Operation sequence  Part # Operation sequence  Part # Operation sequence  Part # Operation sequence 

1 10 18 7 16 4 22  11 21 8 13    21 8 10 9   31 17 5 19  

2 25 1 2 17    12 1 24 17 3 25  22 17 9 3 8  32 14 13 15 22 
3 20 3 11     13 20 11 3    23 19 5 16   33 11 25 20  
4 12 23      14 5 11 20 3   24 5 16    34 23 12 24  
5 18 12 4     15 16 19 5 2 10  25 6 21 15   35 21 6 22 15 
6 23 16 12     16 4 16 7 18   26 23 4 12 15  36 17 1 2 11 
7 18 7 4 16 10   17 7 18 10    27 12 22 21   37 23 12 7  
8 5 19 16     18 22 15 14    28 9 8 10   38 22 8 9  
9 20 25 3 11    19 8 10 9    29 21 6 5   39 12    

10 9 8 25     20 23      30 18 7 16 4  40 21 6 15  

di = 100, cA
i,k,k′ = 0.1 and cE

i,k,k′ = 0.15 for i, k, k′. 

 

 

Table B.12 

Machine dimensions for problem 12 

Machine # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

width (wk) 4 3.5 2 3.5 2.5 4 3 3.5 2.5 3.5 3.5 4 4 3.5 3 4 2.5 3.5 2.5 4 2 2.5 3.5 4 3.5 

length (hk) 4 2 3 2.5 4 3.5 2.5 3 2 3 2.5 3 3 3.5 2.5 2.5 3.5 4 3 2 3 4 3.5 3 3 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

Fig. 1 An illustrative example for the proposed S-shaped layout 

 

 

 

 
Fig. 2 Example of Move operators applied in the SA 

 

 

 
Fig. C.1 Problem 1: a) solution of the HSA b) solution obtained by Krishnan et al. (2012) 
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Fig. C.2 Problem 2: a) solution of the HSA b) solution obtained by Krishnan et al. (2012) 

 

 

 
Fig. C.3 Problem 3: a) solution of the HSA considering W = 4 b) solution of the HSA considering W = 2 and an 

artificial machine (i.e., machine 16) c) solution obtained by Krishnan et al. (2012) 

 

 

 
Fig. C.4 Problem 4: a) solution of the HSA b) solution obtained by Krishnan et al. (2012) 

 

 

 
Fig. C.5 Problem 5: a) solution of the HSA b) solution obtained by Krishnan et al. (2012) 
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Fig. C.6 Problem 6: a) solution of the HSA b) solution obtained by Krishnan et al. (2012) 

 

 

 
Fig. C.7 Problem 7: a) solution of the HSA b) solution obtained by Mohammadi and Forghani (2014) 

 

 

 
Fig. C.8 Problem 8: a) solution of the HSA b) solution obtained by Mohammadi and Forghani (2014) 

 

 

 
Fig. C.9 Problem 9: a) solution of the HSA b) solution obtained by Mohammadi and Forghani (2014) 
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Fig. C.10 Problem 10: a) solution of the HSA b) solution obtained by Mohammadi and Forghani (2014) 

 

 

 
Fig. C.11 Problem 11: a) solution of the HSA b) solution obtained by Mohammadi and Forghani (2014) 
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Fig. C.12 Problem 12: a) solution of the HSA b) solution obtained by Mohammadi and Forghani (2014) 
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Highlights 

 An integrated bi-objective cell formation and layout problem is addressed. 

 A new framework based on a S-shaped layout is proposed for the layout of cellular manufacturing 

systems. 

 The dimensions of machines, the horizontal and vertical aisle widths, and the width of the shop floor 

are considered in the layout problem. 

 A hybrid solution method combining Simulated Annealing and Dynamic programming algorithms is 

developed. 

 The computational results show the advantages of the proposed approach and the good performance of 

the solution method. 

 


