
© 2012, IJARCSSE All Rights Reserved Page | 369

 Volume 2, Issue 7, July 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Design Challenges of Load Balancing-CORBA

Architecture
Gagandeep singh

Deptt. Of Computer science and IT

GGS Khalsa College Sarhali, Tarn Taran

India

Abstract: In this paper we are going to discuss about the CORBA technique used in distributed systems and its various

design challenges faced when adding this load balancing service to our CORBA ORB (object request broker) as

network centric computing becomes more pervasive and applications become more distributed, the demand for greater

scalability and dependability is increasing. Distributed system scalability can degrade significantly.

Key words: Load balancing, replicas, portable, distributed

I. Introduction

CORBA which stands for common object request broker

architecture, is an industrial standard developed by OMG

to aid in distributed programming. CORBA is just a

specification for creating and using distributed objects.

CORBA is not a programming language.

The CORBA [1] architecture is based on the object model.

This model is derived from the abstract core object model

defined by the OMG in the object management

architecture guide. The model is abstract in the sense that

it is not directly realized by any particular technology, this

allows applications to be built in a standard manner using

basic building blocks such as objects. Therefore, a

CORBA based system is a collection of objects that

isolates the requests of services (clients) from the

providers of services (servers) by a well defined

encapsulating interface. It is important to note that

CORBA objects differ from typical programming objects

in three ways:

1. CORBA objects can run on any platform [14].

2. CORBA objects can be located anywhere on the

network.

3. CORBA objects can be written in any language

that has IDL mapping.

II. CORBA architecture

CORBA is composed of five major components

ORB, IDL, Dynamic invocation interface (DII),

interface repositories(IR) and object adapters (OA)[5]

1. The Object Request Broker

The CORBA specification must have software to

implement it. The software that implements the

CORBA specification is called ORB. The ORB,

which is the heart of CORBA, is responsible for all

the mechanisms required to perform these tasks [3].

(a) Find the object implementation for the request

(b) Prepare the object implementation to receive the

request

(c) Communicate the data making up the request

Fig1: - The structure of CORBA 2.0 ORB

There are two important things to note about the

CORBA architecture and its computing model

I. Both the client[12] and the object

implementation are isolated from the ORB

by an IDL interface.

II. All requests are managed by the ORB. This

means that every invocation of a CORBA

object is passed to an ORB.

http://www.ijarcsse.com/

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 370

Fig2: - A request from a client to an object

implementation

2. Interface Definition Language

The IDL defines the typed of objects by defining their

interfaces. An interface consists of a set of named

operations and the parameters to those operations.

IDL is only used to describe interfaces, not

implementations. Though IDL, a particular object

implementation tells its potential clients what

operations are available and how they should be

invoked. Some of the programming languages with

IDL mapping include C, C++, JAVA, LISP and

PYTHON. Thus once you define an interface to

objects in IDL, you are free to implement the object

using any suitable programming language that has

IDL mapping. [6][7]

3. Dynamic Invocation Interface

Invoking operations can be done through either static

or dynamic interfaces. Static invocations are

determined at compile time, and they are presented to

the client using stubs. The DII, on the other hand

allows client application to use server objects without

knowing the type of those objects at compile time. [8]

It allows a client to obtain an instance of a CORBA

object and make invocation on that object by

dynamically constructing request. CORBA supports

both the dynamic and static invocation interfaces.

4. Dynamic Skeleton Interface

Analogous to the DII is the server side dynamic

skeleton interface (DSI), which allows servers to be

written without having skeleton, or compile time

knowledge for the objects being implementation.

 DSI was introduced in CORBA 2.0. its main purpose

is to support the implementation of gateways between

ORB’s which utilize different communication

protocols[20].

5. Interface Repository

The IR provides another way to specify the interface

to objects. Interface can be added to the interface

repository service. Using the IR a client should be

able to locate an object that is unknown at compile

time, find information about interface , then build a

request to be forwarded through the ORB.

Here are the various design challenges which are faced the

development of CORBA ORB load balancing service.

1. Implementing portable load balancing.

2. Enhancing feedback and control.

3. Supporting modular load balancing strategies.

4. Identifying objects uniquely.

5. Integrating all the load balancing components

effectively.

Challenge 1:- Implementing portable load balancing

Changing application code particularly client applications

to support load balancing can be tedious, error prone and

costly. Changing the middleware infrastructure to support

load balancing is also problematic since the same

middleware[11] may be used in applications that do not

require load balancing. Using ad-hoc or proprietary

interfaces to add load balancing to existing middleware

can increase maintenance effort.

Challenge 2:- Enhancing feedback and control

Sampling loads from replicas should be as transparent as

possible to the replicas. If load sampling was not

transparent, a load balancer would have to sample loads

from server replicas directly, which is undesirable since it

would require replicas to collect loads. If replicas collect

loads, however application code to support load

balancing. A load balancer should not be tightly coupled

to a particular load metric. Only the magnitude load

balancing decisions, so that a load balancer can support

any type of load metric, rather than just one type of

metric. If a load balancer were load metric specific it

would be costly to deploy load balancers for distributed

applications that require balancing based on several

metrics. For example, a separate load balancer would be

needed to balance replicas based on various metrics such

as CPU, I/O, memory, and network and battery power

utilization. In addition, a load balancer must react to

various replicas are balanced. For example, [19][15] when

high load conditions occur, a replicas must be instructed

to forward the client request back to the load balancer so

subsequent request can be reassigned to a less loaded

replicas.

Challenge 3:- supporting modular load balancing

strategies

Since certain analysis techniques are not suitable for all

use-cases, it may be useful to analyze a set of replicas

loads in different ways depending on the situation. For

example, to predict the future replicas loads it may be

useful to analyze the history of loads for a given object

group, thereby anticipating high load conditions.

Conversely this level of analysis may be too costly in use-

cases. E.g. if the duration of the analysis exceeds the time

required to complete client request processing. Likewise,

application developers may be interested in evaluating

several alternative load balancing policies in which

requiring a full recompilation or Relink cycle would

unduly increase system development effort. A load

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 371

balancing service cannot simply implement all possible

load balancing strategies.

Challenge 4:- Identifying objects uniquely

When receiving information about the load in one replicas

the load balancing service should determine the source of

the load information efficiently and uniquely.

CORBA[10] does not provide a lightweight mechanism to

determine the source of a request. CORBA provides weak

identity for objects, relying on the replica object reference

to distinguish them would not be portable. So efficiently

and portably determine is a bottleneck during the CORBA

load balancing.

Challenge 5:- Integration of the load balancing

components

All the components used in the CORBA architecture plays

an important role at their own place and work in an

independent manner. So all the components must be

collaborate effectively to ensure that distributed system is

properly load balanced. Direct interaction between some

of the those components may complicate the

implementation of distributed application, however since

certain functionality may be exposed to a given

component unnecessarily. So integration of all

components in a well manner is another challenge in

distributed systems.

III. Conclusions

This paper has presented a number of approaches for

improving the performance of a distributed CORBA-

based Service Control Point. Although distributed systems

technologies can contribute greatly to this area by

allowing processing requirements to be divided among a

large number of less expensive processors, it is unwise to

assume that increasing processing power or memory sizes

of network processors ad infinitum will alone guarantee

high performance. The solutions offered in this paper aim

to increase the efficiency and cost effectiveness of

resources with a view to making CORBA-based solutions

more suitable for high performance, reliable systems

required by telecommunications environments.

References
[1] S. Vinoski, CORBA: Integrating diverse applications

within distributed

heterogeneous environments, IEEE Communications, vol.

14, No. 2, Feb. 1997

[2] Common Object Request Broker Architecture

(CORBA/IIOP)

Specification, Version 3.0.2. The Object Management

Group, December 2002. Available electronically at

http://www.omg.org/technology/documents/corba_spec_c

atalog.htm

[3] Michi Henning, Advanced CORBA Programming

With C++, Addison-

Wesley, 1999

[4] Minimum CORBA, Version 1.0. The Object

Management Group, August 2002. Available

electronically at http://cgi.omg.org/docs/formal/02-08-

01.pdf

[5] Cathy Hrustich, “CORBA For Real-Time, High

Performance and Embedded Systems”, Fourth IEEE

International Symposium on Object- Oriented Real-Time

Distributed Computing, 200. pp. 345-349

[6] Real-time CORBA, Version 1.1. The Object

Management Group, August 2002. Available

electronically at http://cgi.omg.org/docs/formal/02-08-

02.pdf

[7] D. C. Schmidt, D. L. Levine, and S. Mungee, “The

Design and performance of Real-Time Object Request

Brokers,” Computer

 [8] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A.

Gokhale, “Software Architectures for Reducing Priority

Inversion and Non-determinism in Real-time Object

Request Brokers,” Journal of Real-time Systems, special

issue on Real-time Computing in the Age of the Web and

the Internet, To appear 2001.

[9] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt,M.

Kircher, and J. Parsons, “The Design and Performance of

a Scalable ORB Architecture for CORBA Asynchronous

Messaging,” in Proceedings of the Middleware 2000

Conference, ACM/IFIP, Apr. 2000.

[10] B. Natarajan, A. Gokhale, D. C. Schmidt, and S.

Yajnik, “DOORS:

Towards High-performance Fault-Tolerant CORBA,” in

Proceedings of the 2nd International Symposium on

Distributed Objects and Applications (DOA 2000),

(Antwerp, Belgium), OMG, Sept. 2000.

[11] A. Gokhale and D. C. Schmidt, “Measuring the

Performance of Communication Middleware on High-

Speed Networks,” in Proceedings of SIGCOMM ’96,

(Stanford, CA), pp. 306–317, ACM, August 1996.

[12] D. C. Schmidt and C. Cleeland, “Applying Patterns

to Develop Extensible ORB Middleware,” IEEE

Communications Magazine, vol. 37, April 1999.

[13] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V.

Kachroo, and A. Gokhale, “Using Principle Patterns to

Optimize Real-time ORBs,” Concurrency Magazine, vol.

8, no. 1, 2000.

[14] O. Othman, C. O’Ryan, and D. C. Schmidt, “The

Design of an Adaptive CORBA Load Balancing Service,”

IEEE Distributed Systems

Online, vol. 2, Apr. 2001.

[15] Object Management Group, Persistent State Service

2.0 Specification,

OMG Document orbos/99-07-07 ed., July 1999.

[16] D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and

F. Kuhns, “Applying QoS-enabled Distributed Object

Computing Middleware to

Next-generation Distributed Applications,” IEEE

Communications

Magazine, vol. 20, Oct. 2000.

[17] L. R. Welch, B. A. Shirazi, B. Ravindran, and C.

Bruggeman,“DeSiDeRaTa: QoS Management Technology

for Dynamic, Scalable, Dependable Real-Time Systems,”

in IFACs 15th Symposium on Distributed Computer

Control Systems (DCCS98), IFAC, 1998.

Volume 2, Issue 7, July 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 372

[18] IONA Technologies, “Orbix 2000.” www.iona-

iportal.com/suite/orbix2000.htm.

[19] L. Moser, P. Melliar-Smith, and P. Narasimhan, “A

Fault Tolerance Framework for CORBA,” in International

Symposium on Fault Tolerant Computing, (Madison, WI),

pp. 150–157, June 1999.

[20] Object Management Group, Fault Tolerant CORBA

Specification, OMG Document orbos/99-12-08 ed.,

December 1999.

[21] BEA Systems, et al., CORBA Component Model

Joint Revised Submission. Object Management Group,

OMG Document

